

MISSION DE REALISATION DES ETUDES REGLEMENTAIRES ET EVALUATIONS ENVIRONNEMENTALES SUR LE QUARTIER DE LA MOLETTE AU BLANC-MESNIL (93)

ETUDE AIR ET SANTE

Commanditaire:	Séquano	Rapport :	Final
Réalisation :	Rincent Air	Phase :	1-1
Auteur:	BF	Version:	RP-AF2145-V2
Validation:	FC	Date:	25/07/2024

Ce document est la propriété exclusive du commanditaire de l'étude. Toute utilisation partielle ou totale reste soumise à la mention de « Rincent Air » en référence.

SOMMAIRE

l.	CAI	ORE ET OBJECTIFS DE L'ETUDE	4
ı	.1	REFERENTIEL METHODOLOGIQUE	4
	.2	CHOIX PREVISIONNEL DU NIVEAU D'ETUDE	
	.3	CRITERES DE REVISION	
	-		
II.	EIA	I INITIAL : ÉTUDE DOCUMENTAIRE	6
ı	II.1	LES EMISSIONS POLLUANTES	6
	11.1.1		
	II.1.2		
	II.1.3		
	II.1.4		
	11.1.5	·	
	11.1.6		
ı	II.2	POPULATION IMPACTEE	
	11.2.1		
	11.2.2		
	II.3	DONNEES RELATIVES A LA QUALITE DE L'AIR	
	11.3.1		
	Ⅱ.3.2 Ⅰ.4	LES PLANS DE PREVENTION DE LA POLLUTION ATMOSPHERIQUE	
	11 .4 .4.1		
	11.4.1	'	
	11.4.2		
		·	
III.	ETA	I INITIAL : CAMPAGNE DE MESURE	12
ı	III.1	METHODOLOGIE	12
	III.1.1		
	III.1.2	,	
ı	II.2	PLAN D'ECHANTILLONNAGE	12
	III.2.1) Points de mesure	12
	III.2.2	Période de mesure	12
ı	III.3	STATIONS DE REFERENCE	13
	III.3.1		
	III.3.2	?) Pollution atmosphérique	13
I	III. 4	CONDITIONS LORS DE LA CAMPAGNE	14
	III.4.1	, , , , , , , , , , , , , , , , , , , ,	
	III.4.2	,	
	111.4.3	,	
ı	III.5	RESULTATS	
	111.5.1		
	111.5.2		
	III.5.3		
- 1	III.6	COMPARAISON A LA REGLEMENTATION	
	111.6.1	,	
	III.6.2	,	
IV.	ESTI	MATION DES ÉMISSIONS POLLUANTES	17
	V.1	METHODOLOGIE	17
	IV.1.		
	IV.1.	,	

IV.2 RES	SULTATS DU CALCUL DES EMISSIONS POLLUANTES	18
IV.2.1)	Emissions polluantes globales	
IV.2.2)	Cartographie des émissions	
IV.2.3)	Etude des variations liées au projet	
	ONETARISATION DES COUTS	
IV.3.1)	Coûts collectifs liés à la pollution atmosphérique	
IV.3.2)	Coûts collectifs liés à l'effet de serre	21
V. EFFETS	DU PROJET : MODÉLISATION DES CONCENTRATIONS	22
V.1 ME	THODOLOGIE	22
V.1.1)	Modèle	22
V.1.2)	Emissions polluantes	
V.1.3)	Météorologie	
V.1.4)	Topographie	
V.1.5)	Pollution de fond	
	SULTATS DE LA MODELISATION	
V.2.1) V.2.2)	Cartographies des concentrations	
,		
VI. EFFETS	DU PROJET : ÉVALUATION DES RISQUES SANITAIRES	25
VI.1 ME	THODOLOGIE	25
VI.1.1)	Sites étudiés	25
VI.1.2)	Etapes de l'évaluation des risques sanitaires	
VI.1.3)	Identification des dangers	
	RACTERISATION DU RISQUE PAR INHALATION — SUBSTANCES A EFFET DE SEUIL	
VI.2.1)	Principe	
VI.2.2)	Résultats	
	RACTERISATION DU RISQUE PAR INHALATION — SUBSTANCES SANS EFFET DE SEUIL	
VI.3.1)	Principe	
VI.3.2)	Résultats	
	RACTERISATION DU RISQUE PAR INHALATION — SUBSTANCES SANS VTR	
VI.4.1)	Principe	
VI.4.2)	Résultats CERTITUDES	
VI.5 INC	Identification des dangers	
	Relation dose-réponse	
VI.5.2)	Estimation de l'exposition	
VI.5.4)	Caractérisation du risque	
,	ES D'ÉVITEMENT DE RÉDUCTION OU DE COMPENSATION	
	SURES GENERALES EN PHASE PROGRAMMATION/CONCEPTION DE PROJET	
VII.2 ME	SURES EN PHASE CHANTIER	31
VIII. SYNTH	ÈSE	32
VIII.1 ETA	AT INITIAL	32
VIII.2 EFF	ETS DU PROJET	32
	ANNEXE	
Anneye 1 · P	appel des effets de la pollution atmosphérique sur la santé	3/
	ches de point de mesure	

TABLEAUX

Tableau 1 : définition des niveaux d'études (circulaire du 22/02/2019)	4
Tableau 2 : contenu des différents niveaux d'étude	
Tableau 3 : données de trafic	4
Tableau 4: description des sites industriels	
Tableau 5 : description des sites vulnérables les plus proches de la zone de projet	
Tableau 6 : données Airparif	9
Tableau 7: axes de travail et actions relatives du PRSE3	.10
Tableau 8 : plan d'échantillonnage	.12
Tableau 9 : étude des données Airparif	
Tableau 10 : facteurs de validité des mesures	
Tableau 11 : résultats des mesures pour le NO2	
Tableau 12 : données de trafic	.17
Tableau 13: définition de la bande d'étude (note technique du 22/02/2019)	
Tableau 14 : bilan des émissions de PES	
Tableau 15 : bilan des émissions de GES	
Tableau 16 : récapitulatif des émissions de NOx par brins routiers	
Tableau 17 : valeurs tutélaires du coût de la pollution liée au trafic routier	
Tableau 18 : facteurs d'évolution des valeurs tutélaires	
Tableau 19 : valeurs tutélaires retenues pour le coût de la pollution	
Tableau 20 : coûts collectifs liés à la pollution atmosphérique	
Tableau 21 : coûts collectifs liés à l'effet de serre	
Tableau 22 : sources utilisées pour le bruit de fond	
Tableau 23 : concentrations de fond utilisées	
Tableau 24 : IPP selon les scénarios considérés	
Tableau 25 : recensement des valeurs disponibles	
Tableau 26 : paramètres d'exposition	
Tableau 27 : VTR à effets de seuil pour l'exposition par inhalation	
Tableau 28 : QD chronique pour l'exposition par inhalation	
Tableau 29 : paramètres d'exposition	
Tableau 30 : VTR sans effet de seuil pour l'exposition par inhalation	
Tableau 31 : ERI pour l'exposition par inhalation à un risque acceptable de 1.10-5	
Tableau 32: ERI pour l'exposition par inhalation à un risque acceptable pour les particules PM ₁₀ /PM _{2.5}	
Tableau 33 : valeurs guides pour le NO ₂ (expositions chronique et aigue)	
Tableau 34 : comparaison des concentrations aux valeurs guides et réglementaires	.29
Tableau 35 : description des principaux polluants en air ambiant	
Tableau 36 : récapitulatif de la réglementation en vigueur en France sur la qualité de l'air	
Tableau 37 : valeurs réglementaires pour les composés gazeux dans l'air ambiant	
Tableau 38 : valeurs réglementaires pour les composés particulaires dans l'air ambiant	
Tableau 39: définition des seuils réglementaires	.38

FIGURES

Figure 1 : part des émissions atmosphériques par secteur en Seine-Saint-Denis (93) en 2018	é
Figure 2: part des émissions atmosphériques par secteur dans Paris Terres d'Envol (93) en 2018	
Figure 3: localisation des principaux axes routiers dans la zone d'étude	7
Figure 4: localisation des principaux sites industriels	7
Figure 5 : population autour de la zone du projet	8
Figure 6 : localisation des sites vulnérables les plus proches de la zone de projet	8
Figure 7 : localisation de la station qualité de l'air de référence	9
Figure 8: plan d'échantillonnage	12
Figure 9 : localisation de la station météorologique de référence	13
Figure 10 : étude des températures et précipitations (données : Météo France)	
Figure 11 : étude des conditions de vent (données : Météo France)	14
Figure 12: cartographie des résultats	15
Figure 13 : comparaison des résultats des mesures NO ₂ à la réglementation	1 6
Figure 14: bande d'étude	
Figure 15: émissions de NOx – scénario actuel	19
Figure 16: émissions de NOx – scénario futur sans projet	19
Figure 17: émissions de NO _X – scénario futur avec projet	19
Figure 18 : variation émissions de NOx avec / sans projet	
Figure 19 : rose de vents utilisée pour la modélisation	22
Figure 20 : représentation du relief en vue 2D	
Figure 21: concentration moyenne journalière en NO ₂ – scénario actuel	
Figure 22 : concentration moyenne journalière en NO ₂ – scénario futur sans projet	
Figure 23 : concentration future moyenne journalière en NO ₂ – scénario futur avec projet	
Figure 24: variation des concentrations en NO2 entre les scénarios futurs avec et sans projet	23
Figure 25: histogrammes de distribution concentration/population pour le NO2	
Figure 26 : localisation des sites vulnérables dans la bande d'étude	
Figure 27 : recommandations générales d'aménagements favorisant la dispersion de polluants	
Figure 28 : profil annuel des concentrations de NO ₂ /PM ₁₀ /O ₃ en lle-de-France (données : Airparif)	
Figure 29 : profil journalier des concentrations de NO ₂ /PM ₁₀ /O ₃ en lle-de-France (données : Airparif)	
Figure 30 : gain d'espérance de vie pour une réduction des teneurs annuelles en PM _{2.5} à 10 µg/m³	3 <i>6</i>
Figure 31 : pyramide des effets de la pollution atmosphérique	36

I. CADRE ET OBJECTIFS DE L'ETUDE

I.1 Référentiel méthodologique

Les projets d'aménagement urbain sont soumis à l'article L122-1 du Code de l'Environnement qui impose au maitre d'ouvrage la réalisation d'une évaluation environnementale systématique ou après examen au cas par cas. Lors de cette évaluation, et en l'absence d'autre référentiel, les effets sur la qualité de l'air peuvent être pris en compte conformément à la réglementation applicable aux projet routiers. Dans ce cadre, Rincent Air applique la méthodologie décrite par la note technique du 22 février 2019 relative à la prise en compte des effets sur la santé de la pollution de l'air dans les études d'impact des infrastructures routières.

Le contenu de l'étude air et santé dépend du trafic, de la population concernée, et du linéaire de voirie sur les axes subissant une modification de trafic de plus de 10 %. Le tableau ci-dessous présente les niveaux d'étude (de I à IV) applicables en fonction de ces éléments :

Densité de population	Trafic à l'horizon d'étude (selon tronçons homogènes de plus de 1 km)					
dans la bande d'étude	> 50000 véh/j	25000 à 50000 véh/j	≤ 25000 véh/j	≤ 1000	0 véh/j	
dans la bande à elude	ou 5 000 uvp/h	ou 2500 à 5000 uvp/h	ou 2500 uvp/h	ou 1000	O uvp/h	
≥ 10 000 hab/km ²	l	I	II	>5km : II	<5km : III	
2000 à 10000 hab/km ²	1	II	II	>25km : II	<25km : III	
≤ 2000 hab/km ²	1	II	II .	>50km : II	<50km : III	
Pas de bâti	III	III	IV	ľ	V	

Tableau 1: définition des niveaux d'études (circulaire du 22/02/2019)

Le tableau ci-dessous présente le contenu des différents niveaux d'étude appliqué par Rincent Air d'après la note technique du 22 février 2019 :

Contenu des études	IV	III	II		
Etude documentaire	d'émiss	d'émissions, sources sions, données du e surveillance, plans locaux	Secteurs d'émissions, sources d'émissions, population exposée, sites vulnérables, données du réseau de surveillance, plans locaux	Secteurs d'émissions, sources d'émissions, projets proches, population exposée, sites vulnérables, sites exposés au risque d'ingestion, données du réseau de surveillance, plans locaux, étude EISPA	
Campagne de mesure	manque de		manque de - PM ₁₀ en cas de demande		
Estimation des émissions polluantes	NOx, ben	zène, PM ₁₀ , PM _{2.5} , CO, Ni	COVNM, SO ₂ , BaP, 2 ETM (As,)	NOx, benzène, PM ₁₀ , PM _{2.5} , CO, COVNM, SO ₂ , BaP+15HAP, 3 ETM, 1,3-butadiène	
Calcul des coûts collectifs			NOx, PM _{2.5} , COVNM, SO	2	
Modélisation des concentrations			NO ₂ systématique, PM ₁₀ en cas de demande de l'AE pour 3 scénarios : - actuel - futur sans projet - futur avec projet	NO2, benzène, PM10, PM2.5, BaP+15HAP, 1,3-butadiène, 3 ETM pour 5 scénarios : - actuel, - futur sans projet - futur avec projet - futur sans projet + 20 ans - futur avec projet + 20 ans	
Calcul de l'indice pollution-population			NO ₂ systématique, PM ₁₀ en cas de demande de l'AE pour 3 scénarios	NO ₂ systématique, PM ₁₀ en cas de demande de l'AE pour 5 scénarios	
Etude des risques sanitaires			Risque par inhalation au droit des sites vulnérables	Risque par inhalation sur l'ensemble de la bande d'étude, et par ingestion au droit des sites exposés	
Mesures ERC	Analyse des impacts en phase chantier et des mesures ERC applicables				

Tableau 2 : contenu des différents niveaux d'étude

1.2 Choix prévisionnel du niveau d'étude

Les données de trafic sont issues de l'étude de circulation réalisée par le bureau d'études CDVIA en juillet 2024. Le tableau ci-dessous reprend les trafics moyens journaliers annuels (TMJA) pour chaque scénario :

N°	Brin routier	TMJA 2024 Actuel	TMJA 2035 Sans projet	TMJA 2035 Avec projet	Delta avec/sans projet (%)
1	RN2 - section nord	17 394	16 450	16 800	2 %
2	RN2 - section sud	28 725	28 900	31 450	9 %
3	RD41 - section 1	12 987	13 187	19 550	48 %
4	Avenue Defense du Bourget	176	180	180	0 %
5	RD41 - section 2	5 090	6 000	7 250	21 %
6	Avenue Charles Floquet - 1	11 474	12 100	14 000	16 %
7	Avenue Plisson	952	1 250	1 350	8 %
8	Rue Capitaine Dreyfus	1 163	1 500	1 200	-20 %
9	Rue du Parc nord	4 281	4 200	800	-81 %
10	Avenue Charles Floquet - 2	10 472	10 450	12 000	15 %
11	Rue du Parc sud	3 764	4 700	5 150	10 %
12	Avenue Charles Floquet - 3	12 444	12 000	13 950	16 %
13	Rue de la Victoire	1 198	2 550	4 450	75 %
14	Avenue Charles Floquet - 4	14 268	14 500	16 450	13 %
15	Rue Iqbal Masih sud	6 624	6 650	7 100	7 %
16	Rue Iqbal Masih nord	7 024	7 050	7 500	6 %
17	Rue Pegoud	5 109	5 150	5 600	9 %
18	Avenue Charles Floquet - 5	11 876	11 800	10 850	-8 %
19	Rue JP Timbaud	2 209	2 150	2 850	33 %
20	RD41 - section 3	8 000	9 000	10 050	12 %
21	RD41 - section 4	9 646	9 950	9 250	-7 %
22	Autoroute A1 - section 1	185 162	189 250	190 400	1 %
23	Autoroute A1 - section 2	179 896	180 500	182 950	1 %
24	Avenue Diderot	5 825	5 850	6 200	6 %
25	Nouveau brin 1	0	150	450	200 %
26	Nouveau brin 2	0	0	500	+ ∞
27	Nouveau brin 3	0	0	1 500	+ ∞
28	Nouveau brin 4	0	0	2 200	+ ∞
29	Nouveau brin 5	0	0	1 500	+ ∞
30	Nouveau brin 6	0	0	700	+ ∞
31	Nouveau brin 7	0	0	1 200	+ ∞
32	Nouveau brin 8	0	0	500	+ ∞
33	Nouveau brin 9	0	0	500	+ ∞

Tableau 3 : données de trafic

La modification du trafic engendrée par la mise en service du projet est inférieure à 10 % au niveau des axes dont le trafic est supérieur à 25 000 véhicules/jour (brins n°2, 22 et 23). En revanche, elle est supérieure à 10 % sur plusieurs brins dont le trafic est supérieur à 10 000 véhicules/jour (brins n°3, 6, 10, 12, 14 et 20). Dans ce cadre, les prestations de l'étude air et santé sont dimensionnées a minima pour un niveau II.

1.3 Critères de révision

Ce niveau d'étude peut être revu à la hausse en fonction de différents critères :

- Une population supérieure à 100 000 habitants dans la bande d'étude nécessite de remonter d'un niveau les études de type II et III. D'après les données carroyées de l'Insee de 2019, la population située dans la bande d'étude est inférieure à 100 000 habitants.
- La localisation du projet dans une zone géographique couverte par un plan de protection de l'atmosphère (PPA) nécessite de remonter d'un niveau les études de type II, III et IV. Dans le cas contraire, un argumentaire doit être fourni pour justifier le maintien du niveau d'étude. Le projet se situe dans la région lle-de-France, couverte par un PPA, ce qui nécessiterait d'augmenter l'étude en niveau I. Néanmoins, conformément au principe de proportionnalité cité par l'article R122-5 du code de l'environnement, et à la note technique du 22 février 2019 qui réserve les études de niveau I aux projets « les plus conséquents », l'étude est maintenue sur un niveau II au vu de l'ampleur et des enjeux du projet.

De même, il peut être réduit dans les cas suivants :

- O Une augmentation de trafic inférieure à 10 % (ou à 500 véh/j sur les voies nouvellement créées) sur tous les axes permet de diminuer le type d'étude d'un niveau. Les données de trafic indiquent que le projet n'est pas concerné par ce critère.
- o Une diminution du trafic sur tous les axes permet de diminuer le type d'étude de deux niveaux. Les données de trafic indiquent que le projet n'est pas concerné par ce critère.
- o L'éloignement de la population par rapport au réseau viaire, en comparaison avec l'état initial, permet de diminuer le type d'étude d'un niveau. Le projet n'est pas concerné par ce critère.

NB: l'abaissement du type d'étude reste limité à un seul niveau en cas de qualité de l'air actuelle dégradée (dépassement des valeurs limites).

Dans le cadre de ce projet, le niveau d'étude est donc maintenu sur un niveau II.

II. ETAT INITIAL: ETUDE DOCUMENTAIRE

II.1 Les émissions polluantes

II.1.1) Secteurs d'émissions dans le département de la Seine-Saint-Denis (93)

La figure ci-dessous présente la répartition des émissions de différentes activités pour les principaux polluants atmosphériques dans le département de la Seine-Saint-Denis pour l'année 2018 (estimations réalisées par Airparif en 2020) dans lequel s'inscrit la zone de projet.

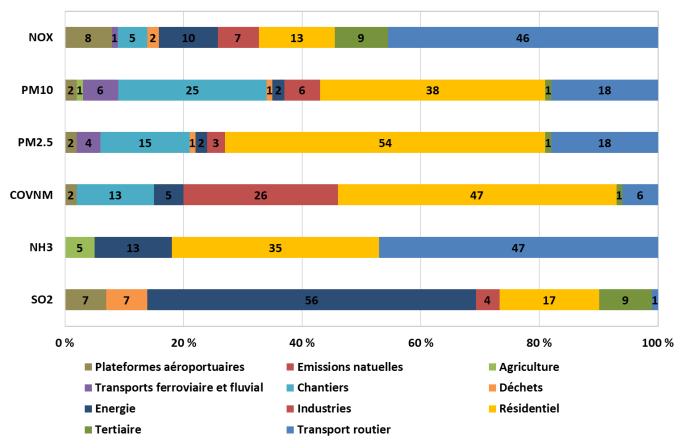


Figure 1 : part des émissions atmosphériques par secteur en Seine-Saint-Denis (93) en 2018

A l'échelle du département de Seine-Saint-Denis (93), le secteur du trafic routier représente environ la moitié des émissions de NOx (46 %). Les émissions aéroportuaires ont également une importance dans les émissions départementales (8 %) du fait de l'activité de la plateforme de Roissy-Charles-de-Gaulle. Le secteur du transport routier est également un émetteur significatif d'ammoniac avec 47 % des émissions totales départementales. Les secteurs résidentiel et tertiaire sont quant à eux les principaux émetteurs de particules avec un total de 39 % des émissions de PM10 et 55 % des émissions de PM2.5. Les COVNM sont également émis majoritairement par ces secteurs avec 48 % des émissions tandis que le dioxyde de soufre (SO2) est émis en majorité par le secteur de l'énergie avec 56 % des émissions.

Pai ailleurs, l'analyse de l'évolution des secteurs d'émissions entre 2000 et 2018 indique les points suivants :

o Tous secteurs confondus, les émissions de **NO**_X ont baissé de 61 % en Seine-Saint-Denis, passant de 17 300 t à 6 800 t, en partie grâce à la diminution de la part du transport routier (avancées technologiques en matière de motorisation et renouvellement) et celle du secteur résidentiel et tertiaire. En 2018, presque la moitié des émissions de NO_X restent liées au trafic automobile (présence de nombreux axes à fort trafic dans le département) et à 22 % au secteur résidentiel-tertiaire (chauffage des logements et locaux).

- Les émissions de particules PM₁₀ et PM_{2.5} ont baissé respectivement de 53 % (passant de 2 400 t à 1128 t) et 62 % (passant de 2 000 t à 766 t) en presque 20 ans dans le département grâce aux améliorations technologiques apportées au parc de véhicules (notamment les véhicules diesel) et aux équipements domestiques de combustion du bois. L'évolution normative a également permis une diminution de plus de 70 % des émissions du secteur industriel.
- Les émissions de **COVNM** en Seine-Saint-Denis ont baissé de 70 % tous secteurs confondus (passant de 19 130 t à 5 719 t) du fait de la diminution importante de la part du transport routier (plus de 90 %) liée à la modernisation du parc automobile, notamment la mise en place des pots catalytiques et augmentation de la part des moteurs 4-temps par rapport aux moteurs 2-temps pour les deux roues. Emis en majorité par le transport routier dans les années 2000, les COVNM sont dorénavant émis majoritairement par le secteur résidentiel-tertiaire (utilisation domestique de solvants) à 48 %, et par le secteur industriel à 26 %.

II.1.2) Secteurs d'émissions dans l'intercommunalité Paris Terres d'Envol (93)

La figure ci-dessous présente la répartition des émissions de différentes activités pour les principaux polluants atmosphériques dans l'intercommunalité Paris Terres d'Envol (93) pour l'année 2018 (estimations réalisées par Airparif en 2020) qui comprend la ville de Blanc-Mesnil dans laquelle s'inscrit le projet.

