

STOCKESPACE PAYS DE THELLE

PROJET DE CONSTRUCTION D'UN BÂTIMENT LOGISTIQUE

60 540 - BELLE-FGLISE / 60 230 - CHAMBLY

PERMIS DE CONSTRUIRE BÂTIMENT A - dossier incomplet

PC A3

Notice Hydraulique

échelle:

date: 15 / 05 / 2020

MAITRISE D'OUVRAGE

SCCV STOCKESPACE PAYS DE THELLE

251 boulevard Pereire 75017 PARIS

MAITRISE D'OEUVRE CONCEPTION

BOGAERT ' ARCHITECTURE

33 rue Henri Barbusse 75005 PARIS

MAITRISE D'OEUVRE EXECUTION

ALSEI INGENIERIE CONSTRUCTION

251 boulevard Pereire

ingénierie construction 75017 PARIS

BUREAU DE CONTROLE

BTP Consultants

46 rue de Provence 75009 PARIS

BE PAYSAGE

Atelier Mathilde Martin

7 rue de Montrichard 41120 CHAILLES

FOBIS

10 av de la Croix Rouge 84000 AVIGNON

BE VRD

OGI

27 rue Garibaldi 93100 MONTREUIL

Cachet et signature du maître d'ouvrage

STOCKESPACE PAYS DE THELLE

ard Pereire

Cachet et signature de l'architecte

ORDRE DES ARCHITE SIREN 379 975 154 / TVA 33 RUE HENRI BARBUSSE, 15005 PARIS TEL +33 1 43 26 05 78

Info@bogaert-architecture.com

0150-60-2015 PAYS DE THELLE

60 540 - BELLE-EGLISE / 60 230 - CHAMBLY

PHASE PA / PC

- 1 July - 1 Ave 20 - 500

- 4

Communauté de communes

PAYS DE THELLE

OBJET

LOT A

ı. co	LLECTE DES EAUX DE PLUIE	3
2. CA	NALISATIONS DE COLLECTE	3
2.1.	Dimensionnement des canalisations pour les voiries	3
2.1.1.	Données	3
2.1.2.	Calculs	4
2.2 .	Dimensionnement des canalisations des toitures	7
2.2.1.	Données	
2.2.2.	Calculs	8
2.3. hydrocar	Rejet dans le réseau des eaux de voiries, parkings et cheminements — Gestion d bures	
2.4.	Rétention de liquide suite à l'extinction d'un incendie	12

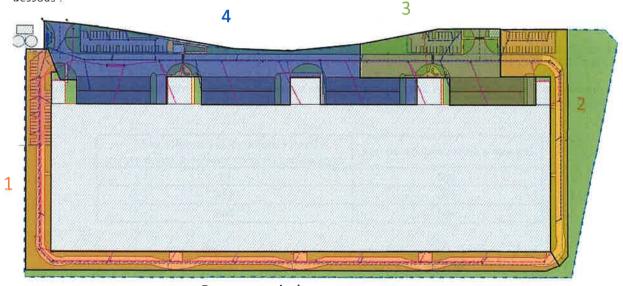
1. COLLECTE DES EAUX DE PLUIE

La collecte des eaux de pluie dans l'état futur du terrain se fera par la réalisation de deux réseaux :

- Le premier reprenant les eaux de pluie des toitures des bâtiments ;
- Le second reprenant les eaux des voiries, parkings, cheminements piétons et espaces verts.

La gestion de la pollution des eaux de parkings et voiries sera effectuée par la mise en place d'un séparateur d'hydrocarbures en sortie du réseau et avant le rejet dans le réseau principal situé dans la voirie commune.

Les eaux de pluie des toitures seront directement rejetées dans le réseau principal situé dans la voirie commune pour être infiltré dans un bassin à ciel ouvert commun (pour les lots A, B et C; et la voirie commune). Une partie sera collectée dans une cuve de récupération des eaux de pluie dans laquelle sera mis en place une pompe.


L'ensemble des eaux pluies de ce lot seront donc rejetés dans le bassin d'infiltration projeté situé en aval du réseau principal de la voirie commune, en se raccordant à ses canalisations. Ce bassin assurera alors la gestion de la rétention de ce lot sans ouvrage enterré intermédiaire.