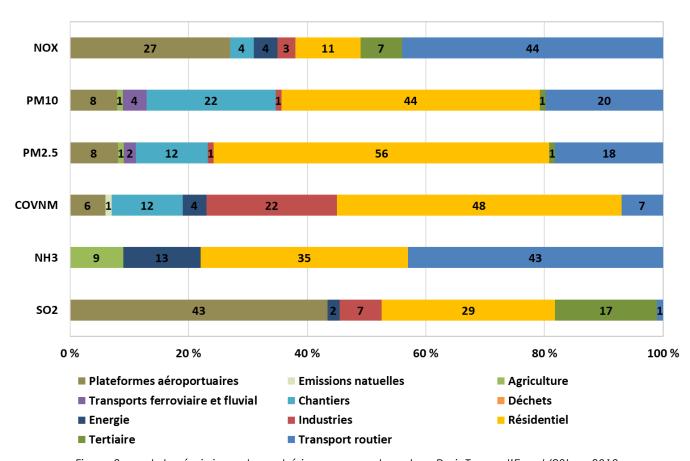


Figure 2 : part des émissions atmosphériques par secteur dans Paris Terres d'Envol (93) en 2018

A l'échelle de l'intercommunalité Paris Terres d'Envol, le secteur du trafic routier représente également environ la moitié des émissions de NO_x (44 %) et d'ammoniac (43 %). Ce secteur reste un émetteur significatif de particules avec environ 20 % des émissions de PM₁₀ et 18 % des émissions de PM_{2.5}, bien que le secteur résidentiel reste le principal émetteur de ces polluants (44 % pour les PM₁₀ et 56 % pour les PM_{2.5}). Les émissions de SO₂ sont quant à elles régies principalement par les activités aéroportuaires (43 %) alors qu'à l'échelle du département il s'agit plutôt du secteur de l'énergie (56 %).

II.1.3) Emissions liées au trafic routier

Les principales émissions liées au trafic routier dans la zone d'étude sont constituées par la RN2 qui borde la zone de projet à l'extrémité ouest, et l'autoroute A1 qui longe le quartier de la Molette à quelques dizaines de mètres au nord-ouest. De plus, la route départementale RD41 (avenue Charles Floquet) qui traverse la ZAC d'est en ouest et l'avenue Aristide Briand qui délimite la zone de projet au nord constituent également des sources d'émissions significatives, notamment en dioxyde d'azote (NO₂), polluant principalement émis par le trafic routier dans l'intercommunalité (44 % des émissions en 2018).

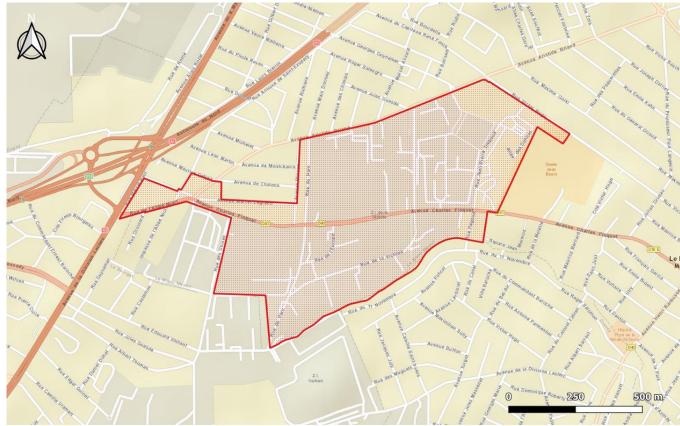


Figure 3: localisation des principaux axes routiers dans la zone d'étude

II.1.4) Secteur résidentiel/tertiaire

Le projet s'inscrit dans un environnement urbanisé. Le secteur résidentiel-tertiaire est un émetteur important à l'échelle locale de NOx et de particules primaires (PM10 et PM2.5) d'une part et de SO2, COVNM et de NH3 d'autre part (polluants précurseurs dans la formation de particules secondaires), ce qui indique également des émissions potentiellement significatives de NOx et de particules au niveau du projet.

II.1.5) <u>Secteur aéroportuaire</u>

Les aéroports de Paris-Bourget et de Paris-Charles de Gaulle se situent tous les deux dans l'intercommunalité Paris Terres d'Envol où les activités issues des plateformes aéroportuaires représentent presque 30 % des émissions de NO_X. Par ailleurs, la plateforme aéroportuaire du Bourget se situe à une distance proche (environ 1 km) au nord de la zone d'étude. Cependant l'étude SURVOL de 2019 pilotée par Airparif¹ indique que l'impact de cet aéroport (trafic aérien et l'ensemble des activités au sol) est peu perceptible par rapport au bruit de fond urbain, du fait de son activité moindre que Roissy-CDG et de son imbrication dans le cœur dense de l'agglomération parisienne.

<u>II.1.6)</u> <u>Secteur industriel</u>

Le Registre Français des Emissions Polluantes (iREP) recense les rejets atmosphériques déclarés par les installations classées pour la protection de l'environnement (ICPE). Par ailleurs, la Direction Régionale et Interdépartementale de l'Environnement et de l'Energie en Ile-de-France recense les principaux sites industriels émetteurs de polluants atmosphériques dans la région. Le croisement de ces bases de données² a permis de localiser 6 sites industriels dans un rayon de 10 km autour de la zone du projet, dont la liste et la géolocalisation sont indiquées dans la figure et le tableau suivants.

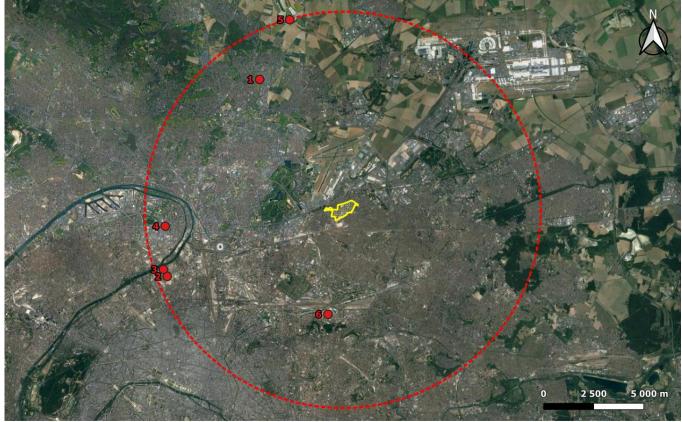


Figure 4: localisation des principaux sites industriels

N°	Industrie	Polluant	Emissions 2018
1	Saren	SO_2	13 t
		NOx	444†
2	CPCU Saint-Ouen	SO_2	363 t
		TSP	16†
		NOx	137 t
	Tiru Saint-Ouen	SO_2	35 t
3		Cu	271 kg
3		Mn	317 kg
		Hg	13 kg
		Zn	266 kg
4	PCAS	COV	73 t
5	Routière de l'Est Parisien (REP)	NOx	112†
6	FAVERA Romainville	COV	33 t

Tableau 4: description des sites industriels

Le recensement indique 6 sites industriels dans l'environnement du projet. La majorité de ces sites sont émetteurs de polluants spécifiquement industriels (COV, métaux lourds, SO₂), mais certains émettent également des NO_x qui peuvent, dans des conditions météorologiques particulières, venir s'additionner au bruit de fond urbain (par exemple aux émissions issues du trafic) dans la zone du projet. Les émissions de COV peuvent par ailleurs contribuer, par différents processus physico-chimiques dans l'atmosphère, à la formation d'aérosols secondaires et donc à l'augmentation des concentrations en particules dans l'environnement du projet.

Cependant la distance importante de ces industries et la dispersion atmosphérique laisse envisager une contribution à la marge.

Rincent Air Etude air et santé Page 7 sur 41

¹ Campagne de mesures 2019 à proximité des plateformes aéroportuaires de Paris-CDG et Paris-Le Bourget. Airparif, juin 2020.

² Les sites qui ne présentent aucune information sur les polluants rejetés dans l'air ambiant ne sont pas comptabilisés. Par ailleurs les gaz à effet de serre qui n'ont pas d'impact direct sur la santé (comme le CO₂) ne sont pas recensés.

II.2 Population impactée

<u>II.2.1)</u> Population générale

Les données relatives à la population sont définies à partir de la base de données Insee de 2019 qui effectue un maillage du nombre d'individus par carreaux de 200 m de côté. Les données obtenues pour la zone du projet sont illustrées par la figure ci-dessous :

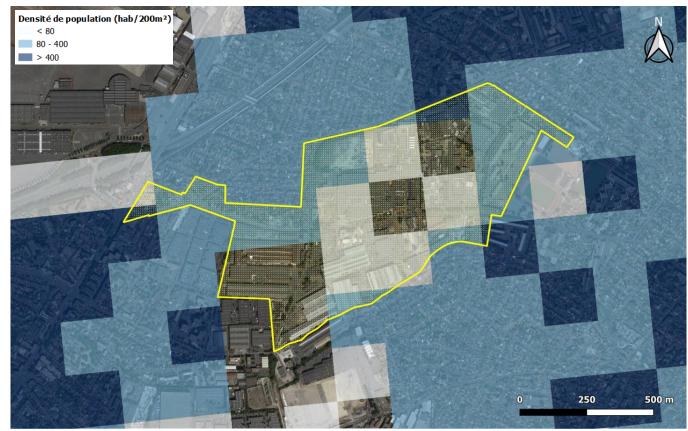


Figure 5 : population autour de la zone du projet

Le projet se situe dans la ville de Blanc-Mesnil (93) qui comptabilise 56 346 habitants (données Insee 2019 issues du recensement 2016) pour une superficie de 8,1 km² soit une densité d'environ 6 931 habitants/km² (zone modérément peuplée). A l'échelle plus locale, la superposition de la zone du projet avec les données carroyées de l'Insee sur la figure ci-dessus indique une densité disparate au niveau de la zone de projet, à majorité faible voire nulle étant donné le maillage industriel actuel.

II.2.2) Population vulnérable

Les sites vulnérables sont définis à partir de la note méthodologique du 22 février 2019 relative à la prise en compte des effets sur la santé de la pollution de l'air dans les études d'impact des infrastructures routières et concernent :

- o Les structures d'accueil des enfants en bas-âge : crèches, haltes garderies, etc.
- o Les établissements scolaires : écoles maternelles et primaires, collèges, lycées.
- o Les structures d'accueil des personnes âgées : maisons de retraite, etc.
- o Les établissements de santé : hôpitaux, cliniques, etc.

La figure 6 présente la localisation des sites vulnérables les plus proches du projet. Leur description est présentée dans le tableau 5 :

N°	Etablissement	Туре
1	Ecole maternelle Saint-Exupéry	Etablissement scolaire
2	Ecole élémentaire Jean Mermoz	Etablissement scolaire
3	Collège Jaqueline de Romilly	Etablissement scolaire
4	Lycée Professionnel Aristide Briand	Etablissement scolaire
5	Ecole élémentaire Victor Hugo	Etablissement scolaire
6	Ecole élémentaire Joliot-Curie	Etablissement scolaire
7	Groupe scolaire Jean Macé	Etablissement scolaire
8	Ecole maternelle France Bloch Serazin	Etablissement scolaire
9	Ecole élémentaire Jules Guesde	Etablissement scolaire
10	Ecole maternelle Jules Guesde	Etablissement scolaire
11	Ecole élémentaire Jean Macé	Etablissement scolaire
12	Groupe scolaire Henri Wallon	Etablissement scolaire
13	Hôpital privée de la Seine-Saint-Denis	Etablissement de santé
14	Crèche Babilou	Structure d'accueil petite enfance
15	Crèche des Tilleuls	Structure d'accueil petite enfance
16	Collège Nelson Mandela	Etablissement scolaire
17	Crèche Fa Mi Sol	Structure d'accueil petite enfance
18	Ecole élémentaire Maurice-Audin	Etablissement scolaire

Tableau 5: description des sites vulnérables les plus proches de la zone de projet

Figure 6 : localisation des sites vulnérables les plus proches de la zone de projet

Le recensement indique 18 établissements dans la zone d'étude. Plusieurs d'entre eux sont susceptibles d'être impactés par des variations de plus de 10 % du trafic routier car ils sont situés à proximité d'axes desservant la zone de projet, comme l'avenue Aristide Briand (RD41) ou l'avenue Charles Floquet. Les sites localisés dans la bande font l'objet d'une évaluation des risques sanitaires (ERS) présentée dans le paragraphe VI.

II.3 Données relatives à la qualité de l'air

II.3.1) <u>Définitions</u>

La surveillance de la qualité de l'air à l'échelle d'un territoire est confiée en France aux associations agréées de surveillance de la qualité de l'air (AASQA). Pour la région lle-de-France, c'est l'association Airparif qui réalise cette surveillance par l'intermédiaire d'un réseau de stations de mesures permettant de caractériser différentes situations d'exposition à la pollution appelées « typologies ». Les typologies de station ou de points de mesure sont définies de la façon suivante :

- Les points de trafic sont situés au plus près des sources d'émission polluantes constituées par les axes routiers. Ils permettent de connaître les teneurs maximales en certains polluants auxquelles la population peut être exposée ponctuellement.
- Les points de fond sont situés en dehors de l'influence des principales sources de pollution atmosphérique. Ils permettent de connaître l'exposition chronique à laquelle est soumise une population sur une large zone spatiale. En fonction de l'environnement du site, le terme de fond urbain, périurbain, ou rural peut être utilisé.

II.3.2) Stations de mesure de référence

Les stations Airparif de Bobigny (fond urbain) et RN2-Pantin (trafic) sont les plus proches de la zone du projet. Elles sont utilisées comme stations de référence pour étudier les conditions locales de pollution atmosphérique. Leur localisation par rapport au projet d'aménagement (en jaune sur la figure) est illustrée sur la figure ci-dessous :

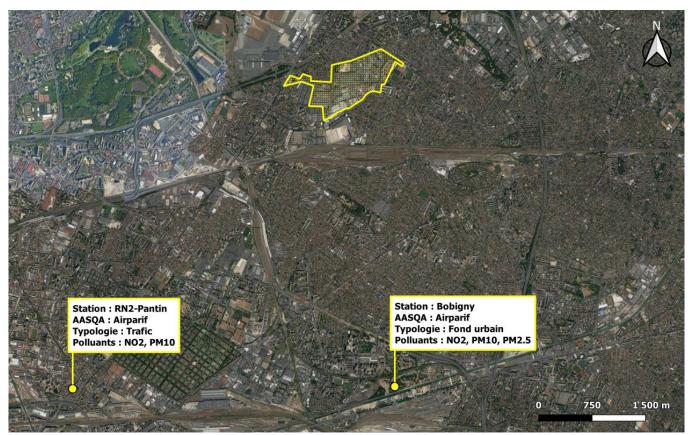


Figure 7 : localisation de la station qualité de l'air de référence

Le tableau 6 présente les évolutions annuelles entre 2017 et 2021 des polluants mesurés par les stations Airparif de Bobigny et RN2-Pantin :

Station	Polluant	Valeur	Valeur limite	2017	2018	2019	2020	2021
	NO ₂	Moyenne annuelle (µg/m³)	40	31	30	28	23	25
	PM ₁₀	Moyenne annuelle (µg/m³)	40	19	18	18	18	18
Bobigny		Nb de jours dont la moyenne journalière < 50 µg/m³	35	5	1	8	4	7
	PM _{2.5}	Moyenne annuelle (µg/m³)	25	11	11	10	11	11
	NO ₂	Moyenne annuelle (µg/m³)	40	55	56	51	42	46
RN2 Pantin	PM ₁₀	Moyenne annuelle (µg/m³)	40	31	29	28	25	27
		Nb de jours dont la moyenne journalière < 50 µg/m³	35	35	15	20	12	17

Tableau 6: données Airparif

Dioxyde d'azote (NO2)

Les teneurs en NO $_2$ relevées au niveau des stations Airparif les plus proches du projet sont en diminution sur la période 2017-2021 : elles se situent respectivement entre 55 et 46 µg/m³ pour la station de trafic et entre 31 et 25 µg/m³ pour la station de fond urbain. L'année 2020 présente des moyennes de NO $_2$ particulièrement basses compte tenu des mesures sanitaires instaurées lors des deux premiers confinements (forte diminution du trafic routier) : 42 µg/m³ pour la station RN2-Pantin et 23 µg/m³ pour la station Bobigny. Les moyennes annuelles mesurées au niveau de la station de fond urbain respectent la valeur limite de 40 µg/m³ sur la période considérée, tandis qu'elles sont en dépassement systématique au niveau de la station de trafic (RN2 à Pantin).

Particules (PM₁₀ et PM_{2.5})

Les concentrations en PM10 mesurées en fond urbain sont relativement stables sur la période 2017-2021, avec une valeur moyenne annuelle comprise entre 19 et 18 µg/m³, tandis qu'une tendance à la baisse est observée pour la station de trafic de 31 à 27 µg/m³. Les teneurs en PM10 respectent donc la valeur réglementaire fixée à 40 µg/m³ en moyenne annuelle. De même, le seuil réglementaire établi à un maximum de 35 jours de dépassement de la moyenne journalière de 50 µg/m³ est respecté chaque année sur les deux stations. Les concentrations en PM2.5 mesurées par la station de fond urbain de Bobigny sont également relativement stables sur la période considérée, avec des moyennes annuelles très inférieures à la valeur réglementaire (25 µg/m³ en moyenne annuelle).

Conclusion

Ces résultats ne laissent pas envisager de dépassement des valeurs réglementaires concernant les concentrations de NO₂ et de particules fines (PM₁₀ et PM_{2.5}) dans l'environnement de fond urbain du projet. En revanche des dépassements restent possibles en proximité du trafic, notamment pour le NO₂. Une campagne de mesure est néanmoins réalisée pour étudier plus précisément la répartition des concentrations de ces polluants au niveau local, notamment au niveau des points de trafic pour le NO₂, et ainsi de mieux définir l'impact initial de la zone sur les populations environnantes. Les résultats de ces mesures sont présentés dans le paragraphe III.

II.4 Les plans de prévention de la pollution atmosphérique

<u>II.4.1)</u> <u>Les plans à l'échelle nationale</u>

Le **Plan national de réduction des émissions de polluants (PREPA)**, défini par l'arrêté du 10 mai 2017, est un plan d'action interministériel suivi une fois par an par le Conseil National de l'Air (CNA) et révisé tous les quatre ans.

Inscrit dans l'article 64 dans la LTECV, le PREPA est composé d'une part d'un décret fixant des objectifs chiffrés de réduction des émissions des principaux polluants à l'horizon 2020, 2025 et 2030 et d'autre part d'un arrêté établissant les actions prioritaires retenues et leurs modalités opérationnelles permettant de réduire les émissions anthropiques de polluants dans l'atmosphère (dans les secteurs de l'industrie, transport et mobilité, résidentiel-tertiaire et agriculture) dans l'objectif principal de respecter les exigences européennes.

Il combine les différents outils de politique publique : réglementations sectorielles, mesures fiscales, incitatives, actions de sensibilisation et de mobilisation des acteurs, action d'amélioration des connaissances... A la suite du précédent plan (2017-2021), un nouvel arrêté en date du 8 décembre 2022 définit de nouvelles actions à mettre en œuvre pour la période 2022-2025 parmi lesquelles les mesures dans le domaine du transport sont les suivantes :

- o Favoriser la mise en place de plans de mobilité par les entreprises et les administrations
- Inciter l'utilisation du vélo
- Favoriser les mobilités partagées
- o Favoriser le report modal vers le transport en commun
- o Favoriser le report modal vers le ferroviaire
- o Renforcer les dispositifs d'aides de l'Etat afin d'assurer la conversion des véhicules les plus polluants et l'achat de véhicules plus propres
- o Mettre en œuvre des zones à faibles émissions mobilité (ZFE-m) par les collectivités
- o Poursuivre le déploiement en équipement de certificats qualité de l'air (Crit'Air)
- o Déploiement de bornes de recharges pour les véhicules électriques
- o Poursuivre le renouvellement du parc public et des transports collectifs par des véhicules faiblement émetteurs
- Réduire les émissions de particules liées au freinage des véhicules
- o Contrôler les émissions réelles des véhicules routiers
- o Renforcer le contrôle technique des véhicules
- o Soutenir l'adoption de nouvelles normes européennes ambitieuses
- o Soutenir la transition écologique portuaire
- o Renforcer les contrôles de la qualité des carburants marins

Le Plan National Santé Environnement (PNSE) précise les actions à mener sur l'ensemble du territoire français pour réduire les impacts des facteurs environnementaux sur la santé. Conformément à l'article L. 1311-6 du code de la santé publique, il doit être renouvelé tous les cinq ans. Le quatrième **Plan National en Santé Environnement (PNSE4)** établi pour la période 2020-2024 s'articule autour de 4 grands axes :

- o Mieux connaître les expositions et les effets de l'environnement sur la santé des populations
- o Informer, communiquer et former les professionnels et les citovens
- o Réduire les expositions environnementales affectant notre santé
- o Démultiplier les actions concrètes menées dans les territoires

A travers ces différents enjeux, le PNSE4 contient différentes actions relatives à la qualité de l'air:

- o L'action 13 prévoit d'améliorer la qualité de l'air intérieur au-delà des actions à la source sur les produits ménagers et les biocides.
- L'action 15 prévoit de créer une plate-forme collaborative pour les collectivités sur les actions en santé environnement et renforcer les moyens des territoires pour réduire les inégalités territoriales en santé-environnement.

o L'action 16 prévoit sensibiliser les urbanistes et aménageurs des territoires pour mieux prendre en compte les problématiques de santé et d'environnement dans les documents de planification territoriale et les opérations d'aménagement.