2. CANALISATIONS DE COLLECTE

2.1. Dimensionnement des canalisations pour les voiries

2.1.1. Données

Pour le dimensionnement des diamètres, le projet a été divisé en plusieurs bassins versants suivant le plan cidessous :

a. Base pour calcul

Le dimensionnement est réalisé pour une durée de retour d'insuffisance de 20 ans.

Les pluies ont été estimées à partir des paramètres de Montana de la région 1.

b. Détermination du débit brut à évacuer (Méthode superficielle)

Le débit brut à évacuer est calculé de la façon suivante : Pour une période de retour de 20 ans en Région 1 avec a(F)=5.9 et b(F)= -0.59 \odot Q brut = 1.601 x I $^{0.29}$ x C $^{1.20}$ x A $^{0.78}$

Avec I = pente moyenne du bassin versant en m/m,

C = Coefficient de ruissellement,

A = Surface du bassin versant en m²

c. Détermination de l'allongement du bassin versant

L'allongement M est défini comme étant le rapport du plus long chemin hydraulique L au côté du carré de surface équivalente à la superficie du bassin versant.

L'allongement est calculé de la façon suivante :

 $M = L / \sqrt{A}$

Avec M = l'allongement,

L = Plus long chemin hydraulique en mètre,

A = Surface du bassin versant en m²

La hauteur maximale à stocker se définit par la hauteur d'eau précipitée moins la hauteur d'eau évacuée

d. Détermination du Coefficient de correction

Le coefficient de correction est déterminé à partir de la formule suivante :

 $m = (M/2)^u$ où $u = b(F)/(1+0.287^{a(F)})$

Avec m = coefficient de correction,

M = l'allongement,

u = -0.589626 avec a(F)=5.9 et b(F)=-0.59 (données de départ)

e. **Détermination du débit corrigé**

Le débit corrigé à retenir dans le dimensionnement est alors 🖟

Q corrigé = Q brut x m

f. Résultats

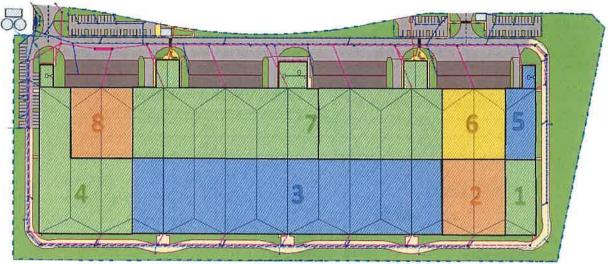
Le débit corrigé sera majoré de 25% (coefficient correcteur de 1.25) afin d'obtenir une durée de retour d'insuffisance de 20 ans.

Le diamètre du tuyau utilisé devra avoir un débit capable supérieur au débit corrigé du bassin versant suivant le tableau ci-dessous :

Diamètre de la conduite en mm	Débit capable de la conduite en l/s En considérant une pente moyenne de pose de 1 cm/m
300	61
400	134
500	248

2.1.2. Calculs

a.	BV 1
Surface du Bassin Versant :	S (m²) = 3 840
Pente moyenne du bassin versant :	1 (m/m) = 0,005
Coefficient de ruissellement :	Coeff = 0,66
Débit brut à évacuer :	Q brut (l/s) = 89
Correction d'allongement :	
Plus long cheminement hydraulique	L. (m) = 353
Allongement	M = 5,70
Coefficient de correction	m = 0,53
	Q corrigé (I/s) = 47
Correction pour période de retour d'insuff	lisance supérieure à 10 ans
Coefficient de correction	1,25
Débit à évacuer :	Q projet (l/s) = 59