II.4.2) Les plans à l'échelle régionale

Le **Plan Régional Santé Environnement 3 (PRSE3) d'Ile-de-France**, établi sur la période 2017-2021, est une déclinaison régionale du PNSE3, renouvelé tous les 5 ans comme ce dernier. Co-piloté par l'Agence Régionale de Santé (ARS) et la Direction régionale et interdépartementale de l'environnement et de l'énergie (DRIEE), le PRSE3 comprend ainsi un certain nombre d'actions du PNSE3 déclinées au niveau régional, en adéquation avec les priorités locales, mais également des actions issues de problématiques spécifiques propres aux territoires franciliens. Parmi les 18 actions organisées autour de 4 axes transversaux, le tableau suivant récapitule celles en lien direct ou indirect avec la qualité de l'air :

Axes	Numéro	Actions
Développement de la	2-3	Identifier les sources de polluants émergents et mesurer la contamination des milieux
méthodologie et de la connaissance relative à	3-1	Consolider les connaissances sur les zones de multi expositions environnementales
la qualité de l'air et aux expositions qui en	3-2	Améliorer le dispositif de surveillance et d'aide à la décision en matière de gestion des nuisances environnementales
découlent	3-3	Utiliser les études de zones pour la réduction des inégalités environnementales
	1-1	Prendre en compte la santé dans la mise en œuvre des politiques d'aménagement
Soutien méthodologique à la mise en œuvre	3-2	Améliorer le dispositif de surveillance et d'aide à la décision en matière de gestion des nuisances environnementales
d'actions de résorption et d'amélioration de la situation	3-3	Utiliser les études de zones pour la réduction des inégalités environnementales
SHOUHOH	3-4	Mettre en place une démarche locale participative d'identification et de résorption des zones de multi exposition
Communication et mise	1-3	Développer un réseau régional ressource en santé environnement
en valeur des actions et	3-5	Réaliser un état des lieux régional en santé environnement
mise en réseau des acteurs	4-3	Accroitre la maîtrise des facteurs environnementaux de l'asthme et des allergies

Tableau 7 : axes de travail et actions relatives du PRSE3

Le **Plan de Protection de l'Atmosphère (PPA) d'Ile-de-France** (2017-2025) approuvé par arrêté interpréfectoral le 31 janvier 2018 intègre 25 nouveaux défis déclinés en 46 actions dans l'objectif de réduire les émissions de polluants atmosphériques et de respecter les seuils européens à l'horizon 2025 sur différents secteurs : aérien, agricole, industrie, résidentiel-tertiaire, transports routier... Parmi eux, 8 défis concernent directement le secteur du transport et 1 le secteur des chantiers, qui constituent tous deux une problématique liée aux aménagements routiers et urbains :

- o Elaborer des plans de mobilité par les entreprises et les personnes morales de droit public
- o Apprécier les impacts d'une harmonisation à la baisse des vitesses maximales autorisées sur les voies structurantes d'agglomérations d'Ile-de-France
- o Soutenir l'élaboration et la mise en œuvre de plans locaux de déplacements et une meilleure prise en compte de la mobilité durable dans l'urbanisme
- o Accompagner la mise en place de zones à circulation restreinte en lle-de-France
- Favoriser le covoiturage en lle-de-France
- o Accompagner le développement des véhicules à faibles émissions
- o Favoriser une logistique plus respectueuse de l'environnement
- Favoriser l'usage des modes actifs
- o Élaborer une charte globale chantiers propres impliquant l'ensemble des acteurs (des maîtres d'ouvrage aux maîtres d'œuvre) et favoriser les bonnes pratiques

Il est à noter que l'arrêté prévoit d'imposer les nouvelles mesures réglementaires issues de ces 25 défis mais également les **mesures conservées de l'ancien PPA (2013-2016)**, approuvée le 25 mars 2013. Ce plan

décline 24 actions pour réduire les émissions de polluants atmosphériques sur les différents secteurs du transport, de l'énergie, du chauffage, de l'industrie ou de l'agriculture.

Parmi elles, 4 actions réglementaires peuvent s'appliquer au secteur du transport, qui constitue une des problématiques principales liées aux aménagements urbains :

- o Obliger les principaux pôles générateurs de trafic à réaliser un plan de déplacement
- o Définir les attendus relatifs à la qualité de l'air à retrouver dans les documents d'urbanisme
- o Définir les attendus relatifs à la qualité de l'air à retrouver dans les études d'impact
- o Diminuer les émissions en cas de pointe de pollution

Le **Schéma Régional Climat Air Energie (SCRAE) d'Ile-de-France** actuellement en vigueur a été approuvé le 23 novembre 2012 par délibération du Conseil Régional puis adopté par arrêté préfectoral le 14 décembre 2012. Il fixe 17 objectifs et 58 orientations stratégiques pour le territoire régional en matière de réduction des consommations d'énergie et des émissions de gaz à effet de serre, d'amélioration de la qualité de l'air, de développement des énergies renouvelables et d'adaptation aux effets du changement climatique. En lien avec l'amélioration de la qualité de l'air, le SCRAE intègre les précédents objectifs du Plan Régional pour la Qualité de l'Air (PRQA) dans sa version de 2009 depuis la loi dite « Grenelle II » (2010) :

- o Atteindre les objectifs de qualité de l'air fixés par la réglementation ou par l'OMS, en particulier pour les polluants pour lesquels sont observés en Île-de-France des dépassements.
- o Atteindre ces objectifs de qualité de l'air à proximité immédiate d'axes majeurs de trafic ou sources importantes de polluant (ou proposer, pour ces zones, des mesures compensatoires dans un souci d'équité environnementale).
- o Diminuer les émissions d'autres polluants tels que les pesticides, les dioxines et les hydrocarbures aromatiques polycycliques et limiter l'exposition des Franciliens.
- o Accompagner les évolutions nationales en termes de surveillance et de réglementation de l'air intérieur. Au niveau régional, appliquer une politique volontariste en matière de bonne pratique dans les Etablissements Recevant du Public (ERP), en particulier ceux accueillant des enfants.

Le **Plan de Déplacement Urbains (PDU) d'Ile-de-France** approuvé le 19 juin 2014, est un document stratégique relatif aux modes de déplacements des franciliens et des marchandises, à l'horizon 2020. Il traite des politiques de mobilité sur l'ensemble du territoire régional, intègre tous les modes de transports (transports collectifs, voitures particulières, deux-roues motorisés, marche et vélo) ainsi que les politiques de stationnement ou encore d'exploitation routière. Pour atteindre les objectifs fixés, le PDU prévoit la mise en œuvre des 34 actions favorisant notamment le développement des transports en commun, des circuits de mobilité douce et de la mobilité partagée.

II.4.3) Les plans à l'échelle locale

La loi « Transition Energétique pour la Croissance Verte » du 17 aout 2015 a rendu obligatoire la réalisation d'un Plan Climat Air Energie Territorial (PCAET) dans les établissements publics de coopération intercommunale (EPCI) à fiscalité propre de plus de 50 000 habitants en 2017 et de plus de 20 000 habitants en 2019.

Le **Plan Climat-air-énergie métropolitain (PCAEM)** a été approuvé en novembre 2018 par le Conseil métropolitain. Il a pour objectif de faire converger l'action des 131 communes de la Métropole du Grand Paris en faveur de la résilience climatique, de la transition énergétique et de la qualité de l'air en favorisant les synergies et en promouvant les actions locales et métropolitaines. Ce plan s'articule autour des objectifs stratégiques et opérationnels suivants :

- o Atteindre la neutralité carbone en 2050
- o Accroître la résilience de la Métropole face aux effets du changement climatique
- o Assurer une qualité de l'air conforme aux seuils fixés par l'Organisation Mondiale de la Santé
- Réduire massivement les consommations énergétiques
- o Développer massivement la production locale des énergies renouvelables et de récupération

Le **PCAET du territoire intercommunal Paris Terres d'Envol** (qui comprend la commune du Blanc-Mesnil dans laquelle si situe le projet) a été adopté le 12 avril 2021. Compatible avec le PCAEM, il s'articule autour de 4 axes principaux :

- o Développer les transports sobres en énergie et faiblement émetteurs de gaz à effet de serre et de polluants
- o Améliorer l'efficacité énergétique dans le bâti existant, promouvoir des constructions nouvelles durables et développer, les ENR&R locales
- o Encourager une consommation alimentaire responsable et la réduction des déchets
- o Préserver les fonctions de captation du carbone et s'adapter aux risques naturels

Au total, 21 actions découlent directement de ces quatre axes dont les suivantes sont liées directement ou indirectement à l'amélioration de la qualité de l'air sur le territoire :

- o Faciliter la transition vers l'usage de véhicules plus propres
- o Favoriser et développer la marche et l'utilisation des modes actifs
- o Définir une stratégie pour le stationnement à destination des gares actuelles et futures
- o Inciter à la pratique du covoiturage
- o Mettre en place un partenariat avec Aéroports de Paris

III. ETAT INITIAL : CAMPAGNE DE MESURE

III.1 Méthodologie

III.1.1) Polluants mesurés

La note technique du 22 février 2019 relative à la prise en compte des effets sur la santé de la pollution de l'air dans les études d'impact indique que le polluant le plus adapté pour la qualification de l'état initial de la qualité de l'air est le dioxyde d'azote (NO₂). Pour les études de niveau II ou supérieur, des mesures complémentaires de particules PM₁₀ peuvent être réalisée sur demande de l'autorité environnementale. En l'absence de spécifications dans le cadre de ce projet, seul le NO₂ est intégré aux mesures.

III.1.2) Mesure du dioxyde d'azote

Le principe de la mesure est celui de la diffusion naturelle de l'air à travers une cartouche contenant un adsorbant spécifique au NO₂ (triéthanolamine). Le débit de diffusion étant connu, la masse de polluant détectée sur le capteur à l'issue de la période d'exposition permet de calculer sa concentration dans l'air ambiant.

Les capteurs sont placés à l'intérieur de boîtes de protection afin de les protéger de la pluie et du vent. Les boîtes sont ensuite fixées en hauteur sur les supports verticaux disponibles sur le domaine public (poteaux, candélabres...).

Après une période d'exposition de 2 semaines, les capteurs sont récupérés et envoyés en laboratoire pour extraire la masse piégée et doser le NO₂ par spectrométrie UV.

Les analyses sont réalisées par le laboratoire suisse Passam Ag accrédité ISO 17025 (STS 149) pour la mesure de la qualité de l'air ambiant par la méthode des tubes à diffusion passive utilisant des techniques de spectrophotométrie.

Cette méthode de prélèvement et d'analyse permet de mesurer une gamme de concentration en NO_2 de 1 à 200 $\mu g/m^3$ avec une limite de quantification de 0,6 $\mu g/m^3$.

Tube de Bouchon polypropylène Boîte de protection

Echantillonneur passif NO₂

Adsorbant

triéthanolamine

III.2 Plan d'échantillonnage

III.2.1) Points de mesure

Différentes typologies de points de mesure sont définies pour les évaluations de la qualité de l'air :

- o Points de trafic (T): implantés à proximité des voies présentant le trafic routier le plus important. Ils permettent de connaître les teneurs maximales en certains polluants auxquelles la population peut être exposée ponctuellement (piétons).
- o Points de fond (F) : éloignés des principales sources de pollution atmosphérique de proximité. Ils permettent de caractériser l'exposition chronique des populations.

En tenant compte de ces paramètres et de la dimension du projet, l'échantillonnage est établi pour 12 points de mesure de NO₂.

Par ailleurs, un blanc de terrain (capteur non exposé permettant de contrôler l'absence de contamination durant le transport), un blanc de laboratoire et un point doublé (deux capteurs exposés au même emplacement pour établir la répétabilité) sont intégrés aux analyses du NO₂.

Le tableau et la figure présentés ci-après illustrent la répartition des points de mesure. La localisation précise, les dates de prélèvement et les photographies figurent en Annexe 2.

N°	Typologie	Polluant mesuré	Localisation
P1	Trafic	NO ₂	Croisement D41 / Avenue Charles Floquet
P2	Trafic	NO_2	Avenue Charles Floquet (ouest de la zone de projet)
P3	Fond urbain	NO_2	Extrémité ouest « Tubes de Montreuil »
P4	Fond urbain	NO ₂	Rue du Capitaine Dreyfus
P5	Fond urbain	NO ₂	Rue du Parc
P6	Fond urbain	NO ₂	Rue du Parc (sud de la zone de projet)
P7	Trafic	NO ₂	Avenue Aristide Briand (RD41)
P8	Fond urbain	NO ₂	Avenue Marcel Legrand
P9	Trafic	NO ₂	Avenue Charles Floquet (est de la zone de projet)
P10	Trafic	NO ₂	Avenue Charles Floquet (est de la zone de projet)
P11	Fond urbain	NO ₂	Rue Iqbal Masih
P12	Fond urbain	NO ₂	Rue Victor Hugo

Tableau 8 : plan d'échantillonnage

Figure 8 : plan d'échantillonnage

III.2.2) Période de mesure

Les concentrations en polluants atmosphériques présentent un comportement saisonnier marqué ce qui est principalement dû aux variations des sources d'émission et des conditions météorologiques. Dans le cadre de cette étude, **une seule campagne de mesure** est dimensionnée. Néanmoins, l'étude des conditions météorologiques et de pollution atmosphérique au cours de la campagne permet d'extrapoler les résultats à une situation annuelle. La campagne de mesure est réalisée du **lundi 8 au lundi 22 novembre 2021.**

III.3 Stations de référence

III.3.1) Météorologie

Les concentrations en polluants sont influencées par les températures de différentes manières: les épisodes de froid peuvent par exemple provoquer une utilisation plus importante du chauffage en milieu urbain et ainsi favoriser des émissions de NOx, particules et benzène. Le fonctionnement à froid des moteurs automobiles est également plus émissif. De plus, des phénomènes d'inversion thermique peuvent réduire la dispersion des polluants. À l'inverse, les épisodes de chaleur et d'ensoleillement sont susceptibles de favoriser des réactions chimiques à l'origine de la formation de polluants secondaires (ex : ozone) et la diminution des concentrations en polluants primaires (ex : oxydes d'azote).

La pluie assure quant à elle un rôle de lessivage de l'atmosphère par un phénomène d'abattement des polluants au sol. Des précipitations abondantes peuvent ainsi limiter l'effet d'une pollution particulaire par exemple. À contrario, une période trop sèche peut être favorable à une augmentation de la pollution et des concentrations en aérosols.

Enfin, les vents sont un paramètre essentiel de l'étude de la pollution atmosphérique car ils conditionnent l'impact des sources d'émission (sous/hors panache) et influencent la dispersion des polluants (vitesses faibles ou élevées).

Pour étudier l'influence de ces paramètres, les conditions météorologiques lors de la campagne de mesure sont comparées aux normales saisonnières. Les normales sont constituées des observations de Météo France réalisées de 1981 à 2011 et, par conséquent, ne sont disponibles qu'auprès des stations météorologiques implantées depuis plus de 30 ans. La station la plus proche du site présentant ces données est celle du Bourget, située à environ 1,5 km au nord-ouest du projet. Les données de vent au cours de la campagne sont également acquises auprès de cette station.

La figure 9 illustre la localisation de la station météorologique utilisée par rapport à la zone de projet :

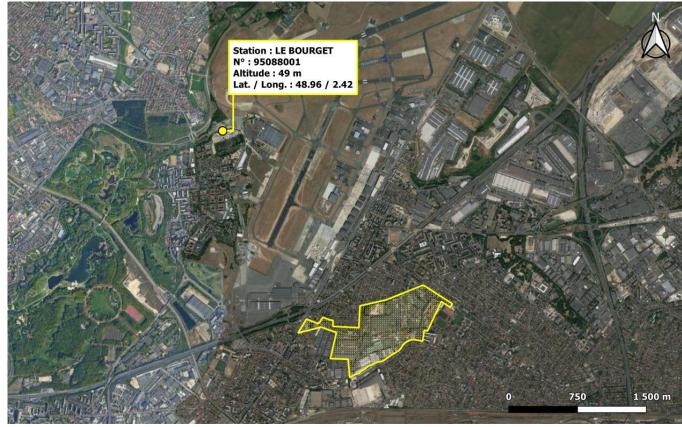


Figure 9 : localisation de la station météorologique de référence

<u>III.3.2)</u> Pollution atmosphérique

L'étude des données enregistrées par le réseau local de surveillance de la qualité de l'air (Airparif) permet d'appréhender les conditions de pollution atmosphérique au cours des mesures par rapport à la moyenne annuelle.

Dans le cadre de cette étude, les stations Airparif utilisées sont celles de Bobigny (fond urbain) et RN2-Pantin (trafic), les plus proches de la zone du projet, identifiées au paragraphe II.3.2).

III.4 Conditions lors de la campagne

II.4.1) <u>Températures et précipitations</u>

La figure suivante présente la comparaison de la température moyenne et précipitation enregistrées pendant la campagne de mesure aux normales annuelles de la station Météo France du Bourget.



Figure 10 : étude des températures et précipitations (données : Météo France)

Les températures relevées lors de la campagne de mesure sont inférieures à la normale annuelle, indiquant des conditions propices à une augmentation des concentrations en NO₂. Les précipitations sont quant à elles très inférieures à la normale annuelle, ce qui ne laisse pas supposer d'abattement des concentrations en polluants par lessivage de l'atmosphère au cours de la campagne.

III.4.2) Conditions de vent

Les conditions de vents sont représentées par une rose des vents³ établie à partir de leur fréquence d'apparition en fonction de leur direction et de leur vitesse :

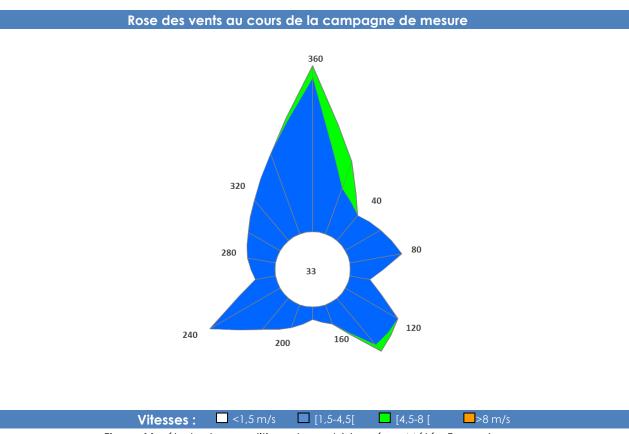


Figure 11 : étude des conditions de vent (données : Météo France)

La rose des vents est caractérisée par un secteur nord majoritaire, indiquant un impact potentiel plus important au sud des émissions issues des axes routiers les plus polluants. Les vitesses de vents relevées sont faibles voire très faibles (environ 97 % des vitesses de vent relevées sont inférieures à 4,5 m/s dont 33 % sont inférieures à 1,5 m/s), ce qui indique une faible dispersion des polluants atmosphériques et laisse envisager un impact plus important sur les points de mesure les plus proches des sources d'émission (axes routiers).

III.4.3) Pollution atmosphérique

Les concentrations en NO₂ enregistrées par Airparif au niveau des stations « RN2-Pantin » et « Bobigny » sur la période 2019-2021 et la campagne de mesure sont comparées dans le tableau ci-dessous :

Station	Polluant	Moyenne Campagne (µg/m³)	Moyenne 2019 – 2021 (µg/m³)	Ecart Campagne / 2019-2021	
Bobigny (fond urbain)	NO ₂	36,2	25,3	+43 %	
RN2 – Pantin (trafic)	in (trafic) NO ₂ 53,0		46,3	+14%	

Tableau 9 : étude des données Airparif

En lien avec les conditions météorologiques (températures froides, précipitations très faibles), les teneurs en NO₂ sont plus fortes lors de la campagne de mesure qu'en moyenne annuelle⁴ (respectivement +43 % en fond urbain et +14 % en proximité trafic).

Rincent Air Etude air et santé Page 14 sur 41

³ Graphique radial représentant l'origine des vents sur un cercle de 0 à 360° par secteurs de 20° (ex : vent de secteur nord compris entre 350 à 10°). L'axe des ordonnées représente le pourcentage d'apparition des vents sur chaque secteur.

⁴ Pour plus de représentativité la moyenne annuelle est calculée sur les 3 dernières années disponibles (2019, 2020, 2021).

III.5 Résultats

III.5.1) Validité des mesures par capteur passif

La validité des mesures par capteurs passifs est établie par les deux facteurs suivants :

- L'analyse d'un capteur non exposé (appelé « blanc ») ayant été transporté avec les échantillons lors de tous les trajets entre le laboratoire et les sites de mesure. L'analyse du blanc permet de quantifier la présence résiduelle de polluants gazeux sur les supports non liée à l'air échantillonné.
- o La détermination de la répétabilité par l'exposition de deux cartouches au même point de mesure dans les mêmes conditions. Le résultat du calcul de l'écart standard⁵ sur les valeurs obtenues permet de situer les mesures par rapport aux biais éventuels engendrés par la méthode de prélèvement et d'analyse.

Facteurs de validité	NO ₂
Concentration du blanc pour une exposition théorique de 2 semaines	< 0,6 µg/m³
Concentration moyenne doublet	51,3 µg/m³
Ecart standard du doublet	1,8 %
Incertitude théorique élargie (donnée Passam)	20,3 %

Tableau 10 : facteurs de validité des mesures

Les concentrations mesurées en NO₂ sur les blancs sont inférieures à la limite de détection, indiquant l'absence de contamination des supports. L'incertitude élargie représente l'écart maximal pouvant être obtenu sur une mesure en incluant tous les biais potentiels liés au prélèvement et à l'analyse avec un intervalle de confiance de 95 %. L'écart standard calculé sur les résultats du doublet est largement inférieur à cette incertitude et indique donc une bonne répétabilité de la mesure.

III.5.2) Concentrations en NO₂

Le tableau suivant présente les résultats obtenus par point de mesure :

Point de mesure	P1	P2	Р3	P4	P5	P6	P7	P8	Р9	P10	P11	P12
Typologie	T	T	FU	FU	FU	FU	T	FU	T	T	FU	FU
NO ₂ (μg/m ³)	52,8	53,2	42,7	44,7	50,1	47,5	51,3	44,3	53,5	49,5	49,6	45,2

Tableau 11 : résultats des mesures pour le NO₂

III.5.3) Cartographie des résultats

La figure ci-dessous présente les résultats sur fond de carte de la zone d'étude :

Figure 12: cartographie des résultats

La cartographie des résultats indique des concentrations en NO_2 relativement fortes au niveau de la zone d'étude, avec des valeurs comprises entre 43 et 54 µg/m³. Les points de trafic P1, P2, P7 et P9 présentent les concentrations les plus élevées, avec des valeurs supérieures à 50 µg/m³, ce qui s'explique par leur proximité avec les axes routiers les plus fréquentés dans la zone (RD41, avenue Charles Floquet). Les points de fond urbain, plus éloignés et plus représentatifs de l'exposition chronique de la population, enregistrent les concentrations les plus faibles de la zone avec des valeurs qui restent néanmoins significatives (entre 43 et 50 µg/m³).

Rincent Air Etude air et santé Page 15 sur 41

⁵ Ecart standard : critère de dispersion pour une série de données correspondant à la moyenne des écarts entre les valeurs observées (écart type) et la moyenne des valeurs observées.

III.6 Comparaison à la réglementation

III.6.1) Cadre réglementaire

Les valeurs utilisées pour comparer les résultats de la campagne de mesure à la réglementation sont issues du décret n°2010-1250 (cf. annexe 1). La comparaison aux moyennes annuelles est réalisée uniquement à titre indicatif étant donné que les résultats ne sont représentatifs que de deux semaines de mesure⁶ et que les projets d'aménagement ne sont pas soumis au respect de ce type de valeurs⁷.

III.6.2) Dioxyde d'azote (NO₂)

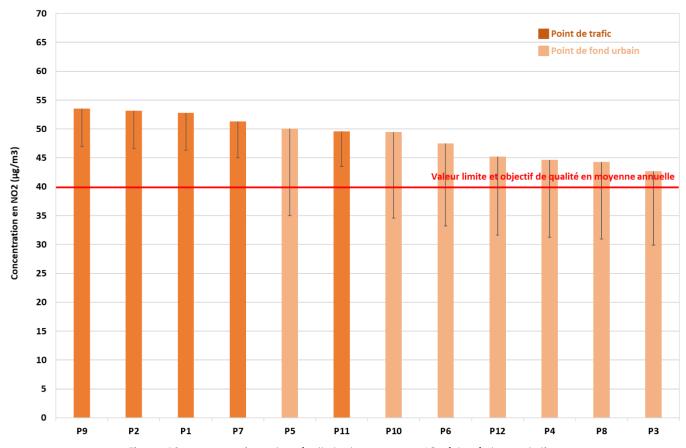


Figure 13 : comparaison des résultats des mesures NO₂ à la réglementation

La campagne de mesure se caractérise par des teneurs en NO₂ plus fortes d'environ 14 % (en proximité de trafic) à 43 % (en fond urbain) par rapport à la moyenne annuelle. Les résultats extrapolés à l'échelle annuelle sont traduits par les barres grises sur le graphique. Celles-ci indiquent un dépassement potentiel de la valeur réglementaire au niveau de l'ensemble des points de trafic (situés en bordure immédiate d'axes routiers fréquentés: RD41, avenue Charles Floquet) mais aucun au niveau des points de fond urbain, plus caractéristiques de l'exposition chronique de la population.

⁶ La directive européenne du 21 mai 2008 qui indique que les mesures de la qualité de l'air par méthode indicative peuvent être considérées comme représentatives d'une situation annuelle si elles sont réalisées durant un minimum de huit semaines uniformément réparties dans l'année.

⁷ Arrêt n°11NC01593 du 7 février 2013 rendu par la Cour Administrative d'Appel de Nancy, qui précise que si les valeurs limites réglementaires constituent un objectif à rechercher dans l'élaboration de tout projet, elles ne constituent pas pour autant une prescription s'imposant en tant que telles à un projet.

IV.ESTIMATION DES EMISSIONS POLLUANTES

IV.1 Méthodologie

IV.1.1) Méthode de calcul

Le modèle de calcul des émissions mis en œuvre est le logiciel **TREFIC™** (TRaffic Emission Factors Improved Calculation) version 5.1.2 qui utilise les données d'entrée suivantes :

- o Le trafic moyen journalier annuel (TMJA) pour les véhicules légers et les poids lourds, ainsi que leur vitesse moyenne sur chaque axe et pour chaque scénario
- o La répartition du parc de véhicules pour chaque scénario
- o Les facteurs d'émissions polluantes de chaque catégorie de véhicule
- o Les conditions météorologiques moyennes sur la zone d'étude (températures et précipitations)

Les résultats présentent les émissions des polluants à effet sanitaire (PES) cités par le guide méthodologique issu de la note technique du 22 février 2019 :

- Oxydes d'azote (NOx)
- Dioxyde de soufre (SO₂)
- Monoxyde de carbone (CO)
- Benzo[a]pyrène

- Composés Organiques Volatils (COV)
- Benzène (C₆H₆)
- o Particules (PM_{2.5} et PM₁₀)
- Arsenic (As) et nickel (Ni)

En complément, les résultats présentent la consommation énergétique et les émissions des principaux gaz à effet de serre (GES) : le dioxyde de carbone (CO_2), le méthane (CH_4) et le protoxyde d'azote (N_2O).

IV.1.2) Parc de véhicules

La répartition du parc automobile est issue des projections de l'Université Gustave Eiffel (ex-IFSTTAR) établies notamment en fonction du type de voie (urbain, route, autoroute), des catégories de véhicules, du carburant/énergie et de la norme Euro. Deux scénarios d'évolution de cette répartition jusqu'en 2050 sont disponibles :

- Scénario « \$1-AME » qui intègre uniquement les mesures actuelles portées par l'Etat français sur la consommation d'énergie et les gaz à effet de serre.
- o Scénario « S2-AMS » qui considère l'atteinte des objectifs énergétiques et climatiques de neutralité carbone en 2050 sur la base de la stratégie nationale bas carbone (SNBC).

Dans une approche majorante, le scénario retenu dans le cadre de cette étude est le scénario \$1-AME.

IV.1.3) Facteurs d'émissions unitaires

On appelle "facteur d'émission" les quantités de polluants en g/km rejetées par type de véhicule. Pour la consommation, les données sont fournies en tep/km (Tonne Equivalent Pétrole). Les facteurs d'émission proviennent d'expérimentations sur banc d'essais ou en conditions réelles. Ils dépendent :

- o Des caractéristiques du véhicule (catégorie de véhicule, type de carburant, norme Euro...)
- o Du "cycle" (trajet urbain, autoroute, moteur froid/chaud) et de la vitesse du véhicule
- o De la température ambiante (pour les émissions à froid)

Les facteurs d'émissions utilisés pour l'étude sont ceux du programme **COPERT 5** (COmputer Programme to calculate Emissions from Road Transport) dont le développement technique est financé par l'Agence Européenne de l'Environnement. Ce modèle résulte d'un consensus européen entre les principaux centres de recherche sur les transports. Son utilisation est préconisée par le CEREMA pour la réalisation des études d'impact du trafic routier.

IV.1.4) Scénarios considérés

Trois scénarios d'émissions sont pris en compte pour estimer l'impact du projet :

- o La situation actuelle (2024)
- o La situation future sans projet (2035)
- o La situation future avec projet (2035)

IV.1.5) Données de trafic

Les hypothèses suivantes sont prises par Rincent Air pour compléter les données issues de l'étude de circulation réalisée par le bureau d'études CDVIA en juillet 2024 :

- La vitesse de circulation de tous les véhicules est considérée égale à la vitesse maximale autorisée sur chaque brin pour chaque scénario. Pour le scénario futur avec projet, la vitesse moyenne pour les brins internes à la nouvelle ZAC est prise égale à 30 km/h.
- o Pour les trois scénarios, le pourcentage de poids-lourds sur la section sud de la RN2 (brin n°2) est pris égal à celui de la section nord de la RN2 (brin n°1).

Le tableau 12 présente l'ensemble des données de trafic considérées :

N°	N° Brin routier		TMJA Actuel	Futur s	TMJA ans projet	Futur av	TMJA rec projet	Vitesse
	Jill Tooliei	VL	PL	VL	PL	VL VL	PL	km/h
1	RN2 - section nord	15 829	1 565	14 805	1 645	15 120	1 680	50
2	RN2 - section sud	26 140	2 585	26 010	2 890	28 305	3 145	50
3	RD41 - section 1	11 948	1 039	12 264	923	18 572	978	50
4	Avenue Defense du Bourget	167	9	171	9	171	9	50
5	RD41 - section 2	4 734	356	5 580	420	6 887	363	50
6	Avenue Charles Floquet - 1	10 212	1 262	10 769	1 331	13 300	700	50
7	Avenue Plisson	933	19	1 225	25	1 323	27	50
8	Rue Capitaine Dreyfus	1 105	58	1 425	75	1 140	60	50
9	Rue du Parc nord	3 510	771	3 486	714	792	8	30
10	Avenue Charles Floquet - 2	10 053	419	10 032	418	11 640	360	50
11	Rue du Parc sud	3 538	226	4 418	282	5 047	103	30
12	Avenue Charles Floquet - 3	12 071	373	11 640	360	13 531	419	50
13	Rue de la Victoire	922	276	2 065	485	4 361	89	30
14	Avenue Charles Floquet - 4	13 840	428	14 065	435	15 956	494	50
15	Rue Iqbal Masih sud	6 293	331	6 317	333	6 816	284	50
16	Rue Iqbal Masih nord	6 673	351	6 697	353	7 200	300	50
17	Rue Pegoud	5 007	102	5 047	103	5 488	112	50
18	Avenue Charles Floquet - 5	11 401	475	11 328	472	10 416	434	50
19	Rue JP Timbaud	2 143	66	2 085	65	2 764	86	50
20	RD41 - section 3	7 600	400	8 640	360	9 748	302	50
11	RD41 - section 4	8 971	675	9 253	697	8 695	555	50
22	Autoroute A1 - section 1	175 904	9 258	179 787	9 463	180 880	9 520	110
23	Autoroute A1 - section 2	170 901	8 995	171 475	9 025	173 802	9 148	110
24	Avenue Diderot	5 650	175	5 674	176	6 014	186	50
25	Nouveau brin 1	0	0	145	5	445	5	30
26	Nouveau brin 2	0	0	0	0	495	5	30
27	Nouveau brin 3	0	0	0	0	1 492	8	30
28	Nouveau brin 4	0	0	0	0	2 189	11	30
29	Nouveau brin 5	0	0	0	0	1 492	8	30
30	Nouveau brin 6	0	0	0	0	693	7	30
31	Nouveau brin 7	0	0	0	0	1 194	6	30
32	Nouveau brin 8	0	0	0	0	495	5	30
33	Nouveau brin 9	0	0	0	0	495	5	30

Tableau 12 : données de trafic

IV.1.6) Bande d'étude

Les données de trafic permettent de définir la bande d'étude conformément au tableau 13 :

TMJA à l'horizon d'étude (véh/jour)	Largeur minimale de la bande d'étude centrée sur l'axe de la voie (m)
T > 50 000	600
25 000 > T ≤ 50 000	400
10 000 > T ≤25 000	300
≤ 10 000	200

Tableau 13: définition de la bande d'étude (note technique du 22/02/2019)

La figure 14 présente la bande d'étude du projet :

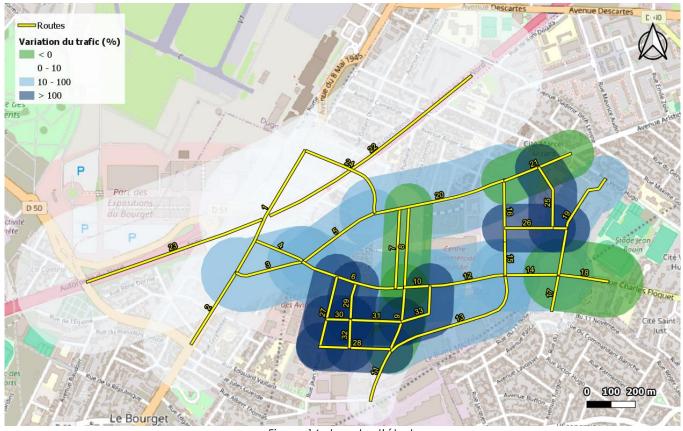


Figure 14 : bande d'étude

IV.2 Résultats du calcul des émissions polluantes

IV.2.1) Emissions polluantes globales

Les tableaux ci-dessous présentent les variations des émissions totales sur l'ensemble du réseau routier considéré pour les polluants à effets sanitaires (PES) et les gaz à effet de serre (GES) :

Emissions	Unité	Actuel	Futur sans projet	Variation Futur sans projet / Actuel	Futur avec projet	Variation Futur avec projet / Actuel	Variation Futur avec projet / sans projet
CO	kg/j	105,84	87,44	-17,4%	90,04	-14,9%	3,0%
Benzène	g/j	73,91	36,22	-51,0%	38,02	-48,6%	5,0%
Benzo[a]pyrène	mg/j	360,17	247,79	-31,2%	254,17	-29,4%	2,6%
Arsenic	mg/j	3,58	4,13	15,2%	4,24	18,5%	2,9%
SO ₂	g/j	793,93	977,88	23,2%	1008,34	27,0%	3,1%
Nickel	mg/j	18,90	25,14	33,0%	25,99	37,5%	3,4%
COVNM	kg/j	2,50	2,10	-16,1%	2,08	-17,1%	-1,2%
NOx	kg/j	140,52	65,93	-53,1%	67,25	-52,1%	2,0%
PM _{2.5}	kg/j	7,53	5,59	-25,8%	5,74	-23,8%	2,7%
PM ₁₀	kg/j	10,92	9,05	-17,2%	9,29	-14,9%	2,7%

Tableau 14 : bilan des émissions de PES

Emissions	Unité	Actuel	Futur sans projet	Variation Futur sans projet / Actuel	Futur avec projet	Variation Futur avec projet / Actuel	Variation Futur avec projet / sans projet
Consommation	tep/j	22,28	22,03	-1,1%	22,49	0,9%	2,1%
CO ₂	t/j	70,54	69,68	-1,2%	71,14	0,8%	2,1%
N ₂ O	t/j	2889,34	2363,41	-18,2%	2413,36	-16,5%	2,1%
CH ₄	t/j	1179,38	1038,39	-12,0%	1061,42	-10,0%	2,2%

Tableau 15 : bilan des émissions de GES

Une baisse globale des émissions des principaux PES peut être constatée entre le scénario futur sans projet et le scénario actuel (-53 % pour les NO_X , -51 % pour le benzène, -26 % pour les $PM_{2.5}$ et -17 % pour les PM_{10}). Celle-ci s'explique par les hypothèses de mise en circulation de véhicules moins polluants à l'horizon de mise en service du projet (2035) d'après les données de l'Université Gustave Eiffel.

En considérant les NO_x comme polluant traceur des PES, la variation du trafic routier à l'horizon 2035 entre le scénario avec projet et le scénario sans projet entraine une augmentation d'environ 2 % des émissions. Par rapport au scénario actuel, il en résulte une diminution de 52 % lors de la mise en service du projet.

Pour le CO₂, principal composé traceur des GES, le projet entraı̂ne une augmentation d'environ 2 % des émissions par rapport au fil de l'eau. Il en résulte une augmentation de 1 % par rapport à l'état actuel.

Le projet entraı̂ne une augmentation d'environ 2 % des émissions de NO $_X$ par rapport au scénario sans projet, et une diminution de 52 % par rapport à l'état actuel.

IV.2.2) <u>Cartographie des émissions</u>

En retenant les NO_x comme les polluants les plus représentatifs de la pollution routière, les figures suivantes permettent de visualiser les émissions en gramme par jour et par mètre pour chaque scénario :

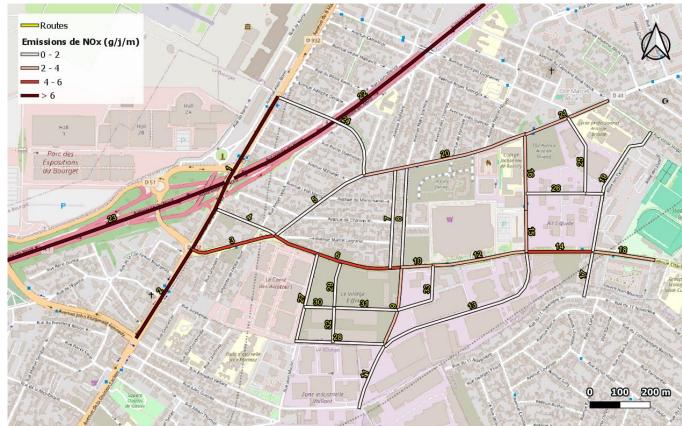


Figure 15 : émissions de NO_X – scénario actuel

Figure 16 : émissions de NOx – scénario futur sans projet

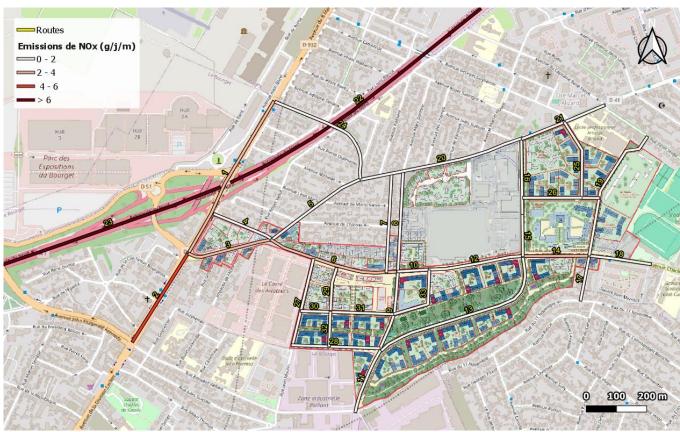


Figure 17 : émissions de NOx – scénario futur avec projet

V.2.3) Etude des variations liées au projet

La figure suivante présente les variations des émissions de NOx entre les scénarios futurs avec et sans projet :

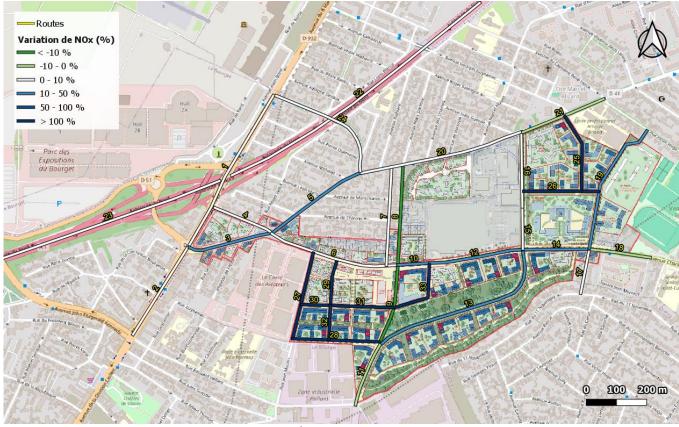


Figure 18 : variation émissions de NOx avec / sans projet

Le tableau ci-dessous reprend les valeurs numériques des émissions de NOx par jour et par mètre sur chaque axe :

N°	Dain was still a	Emi	ssions de NOx (g	/j/m)	Variation Futur
IN "	Brin routier	Actuel	Sans projet	Avec projet	avec/sans projet (%)
1	RN2 - section nord	6,44	2,64	2,69	2
2	RN2 - section sud	10,62	4,63	5,04	9
3	RD41 - section 1	4,63	1,98	2,80	42
4	Avenue Défense du Bourget	0,06	0,03	0,03	0
5	RD41 - section 2	1,75	0,90	1,04	15
6	Avenue Charles Floquet - 1	4,55	1,98	2,01	1
7	Avenue Plisson	0,26	0,17	0,18	8
8	Rue Capitaine Dreyfus	0,37	0,21	0,17	-20
9	Rue du Parc nord	3,03	1,08	0,13	-88
10	Avenue Charles Floquet - 2	3,17	1,46	1,63	12
11	Rue du Parc sud	1,69	0,91	0,88	-3
12	Avenue Charles Floquet - 3	3,62	1,64	1,91	16
13	Rue de la Victoire	0,98	0,69	0,76	11
14	Avenue Charles Floquet - 4	4,15	1,98	2,25	13
15	Rue Iqbal Masih sud	2,10	0,95	0,99	4
16	Rue Iqbal Masih nord	2,23	1,01	1,05	4
17	Rue Pégoud	1,42	0,69	0,75	9
18	Avenue Charles Floquet - 5	3,62	1,65	1,52	-8
19	Rue JP Timbaud	0,64	0,29	0,39	33
20	RD41 - section 3	2,54	1,26	1,37	9
21	RD41 - section 4	3,31	1,49	1,35	-9
22	Autoroute A1 - section 1	69,01	32,83	33,03	1
23	Autoroute A1 - section 2	67,00	31,29	31,71	1
24	Avenue Diderot	1,70	0,80	0,85	6
25	Nouveau brin 1	0,00	0,03	0,07	178
26	Nouveau brin 2	0,00	0,00	0,08	+∞
27	Nouveau brin 3	0,00	0,00	0,24	+∞
28	Nouveau brin 4	0,00	0,00	0,36	+∞
29	Nouveau brin 5	0,00	0,00	0,24	+∞
30	Nouveau brin 6	0,00	0,00	0,12	+∞
31	Nouveau brin 7	0,00	0,00	0,19	+ ∞
32	Nouveau brin 8	0,00	0,00	0,08	+∞
33	Nouveau brin 9	0,00	0,00	0,08	+ ∞

Tableau 16: récapitulatif des émissions de NOx par brins routiers

A l'horizon 2035, les émissions les plus importantes de la zone sont observées sur l'autoroute A1 et dans une moindre mesure sur la route nationale RN2. Il s'agit cependant de brins peu impactés par le projet (variations inférieures à 10 %).

L'avenue Charles Floquet qui constitue l'axe central desservant les zones du projet présente une variation non significative des émissions entre les scénarios avec et sans projet à l'est (axe n°1), une augmentation au centre (axes n°10, 12 et 14) et une faible diminution à l'est (axe n°18).

Les axes intermédiaires qui relient l'avenue Charles Floquet à la RD41 présentent des diminutions d'émissions à l'ouest entre -20 et -88 % (rue du Capitaine Dreyfus, rue du Parc sud) mais des augmentations à l'est comprises entre +4 et +33 % (rue Iqbal Masih, rue de la Victoire, rue JP Timbaud).

Enfin, il est à noter une augmentation significative des émissions sur l'ensemble des axes nouvellement créés à l'intérieur de la ZAC ($n^{\circ}25$ à 32). En revanche les émissions de NO_X sur ces brins restent parmi les plus faibles de la zone de d'étude (inférieures à 0,5 g/j/m).

Par ailleurs, les émissions de NO_X sur l'ensemble des axes considérés restent beaucoup plus faibles à l'horizon futur (2035) avec projet qu'à l'état actuel (2024), avec une diminution moyenne sur la zone d'étude d'environ -50 % entre les deux horizons.

IV.3 Monétarisation des coûts

IV.3.1) Coûts collectifs liés à la pollution atmosphérique

L'analyse des coûts collectifs des pollutions et nuisances induits pour la collectivité dans les études d'impact a été introduite via le décret n°2003-767 du 1^{er} août 2003. La commission présidée par Emile Quinet a réévalué les valeurs utilisées pour calculer ces coûts en 2013. Celles-ci sont décrites dans le rapport du Commissariat Général à la Stratégie et à la Prospective (CGSP) intitulé «Évaluation socioéconomique des investissements publiques » de septembre 2013.

Le rapport évalue le coût des impacts sanitaires des principaux polluants émis par la circulation routière $(PM_{2.5},\ NO_X,\ COVNM\ et\ SO_2)$ pour l'année de référence 2010. Ce coût varie selon la catégorie de véhicules (véhicules particuliers ou poids lourds) ainsi que selon la densité urbaine. Le tableau 17 présente les valeurs tutélaires fixées selon ces paramètres :

Typologie	Interurbain	Urbain diffus	Urbain	Urbain dense	Urbain très dense
Plage de densité (hab./km²)	0-37	37-450	450-1500	1500-4500	>4500
Coût VP (€/100 Véh.km)	0,9	1,0	1,3	3,1	11,1
Coût PL (€/100 Véh.km)	6,4	9,4	17,7	37,0	186,6

Tableau 17 : valeurs tutélaires du coût de la pollution liée au trafic routier

La densité de population moyenne dans la zone d'étude est supérieure à 4 500 habitants/km² (données carroyées Insee 2019). Les valeurs tutélaires sont donc sélectionnées sur la gamme « urbain très dense ».