Canalisation de diamètre 300

b.	BV 2
Surface du Bassin Versant :	S (m²) = 1 677
Pente moyenne du bassin versant :	(m/m) = 0,005
Coefficient de ruissellement :	Coeff. = 0,71
Débit brut à évacuer :	Q brut (l/s) = 51
Correction d'allongement :	
Plus long cheminement hydraulique	L (m) = 125
Allongement	M = 3,05
Coefficient de correction	m = 0,77
odelikierik de correction	Q corrigé (1/s) = 39
Correction pour période de retour d'insuffi	isance supérieure à 10 ans
Coefficient de correction	1,25
Débit à évacuer :	Q projet (I/s) = 49
	Canalisation de diamètre 300
С.	BV 2 + 3
Surface du Bassin Versant :	S (m²) = 4 390
Pente moyenne du bassin versant :	1 (m/m) = 0,005
Coefficient de ruissellement :	Coeff. = 0,83
Débit brut à évacuer :	Q brut (l/s) = 129
Correction d'allongement :	
Plus long cheminement hydraulique	L (m) = 262
Allongement	M = 3,95
Coefficient de correction	m = 0,66
	Q corrigé (I/s) = 86
Correction neur période de reteur d'inquit	Honnes supériours à 10 ans
Correction pour période de retour d'insuff Coefficient de correction	1,25
Débit à évacuer :	Q projet (I/s) =
	Canalisation de diamètre 400
d.	BV 2 + 3 + 4
Surface du Bassin Versant :	$S(m^2) = 13.425$
Pente moyenne du bassin versant :	(m/m) = 0.005
Coefficient de ruissellement :	Coeff. = 0,88
<u>Débit brut à évacuer :</u>	Q brut (I/s) = 332
Correction d'allongement :	
Plus long cheminement hydraulique	L (m) = 711
Allongement	M = 6,14
Coefficient de correction	m = 0,51
	Q corrigé (I/s) = 169
Correction pour période de retour d'insuf	ffisance supérieure à 10 ans
Coefficient de correction	1,25
<u>Débit à évacuer :</u>	Q projet (l/s) = 211
	Canalisation de diamètre 500
(L)	

2.2. Dimensionnement des canalisations des toitures

2.2.1. Données

Pour le dimensionnement des diamètres, le projet a été divisé en plusieurs bassins versants suivant le plan cidessous :

a. Base pour calcul

Le dimensionnement est réalisé avec pour une durée de retour d'insuffisance de 20 ans.

Les pluies ont été estimées à partir des paramètres de Montana de la région 1

b. Détermination du débit brut à évacuer (Méthode superficielle)

Le débit brut à évacuer est calculé de la façon suivante :

Pour une période de retour de 20 ans en Région 1 avec a(F)=5.9 et b(F)=-0.59 :

Q brut = $1.601 \times 1^{0.29} \times C^{1.20} \times A^{0.78}$

Avec

I = pente moyenne du bassin versant en m/m,

C = Coefficient de ruissellement,

A = Surface du bassin versant en m²

c. Détermination de l'allongement du bassin versant

L'allongement M est défini comme étant le rapport du plus long chemin hydraulique L au côté du carré de surface équivalente à la superficie du bassin versant.

L'allongement est calculé de la façon suivante :

 $M = L / \sqrt{A}$

Avec

M = l'allongement,

L = Plus long chemin hydraulique en mètre,

A = Surface du bassin versant en m²

La hauteur maximale à stocker se définit par la hauteur d'eau précipitée moins la hauteur d'eau évacuée.

d. Détermination du Coefficient de correction

Le coefficient de correction est déterminé à partir de la formule suivante :

 $m = (M/2)^u$ où $u = b(F)/(1+0.287^{a(F)})$

Avec m = coefficient de correction,

M = l'allongement,

u = -0.589626 avec a(F)=5.9 et b(F)=-0.59 (données de départ)

e. Détermination du débit corrigé

Le débit corrigé à retenir dans le dimensionnement est alors : Q corrigé = Q brut x m

f. Résultats

Le débit corrigé sera majoré de 25% (coefficient correcteur de 1.25) afin d'obtenir une durée de retour d'insuffisance de 20 ans.