Le rapport de la commission Quinet précise qu'il est nécessaire de « faire évoluer les valeurs de la pollution atmosphérique en tenant compte, d'une part, de l'évolution du PIB par tête et d'autre part, de l'évolution du parc circulant et de l'évolution des émissions individuelles ». Les hypothèses d'évolution considérées pour le calcul des coûts collectifs sont décrites ci-dessous :

- o Le PIB par habitant n'est connu qu'à échéance de l'année civile. La dernière donnée disponible est celle de l'année 2022. Entre 2010 et 2022, la moyenne annuelle de l'évolution du PIB par habitant est de 0,68 % en France selon les chiffres de la Banque Mondiale⁸. Ce chiffre est utilisé pour estimer l'évolution annuelle du PIB jusqu'à l'horizon de mise en service du projet.
- L'évolution du parc circulant entre 2010 et 2022 est de 0,87 % en moyenne annuelle d'après les statistiques du ministère de la Transition écologique et solidaire⁹. L'évolution du trafic entre le scénario actuel et le scénario futur est prise d'après les données de l'étude de circulation.
- o L'évolution des émissions polluantes des véhicules depuis 2010 est prise à -6 % en moyenne annuelle conformément à la valeur proposée par le rapport Quinet. L'évolution entre le scénario actuel et les scénarios futurs est reprise des calculs effectués dans le paragraphe IV.2.1)¹⁰.

Le tableau ci-dessous reprend l'ensemble des valeurs considérées pour l'évolution des valeurs tutélaires :

	Actuel		Futur sar	ns projet	Futur avec projet		
	Brut	Evolution / 2010	Brut	Evolution / 2010	Brut	Evolution / 2010	
PIB par habitant (€)	35 460	10,2%	38 193	18,7%	38 193	18,7%	
TMJA total du projet (véh/j)	545 759	12,1%	555 467	14,1%	586 380	21,0%	
Emissions PM _{2.5} + NO _X + COVNM + SO ₂ (kg/j)	151,3	-58,0%	74,6	-79,3%	76,1	-78,9%	
Evolution globale		-48,2%		-72,0%		-69,7%	

Tableau 18: facteurs d'évolution des valeurs tutélaires

Le tableau ci-dessous reprend les valeurs tutélaires retenues avant et après ajustement des coûts à l'horizon de la mise en service du projet :

Scénario	2010	Actuel	Futur sans projet	Futur avec projet
Evolution globale depuis 2010	0,0%	-48,2%	-72,0%	-69,7%
Valeur tutélaire VP (€/100 véh.km)	11,1	5,8	3,1	3,4
Valeur tutélaire PL (€/100 véh.km)	186,6	96,7	52,2	56,6

Tableau 19 : valeurs tutélaires retenues pour le coût de la pollution

A partir des données de circulation et de la longueur de chacun des brins routiers impactés par le projet, la quantité de trafic est exprimée en véhicules.km pour chaque scénario. Les résultats sont multipliés par les valeurs tutélaires pour calculer les coûts collectifs.

Scénario	Actuel	Futur sans projet	Futur avec projet
Trafic VP (véh.km) / jour	359 375	365 397	377 346
Trafic PL (véh.km) / jour	20 279	20 795	20 249
Coût VP (€/jour)	20 670	11 356	12710
Coût PL (€/jour)	19 608	10 865	11 466
Coût total (€/jour)	40 278	22 221	24 176

Tableau 20 : coûts collectifs liés à la pollution atmosphérique

Les coûts collectifs liés à la pollution atmosphérique **augmentent d'environ 8,8** % avec la mise en place du projet, passant de 22 221 €/jour à 24 176 €/jour.

IV.3.2) Coûts collectifs liés à l'effet de serre

La valeur tutélaire du carbone est fixée par le rapport de la commission présidée par Alain Quinet publié en 2019¹¹. Ce rapport prévoit une évolution linéaire de la tonne de CO_2 de $32 \in$ en 2010 jusqu'à 250 \in en 2030, correspondant à une évolution annuelle d'environ 13,6 %. Il prévoit également une évolution linéaire de la tonne de CO_2 de $500 \in$ en 2040 à 775 \in en 2050, correspondant à une évolution annuelle d'environ 4,5 %. Le tableau suivant présente les coûts correspondant à chaque scénario du projet.

	Actuel	Futur sans projet	Futur avec projet
Coût de la tonne de CO₂ (€/t)	185	375	375
CO ₂ émis (t/jour)	71	70	71
Coût CO₂ émis (€/jour)	13 022	26 130	26 676

Tableau 21 : coûts collectifs liés à l'effet de serre

Les coûts collectifs liés à l'effet de serre augmentent d'environ 2,1 % avec la mise en place du projet.

Rincent Air Etude air et santé Page 21 sur 41

⁸ La Banque Mondiale. Croissance du PIB par habitant entre 2010 et 2019.

⁹ Service de la donnée et des études statistiques. Développement Durable. Données sur le parc des véhicules au 1 er janvier 2020.

¹⁰ A l'exception des particules PM_{2.5} qui ne figurent pas dans le bilan des émissions car cette fraction granulométrique est déjà comprise dans les PM₁₀. Les données pour les PM_{2.5} sont reprises des résultats des calculs d'émissions par le logiciel TREFIC™.

¹¹ La valeur de l'action pour le climat. Une valeur tutélaire du carbone pour évaluer les investissements et les politiques publiques Rapport de la commission présidée par Alain Quinet. Fév. 2019. Centre d'analyse stratégique. La Documentation française.

V. EFFETS DU PROJET: MODELISATION DES CONCENTRATIONS

V.1 Méthodologie

V.1.1) Modèle

La modélisation des concentrations est réalisée à l'aide du logiciel **AMDS-Roads** (Atmospheric Dispersion Modelling System) version 5.0.1.3. Ce modèle de dispersion atmosphérique 2D de type gaussien de seconde génération est développé par le CERC (Cambridge Environmental Research Consultants). Il intègre des modules de traitement des données météorologiques et topographiques, ainsi que de prise en compte des rues « canyon » et des murs « antibruit » selon les cas d'étude.

Les concentrations en polluants sont modélisées sur des mailles de calcul de 10 mètres à partir des sources d'émissions linéiques issues du trafic routier qui sont ensuite additionnées aux concentrations de fond dans la zone d'étude pour évaluer l'exposition des populations. Les données d'entrée utilisées sont détaillées ci-après.

V.1.2) Emissions polluantes

Les émissions de polluants atmosphériques liées au trafic routier sont issues du logiciel TREFIC™ dont les résultats sont présentés dans le chapitre précédent. Les émissions calculées pour les NOx sont converties en NO₂ selon la formule de Middleton :

$$[NO_2] = 2,166 - [NO_X](1,236 - 3,348 \times log ([NO_X]) + 1,933 \times log ([NO_X])^2 - 0,326 \times log ([NO_X])^3$$

$$[NO] = [NO_X] - [NO_2] \qquad \text{où } [NO], [NO_2] \text{ et } [NO_X] \text{ sont les concentrations en } ppb$$

V.1.3) <u>Météorologie</u>

La dispersion est modélisée avec les données horaires de vent sur 1 an (2023) acquises auprès de la station Météo France du Bourget (93). La figure 19 présente la rose des vents des données utilisées. La rose des vents est majoritairement caractérisée par des secteurs sud-ouest et nord.

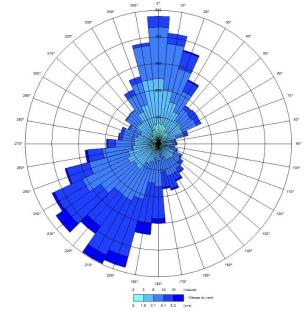


Figure 19 : rose de vents utilisée pour la modélisation

V.1.4) Topographie

La topographie est issue du modèle numérique de terrain (MNT) RGE ALTI® produit par l'IGN avec une résolution de 5 mètres. Ce dernier est mis à jour à partir des relevés obtenus par LIDAR aéroporté ou par corrélation d'images aériennes. La figure 20 présente une vue 2D de la topographie du domaine d'étude indiquant un relief peu marqué ne laissant pas envisager d'effets significatifs sur la dispersion des polluants.

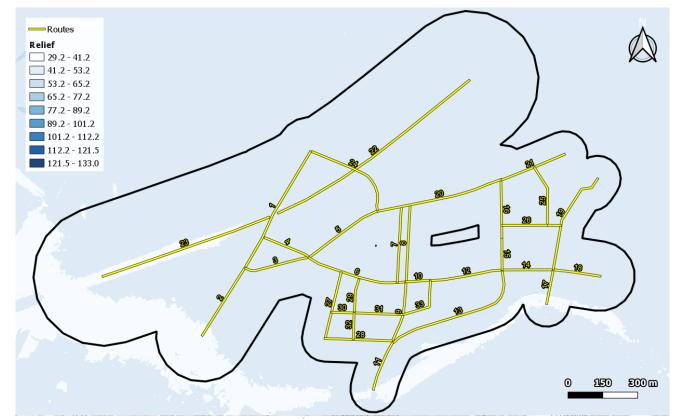


Figure 20 : représentation du relief en vue 2D

V.1.5) Pollution de fond

Les valeurs utilisées pour caractériser les concentrations de fond sont prises d'après les sources suivantes :

Polluant	Source
NO ₂	Bruit de fond utilisé par Rincent Air lors de l'étude précédente menée en 2021, rationnalisée par rapport à l'évolution 2021-2024 (-17 %) de la station Airparif la plus proche (Bobigny)
PM ₁₀ PM _{2.5} Benzène	Moyenne des concentrations annuelles des trois dernières années disponibles (2021-2023) de la station Airparif la plus proche présentant ce type de données (station « Bobigny » pour les PM_{10} et $PM_{2.5}$, station « Gennevilliers » pour le benzène)
2 ETM 8 HAP	Moyenne annuelle de la dernière année disponible 2023) des stations Airparif les plus proches présentant ce type de données : - Paris 1er Les Halles : BaP, BaA, BfF, BghiP, BjF, BkF, DB, IP - Paris 18ème : As, Ni
Autres ETM Autres HAP 1,3 butadiène	Médiane des concentrations de fond en France d'après la base de données Ineris ¹² NB : la valeur pour le chrome VI est estimée à partir des concentrations de fond en chrome total d'après le ratio maximal déterminé par les études bibliographiques disponibles ¹³

Tableau 22 : sources utilisées pour le bruit de fond

Le tableau ci-dessous reprend l'ensemble des valeurs utilisées pour caractériser le bruit de fond :

Polluant	[C] µg/m ³	Polluant	[C] µg/m ³	Polluant	[C] µg/m ³
NO ₂	26,6	Anthracène	0,0003	Dibenzo(a,h)anthracène	0,00002
Particules PM ₁₀	17,5	Benzo(a)anthracène	0,00003	Indéno(1,2,3-cd)pyrène	0,00008
Particules PM _{2,5}	10,2	Benzo(a)pyrène	0,00005	Acénaphtène	0,00030
Benzène	0,6	Benzo(b)fluoranthène	0,00011	Acénaphtylène	0,00030
1,3-butadiène	0,2	Benzo(k)fluoranthène	0,00004	Fluorène	0,00150
Arsenic	0,00020	Benzo(j)fluoranthène	0,0004	Fluoranthène	0,00180
Chrome VI	0,0000525	Benzo(ghi) pérylène	0,00009	Phénanthrène	0,00510
Nickel	0,00069	Chrysène	0,00040	Pyrène	0,00130

Tableau 23 : concentrations de fond utilisées

Rincent Air Etude air et santé Page 22 sur 41

¹² INERIS – Rapport d'étude n°DRC-08-94882-15772A – 10/04/2009 : Inventaire des données de bruit de fond dans l'air ambiant, l'air intérieur, les eaux de surface et les produits destinés à l'alimentation humaine en France.

¹³ Tirez et al. (2011) : ratios CrVI/Cr de 2,6 à 3,5 % mesuré à proximité et à distance de sources anthropogéniques en région flamande, Belgique.

V.2 Résultats de la modélisation

V.2.1) Cartographies des concentrations

Les résultats sont présentés pour le NO2, polluant le plus représentatif de la pollution liée au trafic routier :

Figure 21 : concentration moyenne journalière en NO₂ – scénario actuel

Figure 22: concentration moyenne journalière en NO2 – scénario futur sans projet

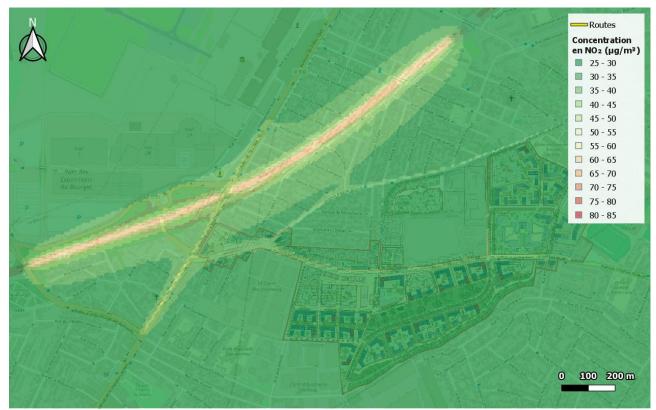


Figure 23: concentration future moyenne journalière en NO2 – scénario futur avec projet

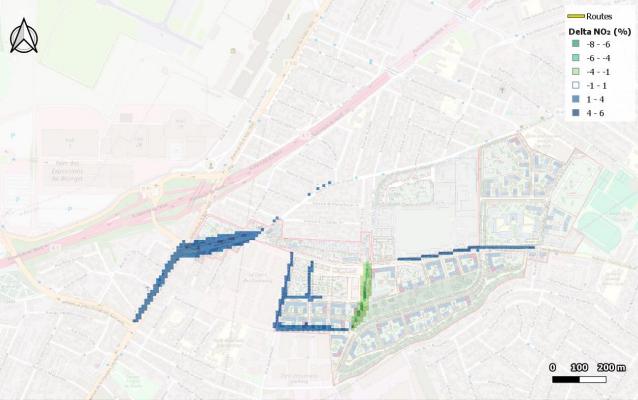


Figure 24: variation des concentrations en NO2 entre les scénarios futurs avec et sans projet

En moyenne dans la bande d'étude, le projet entraine une augmentation de 0.2% des concentrations en NO_2 dans l'air ambiant. Les variations de concentrations les plus importantes (entre +4 et +6%) entraînées par le projet sont observées d'une part au niveau des axes existants qui subissent les plus fortes augmentations de trafic (section sud de la RN2, section ouest de la RD41, avenue Charles Floquet), et d'autre part au niveau des axes nouvellement créés dans la ZAC. Il est à noter une diminution significative des concentrations allant jusqu'à -8% au niveau de la rue du Parc. Par rapport à l'état actuel, les concentrations en NO_2 diminuent en moyenne de 7.2% pour le scénario futur avec projet.

V.2.2) Indice IPP

Pour évaluer l'impact d'un projet sur les populations, le Cerema a développé une méthode qui consiste à croiser les concentrations modélisées et le nombre d'habitants sur la bande d'étude. Le produit « population x concentration » fournit ainsi un indicateur appelé IPP (indice pollution population) qui représente de manière synthétique l'exposition potentielle des personnes à la pollution atmosphérique. Cet indice est calculé pour le NO₂, conformément à la note technique du 22 février 2019, selon la formule suivante :

$$IPP = \sum_{i} IPP_{i} = \sum_{i} C_{i} \times P_{i}$$

Où: IPPi est l'IPP à l'échelle d'une maille i ou d'un bâtiment i Ci est la concentration en NO₂ pour la maille élémentaire i ou pour le bâtiment i Pi est la population présente sur la maille élémentaire i ou dans le bâtiment i

L'INSEE met à disposition les données de population issues du dernier recensement (2019) à l'échelle de carreaux de 200 m de côté. Cette population est attribuée de façon homogène à chaque bâtiment présent dans la maille d'après la BD TOPO® IGN (2020). La population pour le scénario actuel et le scénario futur sans projet est considérée comme identique. Pour le scénario futur avec projet, la population est complétée par le nombre d'habitants supplémentaires au droit du projet.

Le projet est constitué de nombreux ilots comprenant différents types d'habitation, allant de la maison individuelle au logement collectif. Au total, il est attendu environ 7 340 logements pour une estimation de 20 552 habitants, d'après le ratio de 2,8 hab./logement de la ville du Blanc-Mesnil (source : Insee 2023). Cette population supplémentaire est attribuée de façon homogène dans chaque bâtiment à usage de logement prévus par le projet d'après le plan de masse fourni.

Le tableau suivant présente les valeurs de l'indice pollution/population, qui correspond à la somme des IPP sur l'ensemble du domaine d'étude :

	Actuel	Futur sans projet	Futur avec projet	Δ avec/sans projet
IPP NO ₂	494 621	464 477	1 002 929	116%

Tableau 24: IPP selon les scénarios considérés

Le projet entraine une **augmentation de l'IPP dans la bande d'étude d'environ 116 %**. Etant donné la faible variation des concentrations entre les scénarios futurs avec et sans projet, cette augmentation peut être imputée très majoritairement à celle de la population (création de nombreux logements sur des parcelles actuellement réservées à l'activité industrielle).

Pour illustrer la variation de l'IPP global, la figure suivante illustre le nombre d'habitants exposés par classe de concentration de NO₂ selon les scénarios considérés. Les classes de concentrations présentées correspondent aux centiles de 0 % (concentration minimale sur la zone d'étude) à 100 % (concentration maximale sur la zone d'étude) tous les 20 %.

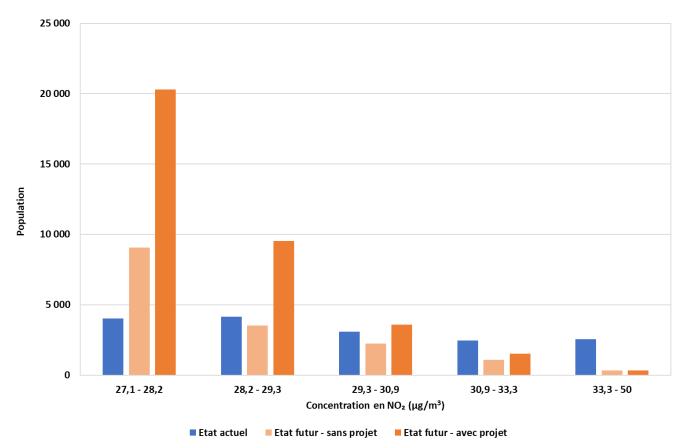


Figure 25: histogrammes de distribution concentration/population pour le NO₂

Par rapport à la situation actuelle, les scénarios futurs sans projet et avec projet sont associés à une diminution du nombre de personnes exposées aux concentrations les plus fortes dans la zone d'étude (comprises entre 31 et 50 µg/m³ à l'état actuel).

Globalement, le projet entraı̂ne une augmentation significative du nombre d'habitants exposés aux classes de concentrations les plus faibles (comprises entre 27 et 29 μ g/m³) et une légère augmentation sur les autres classes.

A l'état futur avec projet, les populations restent exposées à des concentrations en NO₂ inférieures à la valeur réglementaire de 40 μg/m³ en moyenne annuelle (concentration maximale de 39,5 μg/m³).

VI.EFFETS DU PROJET : EVALUATION DES RISQUES SANITAIRES

VI.1 Méthodologie

VI.1.1) Sites étudiés

Pour une étude de niveau II ou supérieur, le risque sanitaire de l'exposition par inhalation aux polluants atmosphériques est évalué au droit des sites vulnérables présents dans la bande d'étude. Les sites Identifiés pour l'exposition par inhalation sont les suivants :

- 1) Ecole maternelle Saint-Exupéry
- 2) Ecole maternelle France Bloch Sérazin
- 3) Futur groupe scolaire
- 4) Ecole élémentaire Jules Guesde
- 5) Ecole maternelle Jules Guesde

- 6) Collège Jacqueline de Romilly
- 7) Lycée professionnel Aristide Briand
- 8) Ecole élémentaire Joliot-Curie
- 9) Future résidence senior
- 10) Future crèche

La figure suivante indique la localisation de ces sites :

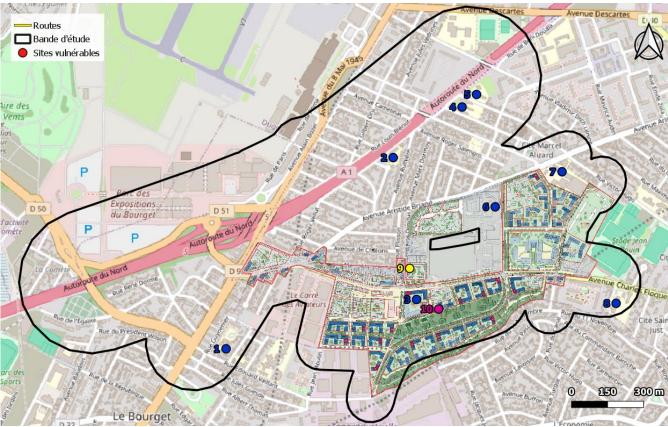


Figure 26 : localisation des sites vulnérables dans la bande d'étude

VI.1.2) <u>Etapes de l'évaluation des risques sanitaires</u>

Conformément aux préconisations de l'Institut National de Veille des risques Sanitaires (InVS) l'évaluation des risques sanitaires comprend quatre étapes :

- o Identification des dangers par sélection des substances pouvant avoir un impact sur la santé;
- Relation dose-réponse par recensement des Valeurs Toxicologiques de Référence (VTR);
- o Estimation des expositions selon la voie, le temps et la concentration afin de calculer la concentration moyenne inhalée (CI);
- o Caractérisation des risques par calcul d'indicateurs à comparer aux valeurs seuils afin de déterminer l'acceptabilité ou non du risque auquel la population est susceptible d'être soumise.

VI.1.3) Identification des dangers

La relation entre la dose d'exposition à la pollution et le risque sanitaire est établie à partir de valeurs toxicologiques de référence (VTR). Trois types de valeurs sont prises en compte :

- o Pour les substances avec un **effet à seuil** (AS) : une VTR à la concentration en dessous de laquelle la survenue d'un effet n'est pas attendue (quotient de danger : QD).
- o Pour les substances avec un **effet sans seuil** (SS) : une VTR désignant la probabilité supplémentaire de survenue d'un effet par rapport à un individu non exposé (excès de risque unitaire : ERI).
- o Pour les substances ne disposant de pas de VTR : la **valeur guide** (réglementaire ou sanitaire) correspondant à différentes durées d'exposition (cf. note méthodologique du 22/02/2019).

Le tableau ci-dessous présente le type de valeurs disponibles pour les polluants émis par le trafic routier selon la note technique du Cerema du 22 février 2019 :

Type d'exposition	Inhalation					
Type de valeur	VTR effet à seuil	VTR effet sans seuil	Valeur guide			
Dioxyde d'azote			✓			
PM ₁₀		✓				
PM _{2.5}		✓				
Benzène	✓	✓				
1,3 butadiène	✓	✓				
Chrome VI	✓	✓				
Nickel	✓	✓				
Arsenic	✓	✓				
Naphtalène	✓	✓				
Acénaphtène		✓				
Acénaphtylène		✓				
Anthracène		✓				
Fluorène		✓				
Fluoranthène		✓				
Phénanthrène		✓				
Pyrène		✓				
Benzo(a)pyrène	✓	✓				
Indéno(1,2,3-cd)pyrène		✓				
Benzo(a)anthracène		✓				
Benzo(b)fluoranthène		✓				
Benzo(k)fluoranthène		✓				
Benzo(ghi)pérylène		✓				
Chrysène		✓				
Dibenzo(a,h)anthracène		✓				

Tableau 25: recensement des valeurs disponibles

Les valeurs disponibles sont recherchées parmi les plus récentes dans les bases de données toxicologiques de l'INERIS, de l'agence nationale de sécurité sanitaire (ANSES) ainsi que des principaux organismes de référence internationaux. Les valeurs retenues sont présentées avant l'estimation des expositions et la caractérisation des risques pour chaque type de substances (sans seuil, à seuil et sans VTR).