Le diamètre du tuyau utilisé devra avoir un débit capable supérieur au débit corrigé du bassin versant suivant le tableau ci-dessous :

Diamètre de la conduite en mm	Débit capable de la conduite en l/s
Diametre de la conduite en min	En considérant une pente moyenne de pose de 1 cm/m
300	61
400	134

2.2.2. Calculs

· · · · · · · · · · · · · · · · · · ·	
a.	BV 1
Surface du Bassin Versant :	S (m²) = 1 363
Pente moyenne du bassin versant :	I (m/m) = 0,050
Coefficient de ruissellement :	Coeff
Débit brut à évacuer :	Q brut (l/s) = 127
Correction d'allongement :	
Plus long cheminement hydraulique	L (m) = 63
Allongement	M = 1,71
Coefficient de correction	m = 1,10
	Q corrigé (I/s) = 139
Correction pour période de retour d'insu	offisance supérieure à 10 ans
Coefficient de correction	1,25
Débit à évacuer :	Q projet (I/s) = 173
	Canalisation de diamètre 300
b.	BV 1 + 2
Surface du Bassin Versant :	S (m²) = 4 089
Pente moyenne du bassin versant :	I (m/m) = 0,050

Coefficient de ruissellement : Coeff. = Q brut (l/s) = 299 Débit brut à évacuer : Correction d'allongement : Plus long cheminement hydraulique L(m) =126 1,97 Allongement M = Coefficient de correction Q corrigé (l/s) = Correction pour période de retour d'insuffisance supérieure à 10 ans Coefficient de correction 1,25 Q projet (I/s) = Débit à évacuer :

BV 1 + 2 + 3 C Surface du Bassin Versant : S (m²) = 17 719 Pente moyenne du bassin versant : i (m/m) = 0,050 Coefficient de ruissellement : Coeff. = Débit brut à évacuer : Q brut (I/s) = 937 Correction d'allongement : Plus long cheminement hydraulique L (m) = 441 Allongement Coefficient de correction 0,74 Q corrigé (I/s) = 690 Correction pour période de retour d'insuffisance supérieure à 10 ans Coefficient de correction Débit à évacuer : Q projet (I/s) = Canalisation de diamètre 800 d. BV 1 + 2 + 3 + 4 Surface du Bassin Versant : S (m²) = 20 445 Pente moyenne du bassin versant I (m/m) - 0,050 Coefficient de ruissellement : Coeff. = Débit brut à évacuer : Q brut (I/s) = 1 048 Correction d'allongement : Plus long cheminement hydraulique L (m) = Allongement 3,52 Coefficient de correction 0,71 Q corrigé (I/s) = 743 Correction pour période de retour d'insuffisance supérieure à 10 ans Coefficient de correction Q projet (I/s) = Débit à évacuer : Canalisation de diamètre 1000 BV₅ e. Surface du Bassin Versant : S (m²) = 1 363 Pente moyenne du bassin versant : I (m/m) = 0,050 Coefficient de ruissellement : Coeff. = Débit brut à évacuer : Q brut (I/s) = 127 Correction d'allongement : Plus long cheminement hydraulique L (m) = 63 Allongement Coefficient de correction 1,10 Q corrigé (I/s) = Correction pour période de retour d'insuffisance supérieure à 10 ans Coefficient de correction Débit à évacuer : Q projet (I/s) = Canalisation de diamètre 300