VI.2 Caractérisation du risque par inhalation – substances à effet de seuil

VI.2.1) Principe

L'exposition par inhalation aux substances à effet de seuil est estimée à partir de la concentration moyenne inhalée selon la formule suivante : CI = Ci x ti x F

Avec:

- o Ci la concentration de polluant dans l'air inhalé correspondant à la concentration modélisée au droit de chaque site
- o tila fraction du temps d'exposition pendant une journée dépendant du scénario d'exposition
- o F la fréquence d'exposition à la concentration C_i en nombre de jours par an dépendant du scénario d'exposition

En fonction du type de lieux, les paramètres d'exposition suivants sont considérés :



Tableau 26: paramètres d'exposition

Le quotient de danger (QD) peut ainsi être calculé d'après le ratio entre la concentration d'exposition et la valeur toxicologique de référence, soit : QD = CI / VTR

Les VTR pour les substances à effet de seuil pour l'exposition par inhalation sont présentées dans le tableau suivant :

Substance	Valeur (µg/m³)	Organe cible	Source (date)
1,3-butadiène	2,00E+00	Reproducteur	ANSES (2020)
Benzène	1,00E+01	Immunitaire	ANSES (2008)
Chrome VI	3,00E-02	Respiratoire	OMS (2013)
Nickel	9,00E-02	Respiratoire	ATSDR (2005)
Naphtalène	3,70E-01	Respiratoire	ANSES (2013)
Arsenic	1,50E-02	Cerveau	OEHHA (2008)
Benzo(a)pyrène	2.00E-03	Fœtus	US-EPA (2017)

Tableau 27 : VTR à effets de seuil pour l'exposition par inhalation

Le risque sanitaire par exposition aux substances à effet de seuil est établi à partir du dépassement de la valeur limite de 1 : **QD > 1**

VI.2.2) Résultats

Le tableau ci-dessous présente les QD regroupés par organes cibles au droit de chaque site vulnérable considéré :

Site vu	Site vulnérable		Ecole maternelle Saint-Exupéry		Ecole maternelle F Bloch Sérazin		Futur groupe scolaire		Ecole élémentaire Jules Guesde	
Organe cible	Scénario	Sans projet	Avec projet	Sans projet	Avec projet	Sans projet	Avec projet	Sans projet	Avec projet	
Immunitaire	Benzène	1,39E-02	1,39E-02	1,40E-02	1,40E-02	1,39E-02	1,39E-02	1,39E-02	1,39E-02	
Reproducteur	1,3-butadiène	2,33E-02	2,33E-02	2,37E-02	2,37E-02	2,33E-02	2,32E-02	2,35E-02	2,35E-02	
Cerveau	Arsenic	3,08E-03	3,08E-03	3,09E-03	3,09E-03	3,08E-03	3,08E-03	3,08E-03	3,08E-03	
Fœtus	B(a)P	6,49E-03	6,53E-03	1,03E-02	1,04E-02	6,47E-03	6,48E-03	8,80E-03	8,83E-03	
	Chrome VI	4,36E-04	4,38E-04	5,95E-04	5,96E-04	4,36E-04	4,34E-04	5,32E-04	5,32E-04	
Dospiratoira	Nickel	1,77E-03	1,77E-03	1,78E-03	1,78E-03	1,77E-03	1,77E-03	1,78E-03	1,78E-03	
Respiratoire	Naphtalène	4,20E-05	4,37E-05	2,35E-04	2,37E-04	4,16E-05	4,34E-05	1,59E-04	1,60E-04	
	Total	2,25E-03	2,25E-03	2,61E-03	2,61E-03	2,25E-03	2,25E-03	2,47E-03	2,47E-03	
Delto	ı projet	0,0	9 %	0,1	0%	-0,1	6%	0,0	5%	

Site vulnérable		Ecole maternelle Jules Guesde		Collège Jaqueline de Romilly		Lycée pro. Aristide Briand		Ecole élémentaire Joliot-Curie	
Organe cible	Scénario	Sans projet	Avec projet	Sans projet	Avec projet	Sans projet	Avec projet	Sans projet	Avec projet
Immunitaire	Benzène	1,39E-02	1,39E-02	1,39E-02	1,39E-02	1,39E-02	1,39E-02	1,39E-02	1,39E-02
Reproducteur	1,3-butadiène	2,33E-02	2,33E-02	2,32E-02	2,32E-02	2,32E-02	2,32E-02	2,31E-02	2,31E-02
Cerveau	Arsenic	3,08E-03	3,08E-03	3,08E-03	3,08E-03	3,08E-03	3,08E-03	3,08E-03	3,08E-03
Fœtus	B(a)P	7,83E-03	7,85E-03	6,37E-03	6,39E-03	6,13E-03	6,13E-03	5,90E-03	5,91E-03
	Chrome VI	4,91E-04	4,92E-04	4,30E-04	4,31E-04	4,20E-04	4,20E-04	4,10E-04	4,10E-04
Dospiratoiro	Nickel	1,77E-03	1,77E-03	1,77E-03	1,77E-03	1,77E-03	1,77E-03	1,77E-03	1,77E-03
Respiratoire	Naphtalène	1,09E-04	1,10E-04	3,68E-05	3,86E-05	2,40E-05	2,43E-05	1,21E-05	1,23E-05
	Total	2,37E-03	2,38E-03	2,24E-03	2,24E-03	2,21E-03	2,21E-03	2,19E-03	2,19E-03
Delto	projet	0,0	4%	0,0	3%	-0,0	03%	0,0	0%

Site vulnérable		Futur E	HPAD	Future crèche		
Organe cible	Scénario	Sans projet	Avec projet	Sans projet	Avec projet	
Immunitaire	Benzène	6,01E-02	6,01E-02	1,39E-02	1,39E-02	
Reproducteur	1,3-butadiène	1,01E-01	1,01E-01	2,32E-02	2,32E-02	
Cerveau	Arsenic	1,33E-02	1,33E-02	3,08E-03	3,08E-03	
Fœtus	B(a)P	2,83E-02	2,83E-02	6,27E-03	6,32E-03	
	Chrome VI	1,90E-03	1,89E-03	4,27E-04	4,28E-04	
Pasnirataira	Nickel	7,67E-03	7,67E-03	1,77E-03	1,77E-03	
Respiratoire	Naphtalène	1,93E-04	1,98E-04	3,15E-05	3,47E-05	
	Total	9,76E-03	9,77E-03	2,23E-03	2,23E-03	
Delta projet		-0,0	5%	0,01%		

Tableau 28: QD chronique pour l'exposition par inhalation

Le projet entraîne une variation de la somme des QD de -0,16 à +0,10 % selon les sites considérés. Aucun quotient de danger ne dépasse la valeur de 1, indiquant **l'absence de risque sanitaire lié aux substances à effets de seuil** sur tous les sites vulnérables exposés.

Rincent Air Etude air et santé Page 26 sur 41

¹⁴ OCDE (2019). Panorama de la santé 2019 : Les indicateurs de l'OCDE, Éditions OCDE, Paris.

¹⁵ Institut de Veille Sanitaire - Description du budget espace-temps et estimation de l'exposition de la population française dans son logement.

VI.3 Caractérisation du risque par inhalation – substances sans effet de seuil

VI.3.1) Principe

L'exposition par inhalation aux substances sans effet de seuil est estimée à partir de la concentration moyenne inhalée (CI) selon la formule suivante : CI = Ci x ti x F x T / Tm

Avec:

- o Ci la concentration de polluant dans l'air inhalé correspondant à la concentration modélisée au droit de chaque site vulnérable
- o ti la fraction du temps d'exposition pendant une journée dépendant du scénario d'exposition
- o F la fréquence d'exposition à la concentration C_i en nombre de jours par an dépendant du scénario d'exposition
- o T la durée d'exposition à la concentration C_i (année) dépendant du type d'effet
- T_m la durée sur laquelle l'exposition est moyennée (années) dépendant du type d'effet, prise par convention égale à 70 ans

En fonction du type de lieux, les paramètres d'exposition suivants sont considérés :

Type d'établissement	ti	F	T	T _m
Crèche ou lycée			2	
Maternelle	0 2222 (9b /iour)	0,6923 (16 semaines de vacances)	3	
Elémentaire	0,3333 (8h/jour)	0,6923 (16 semaines de vacances)	5	
Collège			4	70
Etablissement personnes âgées	1 (24b/iour)	1	316	
Etablissement de santé	1 (24h/jour)	0,0153 (séjour moyen de 5,6 par an) ¹⁷	70	
Résidentiel	0,67 (16h/jour) ¹⁸	1	16,719	

Tableau 29: paramètres d'exposition

L'excès de risque individuel (ERI), correspondant à la probabilité de survenue d'une pathologie pour les individus exposés, peut ainsi être calculé d'après le produit de la concentration d'exposition et de la valeur toxicologique, soit : **ERI = CI x VTR**

Les valeurs retenues pour les substances sans effet de seuil sont présentées dans le tableau suivant :

Substance	Valeur (µg/m³)-1	Source	Substance	Valeur (µg/m³)-1	Source
Particules PM10	2.20E-02 ²⁰	ANSES (2023)	Fluoranthène	6.00E-07	INERIS (2018)
Particules PM _{2.5}	1.28E-02	ANSES (2023)	Phénanthrène		INERIS (2018)
				6,00E-07	` '
Benzène	2,60E-05	ANSES (2014)	Pyrène	6,00E-07	INERIS (2018)
1,3 butadiène	7,50E-07	ANSES (2023)	Benzo(a)pyrène	6,00E-04	INERIS (2018)
Chrome VI	4,00E-02	IPCS (2013)	Indéno(1,2,3-cd)pyrène	1,20E-03	INERIS (2018)
Nickel	1,70E-04	TCEQ (2011)	Benzo(a)anthracène	6,00E-05	INERIS (2018)
Arsenic	1,50E-04	TCEQ (2012)	Benzo(b)fluoranthène	6,00E-05	INERIS (2018)
Naphtalène	5,60E-06	INERIS (2018)	Benzo(k)fluoranthène	6,00E-05	INERIS (2018)
Acénaphtène	6,00E-07	INERIS (2018)	Benzo(ghi)pérylène	6,00E-06	INERIS (2018)
Acénaphtylène	6,00E-07	INERIS (2018)	Chrysène	6,00E-06	INERIS (2018)
Anthracène	6,00E-06	INERIS (2018)	Dibenzo(a,h)anthracène	6,00E-04	INERIS (2018)
Fluorène	6,00E-07	INERIS (2018)			

Tableau 30: VTR sans effet de seuil pour l'exposition par inhalation

Le risque sanitaire par exposition aux substances sans effet de seuil est établi à partir du dépassement de la valeur limite de 1.10-5 : **ERI > 1.10**-5 pour la somme de l'ensemble des composés.

Pour les particules PM_{10} et $PM_{2.5}$, Il n'existe pas à ce jour de consensus ou recommandations sur des niveaux acceptables de risque sanitaire lié à l'exposition aux particules de l'air ambiant²¹. Dans ce cadre l'acceptabilité est définie à partir de l'ERI correspondant aux valeurs guides OMS (15 μ g/m³ pour les PM_{10} et 5 μ g/m³ pour les $PM_{2.5}$), soit **ERI > 3,9.10**-1 dans le cadre de cette étude.

VI.3.2) Résultats

Les tableaux ci-dessous présentent les ERI pour chaque polluant ainsi que leur somme en fonction des niveaux d'acceptabilité du risque :

Site vulnérable	Ecole ma Saint-E		Ecole mo		Fut Groupe		Ecole élé Jules G	
Scénario	Sans projet	Avec projet	Sans projet	Avec projet	Sans projet	Avec projet	Sans projet	Avec projet
Benzène	1,55E-07	1,55E-07	1,56E-07	1,56E-07	2,58E-07	2,58E-07	2,59E-07	2,59E-07
1,3 butadiène	1,50E-09	1,50E-09	1,52E-09	1,52E-09	2,50E-09	2,49E-09	2,51E-09	2,51E-09
Chrome VI	2,24E-08	2,25E-08	3,06E-08	3,07E-08	3,74E-08	3,72E-08	4,56E-08	4,56E-08
Nickel	1,16E-09	1,16E-09	1,17E-09	1,17E-09	1,94E-09	1,94E-09	1,94E-09	1,94E-09
Arsenic	2,97E-10	2,97E-10	2,98E-10	2,98E-10	4,95E-10	4,95E-10	4,96E-10	4,96E-10
Naphtalène	3,73E-10	3,88E-10	2,08E-09	2,10E-09	6,15E-10	6,42E-10	2,35E-09	2,37E-09
Acénaphtène	2,16E-12	2,18E-12	4,15E-12	4,16E-12	3,59E-12	3,62E-12	5,60E-12	5,62E-12
Acénaphtylène	2,07E-12	2,08E-12	3,55E-12	3,56E-12	3,44E-12	3,46E-12	4,94E-12	4,95E-12
Anthracène	1,94E-11	1,94E-11	2,76E-11	2,76E-11	3,23E-11	3,24E-11	4,06E-11	4,06E-11
Fluorène	9,03E-12	9,02E-12	9,68E-12	9,64E-12	1,50E-11	1,50E-11	1,57E-11	1,57E-11
Fluoranthène	1,13E-11	1,14E-11	1,48E-11	1,48E-11	1,89E-11	1,89E-11	2,23E-11	2,24E-11
Phénanthrène	3,18E-11	3,18E-11	3,95E-11	3,95E-11	5,29E-11	5,30E-11	6,07E-11	6,08E-11
Pyrène	8,21E-12	8,23E-12	1,08E-11	1,08E-11	1,37E-11	1,37E-11	1,63E-11	1,63E-11
Benzo(a)pyrène	3,34E-10	3,36E-10	5,30E-10	5,32E-10	5,54E-10	5,55E-10	7,55E-10	7,57E-10
Indéno(1,2,3-cd)pyrène	1,04E-09	1,04E-09	1,52E-09	1,52E-09	1,73E-09	1,73E-09	2,22E-09	2,22E-09
Benzo(a)anthracène	2,41E-11	2,44E-11	5,73E-11	5,76E-11	3,98E-11	4,00E-11	7,37E-11	7,40E-11
Benzo(b)fluoranthène	7,12E-11	7,14E-11	1,02E-10	1,02E-10	1,18E-10	1,18E-10	1,50E-10	1,50E-10
Benzo(k)fluoranthène	2,85E-11	2,86E-11	5,34E-11	5,31E-11	4,72E-11	4,72E-11	7,26E-11	7,23E-11
Benzo(ghi)pérylène	6,23E-12	6,27E-12	1,09E-11	1,10E-11	1,03E-11	1,04E-11	1,51E-11	1,52E-11
Chrysène	2,50E-11	2,50E-11	3,17E-11	3,16E-11	4,16E-11	4,16E-11	4,84E-11	4,83E-11
Dibenzo(a,h)anthracène	1,25E-10	1,25E-10	1,60E-10	1,60E-10	2,08E-10	2,08E-10	2,43E-10	2,44E-10
Total	1,82E-07	1,82E-07	1,94E-07	1,94E-07	3,04E-07	3,03E-07	3,15E-07	3,15E-07
Delta projet	0,06%		0,0	6 %	-0,0	3%	0,0	3%

Rincent Air Etude air et santé Page 27 sur 41

¹⁶ DREES (2018). Etudes et résultats – L'EHPAD, dernier lieu de vie pour un quart des personnes décédées en France en 2015.

¹⁷ OCDE (2019). Panorama de la santé 2019 : Les indicateurs de l'OCDE, Éditions OCDE, Paris.

¹⁸ InVS (2010). Description du budget espace-temps et estimation de l'exposition de la population française dans son logement.

¹⁹ INSEE (2017). Les conditions de logement en France.

²⁰ Conformément à l'avis de l'ANSES du 12/01/2023 relatif à la recommandation de VTR par voie respiratoire pour l'exposition à long terme aux particules de l'air ambiant extérieur (PM_{2.5}), la VTR applicable aux PM₁₀ est prise d'après le ratio PM₁₀/PM_{2.5} déterminé sur les concentrations de fond au niveau de la zone d'étude.

²¹ ANSES. Valeurs toxicologiques de référence, les particules de l'air ambiant extérieur, rapport d'expertise collective, janvier 2023.

Site vulnérable	Ecole mo		Coll Jaqueline		Lycée Aristide		Ecole élé Joliot-	
Scénario	Sans projet	Avec projet	Sans projet	Avec projet	Sans projet	Avec projet	Sans projet	Avec projet
Benzène	1,55E-07	1,55E-07	2,06E-07	2,06E-07	1,54E-07	1,54E-07	2,57E-07	2,57E-07
1,3 butadiène	1,50E-09	1,50E-09	1,99E-09	1,99E-09	1,49E-09	1,49E-09	2,48E-09	2,48E-09
Chrome VI	2,52E-08	2,53E-08	2,95E-08	2,95E-08	2,16E-08	2,16E-08	3,51E-08	3,51E-08
Nickel	1,16E-09	1,16E-09	1,55E-09	1,55E-09	1,16E-09	1,16E-09	1,93E-09	1,93E-09
Arsenic	2,97E-10	2,97E-10	3,96E-10	3,96E-10	2,97E-10	2,97E-10	4,95E-10	4,95E-10
Naphtalène	9,70E-10	9,80E-10	4,36E-10	4,57E-10	2,13E-10	2,15E-10	1,79E-10	1,83E-10
Acénaphtène	2,85E-12	2,86E-12	2,81E-12	2,83E-12	1,98E-12	1,98E-12	3,09E-12	3,09E-12
Acénaphtylène	2,58E-12	2,59E-12	2,70E-12	2,72E-12	1,93E-12	1,93E-12	3,06E-12	3,06E-12
Anthracène	2,23E-11	2,23E-11	2,56E-11	2,56E-11	1,86E-11	1,86E-11	3,02E-11	3,02E-11
Fluorène	9,25E-12	9,24E-12	1,20E-11	1,20E-11	8,97E-12	8,96E-12	1,49E-11	1,49E-11
Fluoranthène	1,25E-11	1,25E-11	1,50E-11	1,50E-11	1,10E-11	1,10E-11	1,80E-11	1,80E-11
Phénanthrène	3,45E-11	3,45E-11	4,21E-11	4,21E-11	3,10E-11	3,10E-11	5,09E-11	5,09E-11
Pyrène	9,12E-12	9,12E-12	1,09E-11	1,09E-11	7,97E-12	7,97E-12	1,30E-11	1,30E-11
Benzo(a)pyrène	4,03E-10	4,04E-10	4,36E-10	4,38E-10	3,15E-10	3,15E-10	5,06E-10	5,06E-10
Indéno(1,2,3-cd)pyrène	1,21E-09	1,21E-09	1,37E-09	1,37E-09	9,94E-10	9,94E-10	1,61E-09	1,61E-09
Benzo(a)anthracène	3,57E-11	3,59E-11	3,07E-11	3,10E-11	2,09E-11	2,09E-11	3,16E-11	3,16E-11
Benzo(b)fluoranthène	8,21E-11	8,20E-11	9,35E-11	9,37E-11	6,82E-11	6,82E-11	1,11E-10	1,11E-10
Benzo(k)fluoranthène	3,72E-11	3,71E-11	3,68E-11	3,70E-11	2,61E-11	2,60E-11	4,10E-11	4,10E-11
Benzo(ghi)pérylène	7,86E-12	7,89E-12	8,09E-12	8,14E-12	5,78E-12	5,78E-12	9,17E-12	9,18E-12
Chrysène	2,73E-11	2,73E-11	3,30E-11	3,31E-11	2,44E-11	2,44E-11	4,00E-11	4,00E-11
Dibenzo(a,h)anthracène	1,37E-10	1,37E-10	1,65E-10	1,66E-10	1,22E-10	1,22E-10	2,00E-10	2,00E-10
Total	1,86E-07	1,86E-07	2,42E-07	2,42E-07	1,81E-07	1,81E-07	3,00E-07	3,00E-07
Delta projet	0,04%		0,0	4 %	-0,0	1%	0,0	0%

Site vulnérable	Future	EHPAD	Future	crèche
Scénario	Sans projet	Avec projet	Sans projet	Avec projet
Benzène	6,70E-07	6,70E-07	1,55E-07	1,55E-07
1,3 butadiène	6,48E-09	6,47E-09	1,49E-09	1,49E-09
Chrome VI	9,75E-08	9,74E-08	2,20E-08	2,20E-08
Nickel	5,03E-09	5,03E-09	1,16E-09	1,16E-09
Arsenic	1,29E-09	1,29E-09	2,97E-10	2,97E-10
Naphtalène	1,71E-09	1,76E-09	2,80E-10	3,08E-10
Acénaphtène	9,48E-12	9,53E-12	2,05E-12	2,08E-12
Acénaphtylène	9,03E-12	9,07E-12	1,98E-12	2,01E-12
Anthracène	8,45E-11	8,46E-11	1,89E-11	1,91E-11
Fluorène	3,91E-11	3,91E-11	8,99E-12	9,00E-12
Fluoranthène	4,93E-11	4,94E-11	1,12E-11	1,12E-11
Phénanthrène	1,38E-10	1,38E-10	3,13E-11	3,15E-11
Pyrène	3,57E-11	3,58E-11	8,07E-12	8,11E-12
Benzo(a)pyrène	1,45E-09	1,46E-09	3,23E-10	3,25E-10
Indéno(1,2,3-cd)pyrène	4,53E-09	4,53E-09	1,01E-09	1,02E-09
Benzo(a)anthracène	1,06E-10	1,06E-10	2,22E-11	2,26E-11
Benzo(b)fluoranthène	3,10E-10	3,10E-10	6,94E-11	6,97E-11
Benzo(k)fluoranthène	1,24E-10	1,24E-10	2,70E-11	2,73E-11
Benzo(ghi)pérylène	2,72E-11	2,72E-11	5,96E-12	6,01E-12
Chrysène	1,09E-10	1,09E-10	2,46E-11	2,47E-11
Dibenzo(a,h)anthracène	5,44E-10	5,44E-10	1,23E-10	1,24E-10
Total	7,90E-07	7,89E-07	1,81E-07	1,81E-07
Delta projet	0,0	0%	0,0	6%

Tableau 31 : ERI pour l'exposition par inhalation à un risque acceptable de 1.10-5

Site vulnérable		Ecole maternelle Saint-Exupéry		Ecole maternelle F Bloch Sérazin		Futur groupe scolaire		Ecole élémentaire Jules Guesde	
Scénario	Sans projet	Avec projet	Sans projet	Avec projet	Sans projet	Avec projet	Sans projet	Avec projet	
PM ₁₀	3,86E-03	3,86E-03	4,09E-03	4,09E-03	6,44E-03	6,43E-03	6,66E-03	6,66E-03	
PM _{2,5}	1,31E-03	1,31E-03	1,40E-03	1,40E-03	2,19E-03	2,19E-03	2,27E-03	2,27E-03	
Total	5,17E-03	5,17E-03	5,48E-03 5,49E-03		8,63E-03	8,62E-03	8,92E-03	8,93E-03	
Delta projet	0,0	8%	0,07%		-0,09%		0,04%		

Site vulnérable		aternelle Suesde	Collège Jaqueline de Romilly			e pro. Briand	Ecole élémentaire Joliot-Curie	
Scénario	Sans projet	Avec projet	Sans projet	Avec projet	Sans projet	Avec projet	Sans projet	Avec projet
PM ₁₀	3,93E-03	3,93E-03	5,13E-03	5,13E-03	3,83E-03	3,83E-03	6,35E-03	6,35E-03
PM _{2,5}	1,34E-03	1,34E-03	1,74E-03	1,75E-03	1,30E-03	1,30E-03	2,16E-03	2,16E-03
Total	5,27E-03	5,27E-03	6,88E-03 6,88E-03		5,13E-03	5,13E-03	8,51E-03	8,51E-03
Delta projet	0,0	2%	0,05%		-0,01%		0,0	0%

Site vulnérab	le	Future	Future EHPAD Future crèc				
Sc	énario	Sans projet Avec projet		Sans projet	Avec projet		
PM ₁₀		1,67E-02	1,67E-02	3,84E-03	3,85E-03		
PM _{2,5}		5,69E-03	5,69E-03	1,31E-03	1,31E-03		
Total		2,24E-02	2,24E-02	5,15E-03	5,15E-03		
Delta projet		-0,0	02%	0,07%			

Tableau 32: ERI pour l'exposition par inhalation à un risque acceptable pour les particules PM₁₀/PM_{2.5}

Le projet n'entraîne aucune variation significative des ERI (comprises entre -0,09 et +0,08 %).

Le seuil d'acceptabilité du risque sanitaire de 1.10-5 est respecté au niveau de tous les sites vulnérables. Pour les particules PM₁₀ et PM_{2.5}, le seuil d'acceptabilité du risque sanitaire de 3,7 10-1 établi d'après les valeurs OMS est également respecté sur tous les sites et pour tous les scénarios.

VI.4 Caractérisation du risque par inhalation – substances sans VTR

VI.4.1) Principe

Le dioxyde d'azote (NO₂) ne présente pas de VTR. Conformément à la note technique du 22/02/2019, les effets sanitaires de ce polluant sont évalués par comparaison directe des concentrations modélisées aux valeurs guides de l'Organisation Mondiale de la Santé (OMS). Les valeurs disponibles sont présentées dans le tableau suivant :

Période d'exposition	Valeur limite (µg/m³)
1 an	10
1 jour	25
1 heure	200

Tableau 33: valeurs guides pour le NO2 (expositions chronique et aigue)

Les concentrations en moyenne annuelle sont issues des résultats modélisés en considérant une exposition continue sur chaque site. Les concentrations en moyenne journalière et en moyenne horaire sont prises d'après la valeur maximale modélisée sur chacun de ces pas de temps.

VI.4.2) Résultats

NO ₂ (µg/m³)		aternelle xupéry		aternelle Sérazin	Futur groupe scolaire		Ecole élémentaire Jules Guesde		Valeur OMS	Valeur
Durée	Sans projet	Avec projet	Sans projet	Avec projet	Sans projet	Avec projet	Sans projet	Avec projet	2021	limite FR
1 an	27,8	27,9	33,9	33,9	27,8	27,8	31,6	31,6	10	40
1 jour	31,3	31,5	46,6	46,7	30,5	30,4	43,9	44,0	25	-
1 heure	35,1	35,5	57,1	57,2	34,4	33,9	52,2	52,4	200	200

NO ₂ (µg/m³)	Ecole maternelle Collège Lycée p Jules Guesde Jaqueline de Romilly Aristide Br				mentaire -Curie	Valeur OMS	Valeur			
Durée	Sans projet	Avec projet	Sans projet	Avec projet	Sans projet	Avec projet	Sans projet	Avec projet	2021	limite FR
1 an	30,0	30,0	27,6	27,6	27,2	27,2	26,8	26,8	10	40
1 jour	43,4	43,5	29,7	29,8	29,7	29,7	28,2	28,2	25	-
1 heure	52,8	53,0	33,3	33,4	33,7	33,6	31,4	31,5	200	200

NO ₂ (μg/m³)	Future	Future EHPAD		crèche	Valeur OMS	Valeur	
Durée	Sans projet	Avec projet	Sans projet	Avec projet	2021	limite FR	
1 an	27,9	27,8	27,5	27,5	10	40	
1 jour	30,4	30,4	29,5	29,6	25	-	
1 heure	33,5	33,5	32,7	32,7	200	200	

Tableau 34 : comparaison des concentrations aux valeurs guides et réglementaires

La mise en service du projet entraîne de très faibles variations des concentrations en NO₂ estimées au droit de chaque site vulnérable. Néanmoins un **dépassement des recommandations annuelles et journalières de l'OMS** est observé sur tous les sites quel que soit le scénario. Ces dépassements sont liés au bruit de fond considéré dans la zone d'étude (supérieur à 25 µg/m³) qui dépasse à lui seul ces valeurs guides.

Bien que le dépassement de la valeur journalière puisse traduire des concentrations en NO₂ relativement élevées sur la zone d'étude, il est à noter qu'un dépassement systématique de la valeur annuelle peut être attendu sur tous les projets en zone urbanisé (d'après les données Airparif, la moyenne des concentrations en NO₂ au niveau des stations de fond urbain en lle-de-France pour l'année 2023 est de 20,4 µg/m³).

En revanche, aucun dépassement de la valeurs OMS horaire ni de la valeur réglementaire en moyenne annuelle n'est observé.

VI.5 Incertitudes

VI.5.1) Identification des dangers

Bien que les polluants considérés dans l'ERS soient basés sur la note méthodologique du 22 février 2019, une incertitude réside sur le choix d'un nombre fini de substances, qui peut sous-estimer le risque pour celles non prises en compte. L'absence de données concernant l'effet de mélange ou les produits de dégradation et de métabolisation des polluants augmente cette incertitude sans pour autant pouvoir conclure sur une surestimation (ex: polluant dégradé vers une substance moins toxique) ou sur une sous-estimation des effets (ex: exposition à un mélange de substances plus délétère qu'à une substance seule).

VI.5.2) Relation dose-réponse

Cette étape apporte plusieurs incertitudes liées à l'élaboration des VTR. En effet une extrapolation est réalisée entre les hautes doses utilisées en laboratoire pour visualiser les effets des substances sur la santé, et les faibles doses représentatives d'une exposition environnementale. La transposition des résultats issus d'expérimentations animales à l'homme présente également une incertitude. Dans les deux cas le caractère de surestimation ou de sous-estimation de la méthode n'est pas déterminé.

VI.5.3) Estimation de l'exposition

Les voies d'exposition par contact cutané et par ingestion n'étant pas prises en compte, une sousestimation de l'exposition des populations peut intervenir. Le choix des scénarios apporte également une incertitude, les hypothèses d'exposition tendant généralement à rester majorantes. De plus, les concentrations sont prises au niveau du sol ce qui constitue également une hypothèse majorante par rapport à l'exposition en hauteur en façade des bâtiments.

Une autre incertitude est liée aux concentrations modélisées (incertitude du modèle) et aux concentrations de fond sélectionnées (incertitude de la mesure ou des sources bibliographiques).

Enfin, l'hypothèse est faite que les concentrations sont constantes sur toute la période d'exposition de la population, alors que celle-ci peut avoir été, ou pourra être exposée dans le futur, à des concentrations potentiellement plus élevées (sous-estimation) ou plus faibles (surestimation).

VI.5.4) Caractérisation du risque

Cette étape est basée sur l'ensemble des données précédemment utilisées, elle cumule donc l'ensemble des incertitudes listées ci-dessus auxquelles s'ajoute celle sur les calculs du quotient de danger et de l'excès de risque individuel.

VII. MESURES D'EVITEMENT DE REDUCTION OU DE COMPENSATION

VII.1 Mesures générales en phase programmation/conception de projet

La pollution atmosphérique émise par le trafic routier est une nuisance pour laquelle il n'existe pas de mesures compensatoires quantifiables. Plusieurs types d'actions ont été envisagées pour limiter la pollution à proximité d'une voie donnée : haies végétales, murs anti-bruit, revêtements photocatalytiques... Cependant le retour d'expérience sur leur mise en œuvre²² n'indique pas d'effets certains ou systématiques sur la qualité de l'air au niveau des populations exposées, c'est pourquoi ce type d'aménagement seul ne peut être recommandé comme moyen efficace de lutte contre la pollution atmosphérique. Afin de réduire globalement l'exposition des populations, différentes mesures de précaution et de prévention peuvent toutefois être préconisées :

Agir sur les émissions à la source :

- Dans le secteur des transports : les émissions polluantes peuvent être réduites par une modification des conditions de circulation (limiter les vitesses dans la zone du projet, favoriser les modes de circulation apaisée, modes actifs...). Des circuits de mobilité douce ou des aménagements valorisant les transports publics (implantation de stations de transports en commun, parking covoiturage, voies dédiées aux bus) pourront ainsi être intégrés dans la conception du projet afin que celui-ci s'inscrive pleinement en cohérence avec les différents plans de prévention de la pollution atmosphérique, notamment avec les cibles du PDU.
- Dans le secteur résidentiel : les émissions polluantes liées aux équipements de chauffage peuvent être réduites indirectement par une isolation thermique efficace des bâtiments. Des propositions de remplacement ou de rénovation des systèmes de chauffage anciens peu performants ou des unités de production peuvent également être intégrés dans le cas d'un projet de rénovation urbaine.

Réduire l'exposition des populations et éviter les situations à risques :

- Prévoir un éloignement des bâtiments accueillant des populations vulnérables par rapport aux axes routiers où le trafic est le plus important (mise en place d'une zone « tampon »). Cette zone tampon peut être constituée par des espaces végétalisés (obstacles horizontaux) favorisant la dispersion, ou des bâtiments moins sensibles (obstacles verticaux). La création d'un parc ou d'une zone de circulation douce est possible mais l'activité prolongée sur ces espaces ne doit pas être encouragée. Par ailleurs l'ADEME préconise l'implantation de variétés et de structures de végétation diversifiées afin de contribuer à la biodiversité locale et de limiter la sensibilité aux maladies et aux parasites²³. Le choix d'essences d'arbres résistantes à la pollution et peu émettrices de COV est à privilégier. Il est ainsi conseillé d'éviter les espèces suivantes : chêne, robinier, platane, peuplier, saule, sapin Douglas, pin sylvestre, pin parasol.
- Intégrer une signalétique sur la zone du projet afin d'orienter les parcours actifs et sportifs vers les espaces les moins exposés à la pollution (ex : éviter les talus boisés à proximité d'un axe à fort trafic pour les parcours sportifs).
- Limiter l'impact de la pollution atmosphérique sur la qualité de l'air intérieur des bâtiments : les prises d'air neuf doivent être positionnées sur les emplacements les plus éloignés des sources de pollution (en toiture ou sur les façades les moins exposées aux voies de circulation). Pour les ventilations double flux, le dimensionnement d'une filtration adaptée au niveau des centrales de traitement de l'air permet également de réduire l'introduction de polluants extérieurs. Lorsque ces conceptions ne sont pas réalisables pour un bâtiment à usage résidentiel, il est recommandé de limiter les ouvrants des pièces de vie principales (salon, chambre) au niveau des façades les plus exposées aux voies de circulation en les positionnant côté cœur d'ilot.

- Concevoir des formes architecturales spécifiques favorisant ou limitant la dispersion des polluants atmosphériques :

Pour créer une occlusivité par rapport aux sites vulnérables, privilégier la hauteur et la continuité du premier front bâti le long des axes routiers à fort trafic.

Pour préserver la qualité de l'air en cœur d'ilot, favoriser le retournement des fronts bâtis continus le long des voiries secondaires.

Pour favoriser la circulation de l'air et la dispersion des polluants, créer une discontinuité dans les fronts bâtis et varier la hauteur des bâtiments côté cœur d'ilot.

Pour éviter l'accumulation de polluants, limiter la création de rues canyon (rues étroites bordées en continu par de grands bâtiments) en recherchant a minima un rapport « largeur de rue » / « hauteur de bâtiments » supérieur à 1,5.

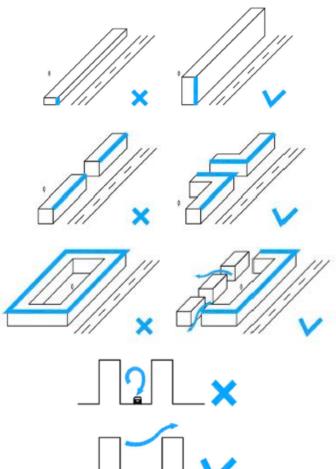


Figure 27 : recommandations générales d'aménagements favorisant la dispersion de polluants

Pour valider l'impact de ces mesures, la réalisation d'une modélisation 3D peut être envisagée afin de déterminer plus finement l'impact du bâti sur la dispersion locale des polluants. En effet, en fonction des différents paramètres de dispersion, les mesures prises pour tenter de réduire l'exposition des populations à la pollution atmosphérique peuvent parfois avoir l'effet inverse. Certaines mesures de réduction cumulées peuvent également amener à des effets antagonistes.

Recommandations d'aménagement pour minimiser les impacts de la pollution de l'air sur la population de Plaine Commune. Rapport. 84 pages.

Rincent Air Etude air et santé Page 30 sur 41

²² ADEME. B. Forestier, F. Cape. 2016. Impacts des aménagements routiers sur la pollution atmosphérique – Etat de l'art des études traitant de l'impact des aménagements routiers (solutions anti-bruit, solutions spécifiques) sur la pollution atmosphérique.

²³ ROUSSEAUX Olivia, AIA Life Designers, PRADELLE Frédéric, Ramboll France, Vincent JACOB, AIA Life Designers, DEQUIEDT Frédérique,

²³ ROUSSEAUX Olivia, AIA Life Designers, PRADELLE Frédéric, Ramboll France, Vincent JACOB, AIA Life Designers, DEQUIEDT Frédérique Plaine Commune, ECK Mélanie, Plaine Commune. 2022. Modéliser la qualité de l'air dans un secteur d'urbanisation contraint.

VII.2 Mesures en phase chantier

La phase chantier d'un projet d'aménagement comprend de nombreuses sources de pollutions atmosphériques, notamment :

- L'échappement des machines et engins de chantier qui entrainent principalement des émissions de NO₂, CO, hydrocarbures et particules fines.
- Les émissions de poussières plus grossières générées par les travaux de terrassement, d'excavation ou de démolition, du transport et de l'entreposage de matériaux, la circulation et l'utilisation de véhicules, machines et engins (remise en suspension) sur les pistes, les opérations de soudage ou découpage de matériaux...
- Les émissions liées à l'emploi de solvants ou de produits à base de solvants qui engendre des émissions significatives de COV.
- L'application et l'emploi de bitume pour la très grande majorité des revêtements de sols (voies de circulation, trottoirs, parking...) qui entrainent notamment des émissions de particules fines, de COV et de HAP.

L'identification de l'ensemble des sources les plus polluantes du chantier permet ensuite de mettre en œuvre des mesures de réduction des impacts pour chaque source de pollution, comme les exemples suivants :

- O Utiliser des véhicules récents équipés de filtres à particules (FAP). Les FAP permettent d'éliminer au moins 95 % en masse et 99,7 % en nombre des particules de plus de 23 nm (100 fois plus petites que le seuil des PM_{2.5}) émises par les moteurs diesel.
- o Entretenir régulièrement les poids lourds, machines et engins qui circulent ou sont utilisés sur le chantier.
- Utiliser des véhicules fonctionnant avec des carburants moins émissifs de particules (GNV, GPL...).
- o Former les opérateurs à l'adoption des bons comportements pour réduire les émissions de leurs engins (limitation des ralentis notamment).
- o Arroser les pistes par temps sec ou lors d'épisodes de pollution afin de limiter l'envol des poussières.
- Bâcher et humidifier (rampe d'aspersion) systématiquement les camions.
- o Mettre en place de dispositifs d'humidification anti-poussières lors des phases génératrices de poussières.
- Utiliser des produits plus écologiques contenant moins de solvants voire aucun.
- o Former les opérateurs à l'adoption des bons comportements pour réduire les émissions diffuses ou ponctuelles lors de leurs tâches quotidiennes (refermer systématiquement les contenants après usage ou entre deux usages, utilisation des contenus sans excédants, rappeler l'interdiction de brûler des matériaux sur chantier...).
- o Privilégier l'emploi d'émulsions bitumineuses aux solutions bitumineuses.
- o Privilégier les enrobés tièdes et respecter scrupuleusement les consignes de température lors de la fabrication des enrobés.
- o Equiper les finisseurs de systèmes de captages des fumées de bitume (avec une efficacité d'au moins 80 % selon le protocole NIOSH 107-97).
- o Informer en amont et pendant le chantier les riverains des nuisances potentielles et des mesures mises en place pour les réduire.
- Adaptation de la période des travaux sur l'année ou sur la période journalière (en fonction des pics de concentrations de certains polluants et/ou des sites recevant des populations vulnérables à proximité).

Pour réduire l'impact des travaux d'aménagement, la consultation relative au choix du maitre d'œuvre peut ainsi inclure les dispositions contractuelles visant à garantir le respect de l'environnement lors des différentes phases du chantier. Le cadre d'évaluation des mémoires techniques doit également s'attacher à l'analyse des actions prises par le prestataire pour réduire ses émissions polluantes. La maitrise d'ouvrage peut se faire aider dans cette démarche par une AMO qui possède la compétence environnementale.

VIII. SYNTHESE

VIII.1 Etat initial

Le recensement des données dans le cadre de l'étude air et santé a mis en évidence les points suivants :

- o La présence d'axes routiers à fort trafic (axes majeurs comme l'autoroute A1 et la RN2, axes secondaires comme l'avenue Charles Floquet et la RD41), l'urbanisation dense autour de la zone de projet et les plateformes aéroportuaires constituent des sources potentiellement importantes d'émissions polluantes, notamment pour le NO2 et les particules PM10 et PM2.5. Les émissions polluantes d'industries situées autour du projet dans un rayon de moins de 10 km peuvent éventuellement s'ajouter au bruit de fond urbain selon les conditions météorologiques mais constituent une source de pollution à la marge.
- o Les données historiques de pollution atmosphérique dans l'environnement du projet n'indiquent pas de dépassement des valeurs seuils de NO₂ dans l'air ambiant en fond urbain, mais potentiellement en proximité du trafic. Une campagne de mesure est réalisée pour préciser l'exposition aux concentrations de NO₂ au niveau du projet.
- Le projet se situe sur la commune du Blanc-Mesnil qui compte environ 56 346 habitants. Néanmoins la zone du projet est actuellement peu urbanisée en termes de logements. Concernant les populations vulnérables, 18 sites (crèches, établissements scolaires, hôpital) sont recensés dont 7 sont situés dans la bande d'étude (impactés par les modifications du trafic routier liées au projet) ce qui implique la réalisation d'une évaluation des risques sanitaires. Les projets de groupe scolaire, crèche et de résidence pour personnes âgées sont intégrés à cette évaluation.

En complément de l'étude documentaire, une campagne de mesure in situ a été réalisée dans le cadre de l'état initial afin de caractériser les concentrations en dioxyde d'azote (NO₂), principal traceur des émissions du trafic routier, à l'échelle locale :

- o Cette campagne de mesure, effectuée du 8 au 22 novembre 2021, se caractérise par conditions météorologiques et de pollution atmosphérique entraînant des concentrations en NO₂ plus fortes qu'en moyenne annuelle (entre +14 % en proximité de trafic et +43 % en fond urbain).
- o Dans ces conditions, les résultats indiquent un dépassement potentiel de la valeur limite de protection de la santé pour le NO₂ au niveau des points de trafic situés à proximité de la RD41 et de l'avenue Charles Floquet. Aucun autre dépassement n'est envisagé sur les différents points de fond urbain, représentatifs de l'exposition chronique de la population.

VIII.2 Effets du projet

L'estimation des effets du projet par calcul des émissions polluantes indique les résultats suivants :

- L'évolution du trafic entre les scénarios futurs avec et sans projet entraîne une augmentation des émissions de NO_X d'environ 2 % dans la zone d'étude. Par ailleurs, une forte baisse des émissions de NO_X (-52 % en moyenne) est constatée par rapport au scénario actuel. Cette diminution est liée à l'évolution du parc routier et la mise en circulation de véhicules moins polluants projetée entre 2024 et 2035.
- O Le projet entraîne des variations non significatives (<10 %) des émissions de NOx au niveau de l'autoroute A1 et de la RN2 qui constituent les sources d'émissions les plus importantes de la zone. Le projet entraîne en revanche une diminution significative des émissions au niveau des sections est de l'avenue Charles Floquet et de la rue du parc (mise en sens unique avec le projet) tandis qu'elle induit une augmentation au niveau des sections est de la RD41, ainsi qu'au niveau des sections centrales de l'avenue Charles Floquet et de la rue de la Victoire (report du trafic de la rue du parc). Une augmentation significative des émissions sur l'ensemble des axes nouvellement créés qui desserviront les habitations dans la ZAC est également observé cependant les émissions de NOx sur ces brins restent parmi les plus faibles de la zone de d'étude.

o A l'horizon 2035, le projet entraîne une augmentation des coûts collectifs liés à la pollution atmosphérique et à l'effet de serre de respectivement +8,8 et +2,1 % par rapport au scénario sans projet.

La modélisation des concentrations de NO_x en air ambiant met en évidence les points suivants :

- o Bien que des variations d'émissions significatives soient constatées sur certains axes entre les deux scénarios futurs, la mise en service du projet à l'horizon 2035 induit une très faible variation en moyenne dans la bande d'étude (+0,2 %). En lien avec l'estimation des émissions, les augmentations de concentrations les plus importantes entraînées par le projet (max +6 %) sont observées au niveau des axes existants qui subissent les plus fortes augmentations de trafic (section sud de la RN2, section ouest de la RD41, avenue Charles Floquet, axes nouvellement créés dans la ZAC) et les diminutions au niveau de la rue du Parc (max +8 %).
- o La mise en œuvre du projet entraîne une augmentation de l'indice pollution-population (IPP) d'environ 116 % en moyenne sur la zone d'étude. Etant donné que les concentrations en NO₂ présentent une très faible variation, cette augmentation s'explique majoritairement par la création de logements et donc l'accroissement de la population.