f.	BV 5 + 6	
T _e	DV3TO	
Surface du Bassin Versant :	S (m²) = 4 089	
Pente moyenne du bassin versant :	I (m/m) = 0,050	
Coefficient de ruissellement :	Coeff. =	
Débit brut à évacuer :	Q brut (l/s) = 299	
Correction d'allongement :		
Plus long cheminement hydraulique	L (m) = 126	
Allongement	M = 1,97	
Coefficient de correction	m = 1,00	
	Q corrigé (I/s) = 300	
Correction pour période de retour d'ins	utfisance supérieure à 10 ans	
Coefficient de correction	1,25	
<u>Débit à évacuer :</u>	Q projet (I/s) = 375	
M-	Canalisation de diamètre 600	
g.	BV 5 + 6 + 7	
Surface du Bassin Versant :	S (m²) = 17.719	
Pente moyenne du bassin versant :	I (m/m) = 0,050	
Coefficient de ruissellement :	Coeff. =	
<u>Débit brut à évacuer :</u>	Q brut (I/s) = 937	
Correction d'allongement :		
Plus long cheminement hydraulique	L (m) = 441	
Allongement	M = 3,31	
Coefficient de correction	m = 0,74	
	Q corrigé (I/s) = 690	
Correction pour période de retour d'insuffi	sance supérieure à 10 ans	
Coefficient de correction	1,25	
Débit à évacuer :	Q projet (1/s) = 862	
	Canalisation de diamètre 800	
h.	BV 5 + 6 + 7 + 8	
Surface du Bassin Versant :	S (m²) = 20 445	
Pente moyenne du bassin versant :	I (m/m) = 0,050	
Coefficient de ruissellement :	Coeff. =	
Débit brut à évacuer :	Q brut (l/s) = 1 048	
Correction d'allongement :	-	
Plus long cheminement hydraulique	L (m) = 504	
Allongement	M = 3,52	
Coefficient de correction	m = 0,71	
	Q corrigé (l/s) = 743	
Correction pour période de retour d'insuffi: Coefficient de correction	sance supérieure à 10 ans 1,25	
Débit à évacuer :	Q projet (I/s) = 929	
	Canalisation de diamètre 1000	

2.3. Rejet dans le réseau des eaux de voiries, parkings et cheminements – Gestion des hydrocarbures

Afin de gérer les hydrocarbures des voiries et parkings, il sera mis en place en fin du réseau de reprise des eaux de pluie des voiries et parkings un séparateur d'hydrocarbures avec by-pass.

a. Calcul du débit du séparateur

Le séparateur hydrocarbure est précédé en général d'un dispositif appelé déversoir d'orage qui permet de déclencher une dérivation (by-pass) à partir d'un débit dit d'orage. Ce principe permet de concevoir des installations plus petites.

Le traitement des eaux de pluie est effectué jusqu'à 12% du débit d'évacuation du Bassin Versant.

Surface du Bassin Versant :	S (m²) = 14 348
Plus long trajet hydraulique du Bassin Versant :	L (m) = 565
Coefficient de ruissellement :	Coeff. =
Vitesse moyenne de l'eau en surface et en conduits :	V (m/s) = 0,3
Temps de concentration (limité à 15 min) :	tc (min) = 15
Intensité de pluie :	i (mm/min) = 1,19
	i (l/s/ha) = 199,0
<u>Débit brut à évacuer :</u>	Q ₁₀ (I/s) = 286
Taille Nominale du séparateur retenue (l/s) :	43
Classe de séparateur retenue (A ou B) :	A

b. Conclusion

Nous proposons un séparateur à hydrocarbure de classe **A** et de taille nominale **43 l/s**. Il sera précédé par un débourbeur de **6 m3**.

Le « by-pass » sera dimensionné pour recevoir 242 l/s, soit un tuyau Ø 500 (débit capable de 248 l/s).

2.4. Rétention de liquide suite à l'extinction d'un incendie.

Le calcul du débit et donc de la rétention a été calculé sur l'ensemble des bâtiments A ainsi que du futur bâtiment B (non concerné par ce PC).

Le volume de rétention pour les deux bâtiments est de 2 243 m³.

Volume de rétention possible dans les tuyaux : 98.00 m³

- Ø 315 : 200 ml x 0.07 $m^3/ml = 14 m^3$;
- \emptyset 500 : 420 ml x 0.20 m³/ml = 82 m³;

Volume de rétention au niveau des quais : 681 m3 ;

Soit une rétention totale de 779 m3 sur l'ensemble des deux bâtiments.

Afin de respecter la rétention de 2 243 m3 pour les deux bâtiments, il sera créé un bassin de rétention de (2 243 – 779 = 1 464) <u>1 464 m3</u>. Ce volume sera dédié au bâtiment A, puis pour le futur bâtiment B (non concerné par ce PC).

Il sera nécessaire de mettre en place une guillotine (vanne martellière) juste avant le séparateur d'hydrocarbures afin d'isoler l'ensemble des eaux polluées lors d'un incendie.