L'évaluation des risques sanitaires (ERS) réalisée à partir des concentrations modélisées au droit des 10 sites vulnérables localisés dans la bande d'étude permet d'établir les conclusions suivantes :

- o Le projet entraîne une variation très faible de la somme des quotients de danger (QD), allant de -0,16 % au niveau du futur groupe scolaire à +0,10 % au niveau de l'école maternelle France Bloch Sérazin. Aucun QD ne dépasse la valeur seuil de 1, indiquant l'absence de risque sanitaire lié aux substances à effets de seuil.
- O Une très faible variation de l'excès de risque individuel (ERI) est constatée entre les scénarios futurs avec et sans projet, comprises entre -0,1 et +0,1 %. Pour les particules PM₁₀ et PM_{2.5}, le seuil d'acceptabilité du risque sanitaire de 3,1 10⁻¹ est respecté sur tous les sites et pour tous les scénarios. La valeur seuil d'acceptabilité du risque sanitaire de 1.10⁻⁵ pour les autres polluants est également respectée sur tous les sites et pour tous les scénarios.
- La mise en service du projet entraîne de très faibles variations des concentrations en NO2 au droit de chaque site vulnérable. Néanmoins un dépassement des recommandations annuelles et journalières de l'OMS est observé sur tous les sites, quel que soit le scénario. Ces dépassements sont cependant inévitables actuellement du fait du bruit de fond dans la zone d'étude qui dépasse à lui seul les valeurs guides. En revanche aucun site ne présente de dépassement de la recommandation OMS en moyenne horaire ni de la valeur réglementaire en moyenne annuelle pour le NO2.

ANNEXES

Annexe 1 : Rappel des effets de la pollution atmosphérique sur la santé

1) <u>Définitions</u>

La **pollution atmosphérique** est définie selon la loi sur l'air et l'utilisation rationnelle de l'énergie (loi 96-1236 du 30 décembre 1996, intégrée au Code de l'Environnement – LAURE) de la façon suivante :

"Constitue une pollution atmosphérique [...] l'introduction par l'homme, directement ou indirectement, dans l'atmosphère et les espaces clos, de substances ayant des conséquences préjudiciables de nature à mettre en danger la santé humaine, à nuire aux ressources biologiques et aux écosystèmes, à influer sur les échanges climatiques, à détériorer les biens matériels, à provoquer des nuisances olfactives excessives".

Les effets de la pollution atmosphérique se décomposent selon trois échelles spatiales. Ces échelles dépendent de la capacité des polluants à se transporter dans l'atmosphère et donc de leur durée de vie :

- L'échelle locale (ville) concerne directement les polluants ayant un effet direct sur la santé des personnes et les matériaux. Cette pollution est couramment mesurée par les associations agrées de la surveillance de la qualité de l'air (AASQA).
- L'échelle régionale (environ 100 km) impactée par des phénomènes de transformations physicochimiques complexes tels que les pluies acides ou la formation d'ozone troposphérique.
- o **L'échelle globale** (environ 1000 km) dépend des polluants ayant un impact au niveau planétaire comme la réduction de la couche d'ozone ou le changement climatique (gaz à effet de serre).

Les **polluants atmosphériques** peuvent être définis selon plusieurs groupes ou familles en fonction de leur origine, de leur nature ou de leur action (ex : effets sanitaire ou réchauffement climatique). Différentes distinctions peuvent être établies pour classer ces polluants :

- o Le caractère **primaire ou secondaire**. Les polluants primaires sont émis directement dans l'air ambiant tandis que les polluants secondaires qui sont produits lors de réactions chimiques à partir de polluants primaires (l'ozone troposphérique par exemple).
- L'état gazeux, particulaire ou semi-volatil. L'impact des composés gazeux sur la santé est défini directement par des relations dose-effets. Les composés particulaires sont étudiés d'une part en prenant en compte leur nature chimique (ex : métaux lourds) mais également en fonction de leur granulométrie (PM₁₀, PM_{2.5}) qui différencie les effets sur la santé. Les composés semi-volatils ont la propriété d'être à la fois sous forme gazeuse et particulaire (par exemples les hydrocarbures aromatiques polycycliques). Les méthodes de mesure diffèrent fortement en fonction de la phase du polluant à étudier.
- o La **persistance** chimique. Les polluants dits organiques persistants (POP) tels que les pesticides, dioxines, polychlorobiphényles, possèdent une grande stabilité leur permettant de contaminer la chaine alimentaire par un transfert de l'air vers le sol, du sol vers les végétaux puis vers le bétail.
- Le forçage radiatif. Les gaz à effet de serre sont des composés qui contribuent au réchauffement climatique, comme le dioxyde de carbone (CO₂) ou le méthane (CH₄).

Parmi ces polluants, les principaux composés pris en compte pour l'impact sur l'air sont décrits dans le tableau suivant :

Polluant	Description
Oxydes d'azote (NO _X)	Ils regroupent le monoxyde d'azote (NO) et le dioxyde d'azote (NO ₂). Ces polluants sont très majoritairement émis par le transport routier et de ce fait constituent un excellent traceur de ce type de pollution. Ils participent de façon importante à la pollution à l'ozone en période estivale.
Monoxyde de carbone (CO)	Il est émis lors des phénomènes de combustion: moteur thermique, chauffage urbain et production d'électricité. Ses émissions ont subi une baisse rapide de 1980 à 2000 puis continuent de légèrement décroitre jusqu'à un palier. Cette baisse en deux temps est liée à la diminution de la production de l'industrie sidérurgique puis à la généralisation de l'utilisation du pot catalytique. Ce composé se disperse rapidement dans l'atmosphère et ne constitue un enjeu sanitaire qu'à proximité d'un trafic automobile dense ou en atmosphère confinée (tunnel).
Dioxyde de soufre (SO ₂)	Principalement émis par le secteur de transformation d'énergie puis par l'industrie. Ce composé responsable de pollution importante au milieu du XXème siècle a observé une diminution très importante depuis l'utilisation de carburant à faible teneur en soufre et la diminution de l'utilisation de combustible fossile dans la production d'électricité. Ses concentrations sont aujourd'hui très faibles dans l'air ambiant et ne constituent plus un problème sanitaire en France.
Composés organiques volatils (COV)	Les COV constituent une famille très large de composés chimiques regroupant les composés aromatiques, les alcanes, les alcools, les phtalates, les aldéhydes etc. Ils sont émis principalement par le secteur résidentiel/tertiaire, les industries manufacturières et aujourd'hui dans une moindre mesure par le trafic routier. Leurs émissions ont diminué régulièrement depuis 1990 grâce à l'utilisation du pot catalytique, au progrès du stockage des hydrocarbures, à une meilleure gestion des solvants par les industriels (notamment avec l'instauration des plans de gestion de solvant) et à la substitution de produits manufacturés par des produits à plus faible teneur en solvant. Le benzène est le seul COV réglementé dans la loi sur l'air. Ce composé cancérigène est dorénavant essentiellement émis par le secteur résidentiel/tertiaire.
Particules	Les particules couvrent différentes fractions granulométriques parmi lesquelles la loi sur l'air fixe des valeurs de référence pour les PM ₁₀ (particules de diamètre aérodynamique médian inférieur à 10 µm) et les PM _{2.5} (diamètre aérodynamique médian inférieur à 2,5 µm). Elles sont issues de nombreuses sources différentes (trafic routier, chauffage au bois, agriculture) mais restent un bon traceur du trafic routier, notamment en zone urbaine et en particulier au niveau des points de trafic. De manière générale, les émissions en particules diminuent régulièrement depuis 1990 sur l'ensemble des secteurs sauf pour celui du transport routier où elles se stabilisent.
Métaux lourds	Polluants présents essentiellement sous forme particulaire, ils intègrent notamment le zinc (Zn), le cuivre (Cu), le plomb (Pb), le nickel (Ni), le mercure (Hg), le chrome (Cr), le cadmium (Cd) et l'arsenic (As). Ils sont émis majoritairement par l'industrie à l'exception du cuivre émis par le transport et le nickel par le secteur de la transformation d'énergie. Les émissions décroissent depuis une vingtaine d'années en raison des améliorations techniques apportées au secteur industriel. La diminution du plomb résulte quant à elle de l'utilisation d'essence sans plomb.
Hydrocarbures aromatiques polycycliques (HAP)	Famille de composés émis lors des phénomènes de combustion. Ils sont émis pour deux tiers par le secteur résidentiel/tertiaire et pour un quart par le trafic routier. Les émissions ont diminué de 1990 à 2007 mais stagnent ces dernières années. Le benzo(a)pyrène, considéré comme le plus toxique, est le seul composé de la famille des HAP à être réglementé en France.
Dioxyde de carbone (CO ₂)	Le CO ₂ , et de manière générale l'ensemble des gaz à effet de serre, ne présentent pas d'impact sanitaire mais contribuent au réchauffement climatique.
Ozone (O ₃)	L'ozone est atypique par rapport aux autres composés car c'est un polluant secondaire. Il est produit principalement lors de réactions chimiques entre les COV et les NO _X sous l'action des ultraviolets. Comme il n'est pas directement émis par une source, ce polluant n'apparait pas dans l'inventaire des émissions du CITEPA. Ce composé fait néanmoins l'objet d'une surveillance et entraine régulièrement en période estivale des dépassements de la réglementation.
	ermante regeneration en pendec estivate des depassements de la regierne manor.

Tableau 35: description des principaux polluants en air ambiant

2) Les variations temporelles des concentrations en polluants

Les variations des concentrations en polluants sont assez faibles d'une année sur l'autre mais les moyennes annuelles masquent des fluctuations plus importantes observables aux échelles mensuelles, hebdomadaires ou horaires.

A titre d'exemple, la figure ci-dessous présente le profil annuel²⁴ des concentrations de particules PM₁₀, de dioxyde d'azote (NO₂) et d'ozone (O₃) mesurées en moyenne sur l'ensemble des stations du réseau de mesure de la qualité de l'air Airparif couvrant le territoire de la région lle-de-France de 2012 à 2017.

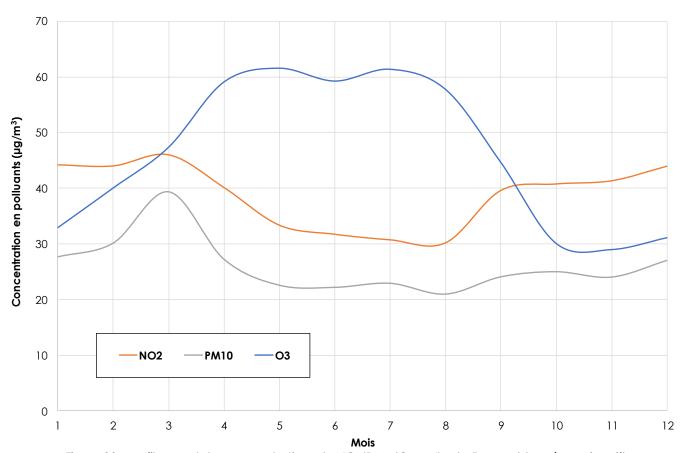


Figure 28 : profil annuel des concentrations de NO₂/PM₁₀/O₃ en lle-de-France (données : Airparif)

Les fluctuations des concentrations de NO₂ dépendent principalement des émissions anthropiques et de la dispersion atmosphérique. Ainsi, à l'échelle d'une année, les teneurs sont plus élevées en saison froide du fait d'émissions plus importantes (notamment chauffage urbain) mais également d'une plus grande stabilité atmosphérique en hiver.

Les concentrations en O₃ varient de manière inverse à celles du NO₂. Ce comportement est lié aux réactions de chimie atmosphérique et notamment au cycle de formation/consommation entre l'ozone et les NO_x. De plus, les variations de l'ozone sont accentuées par des réactions photochimiques : les concentrations les plus élevées apparaissent lorsque l'ensoleillement est plus important.

Les variations des concentrations en particules PM₁₀ sont moins corrélées avec les autres polluantes, du fait de la contribution importante d'autres sources que celles uniquement liées au trafic routier. Un pic de concentration peut ainsi être observé en mars, période d'épandages agricoles générant des particules dites « secondaires » par le biais de réactions chimiques atmosphériques.

La figure ci-dessous présente le profil journalier des concentrations en polluants pour le même ensemble de stations de mesure du réseau Airparif.

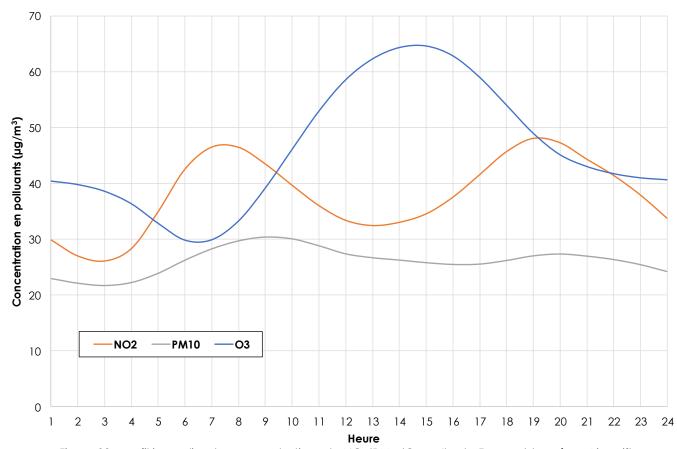


Figure 29 : profil journalier des concentrations de NO₂/PM₁₀/O₃ en lle-de-France (données : Airparif)

A l'échelle journalière, les émissions du trafic routier sont plus fortes aux heures de pointes et la dispersion atmosphérique à l'échelle locale est plus importante aux heures creuses, ce qui entraine des pics de concentrations en NO₂ le matin (6h-8h) et le soir (18h-20h).

Comme pour le profil annuel, les concentrations en ozone suivent une évolution inverse. La production de ce composé par réaction photochimique est cette fois illustrée par le pic de 13h00 à 14h00 qui correspond en heure solaire à l'ensoleillement le plus important au zénith.

Ce comportement est moins marqué pour les particules PM₁₀ en raison des autres sources d'émission de ce polluant.

Rincent Air Etude air et santé Page 35 sur 41

²⁴ Le profil annuel est un graphique sur 12 mois où chaque tranche indique la moyenne des concentrations observées chaque année pendant le même mois. Le profil journalier est réalisé suivant le même principe par tranches horaires.

3) Les effets de la pollution

Effets sur la santé

Les effets de la pollution atmosphérique sur la santé sont le résultat d'interactions complexes entre une multitude de composés. Ces effets sont quantifiables lors d'études épidémiologiques qui mettent en parallèle des indicateurs de la pollution atmosphérique aux nombres d'hospitalisation ou au taux de morbidité. On recense deux types d'effets : les **effets aigus** qui résultent de l'exposition d'individus sur une durée courte (observés immédiatement ou quelques jours après), et les **effets chroniques** qui découlent d'une exposition sur le long terme (une vie entière). Ces derniers sont plus difficiles à évaluer car l'association entre les niveaux de pollution et l'exposition n'est pas immédiate.

Chaque individu n'est pas égal face à la pollution et les effets peuvent être très variables au sein d'une même population. En effet l'exposition individuelle varie en fonction du mode de vie : exposition à d'autres pollutions (tabagisme, milieu professionnel), activité physique, lieux fréquentés... Par ailleurs il existe une différence de sensibilité des individus selon leur âge et leur condition physique (maladies cardiovasculaires ou asthmatiques). De plus, des cofacteurs comme l'apparition d'épidémies ou des phénomènes météorologiques (canicules) complexifient cette analyse.

Les effets aigus ont été évalués au travers de plusieurs études françaises²⁵ et internationales²⁶ qui mettent en évidence une augmentation de la mortalité corrélée à l'augmentation des concentrations en polluants. Les résultats du projet européen Aphekom (2008-2011) indiquent que le non-respect de l'objectif de qualité OMS pour les PM_{2.5} dans les 25 villes étudiées, causerait 19 000 décès prématurés par an. En particulier, les résultats ont montré que si les niveaux de particules PM_{2.5} étaient conformes aux objectifs de qualité de l'OMS de 10 µg/m³ en moyenne annuelle, les habitants de Paris et de la proche couronne gagneraient six mois d'espérance de vie (cf. figure ci-dessous).

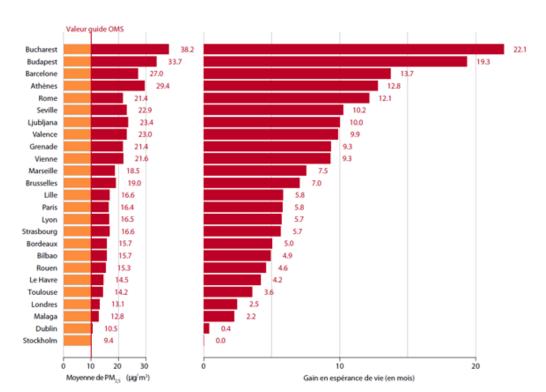


Figure 30: gain d'espérance de vie pour une réduction des teneurs annuelles en PM_{2.5} à 10 µg/m³

De plus, la pollution atmosphérique entraine des impacts sanitaires sur une part plus importante de la population par un effet pyramide: plus la gravité des effets diminue, plus le nombre de personnes affectées est important (cf. figure ci-contre – source: Direction de la santé publique de Montréal, 2003).

En 2012, l'Organisation Mondiale de la Santé (OMS) estime que 3,7 millions de décès dans le monde sont provoqués par la pollution de l'air extérieur.

Figure 31 : pyramide des effets de la pollution atmosphérique

En 2015, l'Agence européenne de l'environnement (AEE) estime pour sa part à environ 400 00 par an le nombre de décès attribuables à la pollution aux particules fines PM_{2.5} en Europe, avec environ 90 % des citadins européens exposés à des niveaux de pollution supérieurs aux valeurs guides de l'OMS.

Une étude²⁷ plus récente réalisée en 2016 par Santé publique France confirme le poids sanitaire de la pollution par les particules fines PM_{2.5} en France. L'agence de santé estime au moyen d'une évaluation quantitative d'impact sanitaire (EQIS) une perte d'espérance de vie pouvant dépasser 2 ans (pour une personne âgée de 30 ans) dans les villes les plus exposées. Elle estime également une perte d'espérance de vie de 15 mois dans les zones urbaines de plus de 100 000 habitants, de 10 mois en moyenne pour les zones comprenant entre 2 000 et 100 000 habitants et de 9 mois en moyenne dans les zones rurales. Au total, cela correspond en France à environ 48 000 décès prématurés par an, soit 9,6 % de la mortalité totale en France. Ces résultats actualisent la dernière estimation réalisée en 2005 dans le cadre du programme CAFE²⁸ de la Commission européenne (environ 42 000 décès prématurés avec une perte moyenne d'espérance de vie de 8,2 mois) et confirment le même ordre de grandeur.

Effets sur la végétation

Les polluants considérés comme prioritaires compte tenu de leur impact sur la végétation sont le dioxyde de soufre, les oxydes d'azote, l'ozone, le fluor et les particules. Les dommages causés par ces polluants peuvent être classés en deux catégories : les effets visibles, avec l'apparition de taches ou de nécroses affaiblissant la plante en favorisant l'entrée d'agents pathogènes, et les effets invisibles altérant la croissance de la plante et diminuant le rendement des cultures. Alors que les effets visibles sont souvent associés aux pics de pollution, la diminution de la croissance des végétaux résulte d'une exposition sur le long terme.

Effets sur les matériaux

La pollution, en plus de salir la surface des bâtiments, contribue également à leur dégradation physique. Les particules carbonées des cendres volantes et des suies se fixent sur les surfaces gypseuses et colorent la surface en noir en formant une croûte. Les métaux présents agissent ensuite comme catalyseur au processus d'oxydation par le SO₂ augmentant l'épaisseur de la croûte par la formation de cristaux de gypse. Cette corrosion est d'autant plus sévère que la pierre attaquée est poreuse. De plus, d'autres effets sont observables, comme la dégradation des matières plastiques par l'ozone ou l'oxydation des métaux par les pluies acides.

²⁵Exemple : programme ERPURS (Évaluation des risques de la pollution urbaine pour la santé - ORS lle-de-France) ; programme PSAS-9 (Surveillance des effets sur la santé liés à la pollution atmosphérique en milieu urbain- INVS).

²⁶Meta-analysis of the Italian Studies on short-term effects of Air Pollution (MISA); Estudio Multicéntrico Español sobre la relación entre la Contaminación Atmosférica y la Mortalidad (EMECAM); National Morbidity, Mortality, and Air Pollution Study (NMMAPS) aux Etats-Unis; Air Pollution and Health: A European Approach (APHEA) en Europe.

²⁷ Rapport et synthèse – Impact de l'exposition chronique aux particules fines sur la mortalité en France continentale et analyses des gains en santé de plusieurs scénarios de réduction de la pollution atmosphérique.

²⁸ Programme de recherche « Clean Air for Europe » de la Commission européenne.

4) Coûts économiques des effets de la pollution atmosphérique

L'évaluation du coût social, économique et sanitaire de la pollution de l'air est un exercice complexe qui repose en amont sur de nombreuses hypothèses et incertitudes (concentrations en polluants, exposition de la population, etc.), ainsi que sur de nombreuses incertitudes intrinsèques suivant les choix méthodologiques (valeur d'une vie statistique, etc.), expliquant la grande variation des estimations disponibles dans la littérature.

En 2005, le programme CAFE de la Commission européenne estime le cout de la mortalité dans 25 pays de l'Union européenne en lien avec la pollution particulaire entre 190,2 et 702,8 milliards d'euros et celui de la morbidité à 78,3 milliards d'euros. Concernant la France, l'estimation de la mortalité est de 21,3 milliards d'euros et de 6,4 milliards d'euros pour la morbidité.

Le Commissariat général au développement durable (CGDD) a estimé en 2012, au travers la Commission des comptes et de l'économie de l'environnement un coût annuel de la pollution de l'air extérieur pour la France métropolitaine compris à minima entre 20 et 30 milliards d'euros, en prenant notamment en considération les frais pour les consultations, les hospitalisations, les médicaments, les soins et les indemnités journalières²⁹.

En avril 2015, une étude³⁰ conjointe de l'Organisation Mondiale de la Santé (OMS) et de l'Organisation de coopération et de développement économiques (OCDE) estime que, pour la France seule, le coût des décès imputables à la pollution de l'air s'élève à 48 milliards d'euros par an.

Un rapport³¹ du Sénat publié en juillet 2015 reprend les données du programme CAFE et estime que le coût total de l'impact sanitaire (mortalité et morbidité) de la pollution atmosphérique (particules et ozone) pour la France serait estimé entre 68 et 97 milliards d'euros par an. Par ailleurs, ce rapport met en évidence que le montant de certaines actions de lutte contre la pollution atmosphérique est inférieur aux bénéfices attendus de la prévention des impacts sanitaires, et donc que ces mesures de prévention engendrent des économies pour le pays. Par exemple, le projet Aphekom a permis de montrer que les politiques européennes de diminution du taux de soufre dans les carburants dans les années 1990 se sont traduites par une baisse du niveau de dioxyde de soufre (SO2) ambiant et une réduction de la mortalité dans 14 villes européennes; environ 2 200 décès par an, soit une économie estimée à 192 millions d'euros.

D'après une étude réalisée conjointement par la Banque Mondiale et l'Université de Washington et parue en septembre 2016³², le coût des décès prématurés liés à la pollution de l'air s'élève à environ 199 milliards d'euros pour l'année civile 2013, et cette pollution est le 4º facteur de décès prématuré dans le monde.

Par ailleurs d'autres coûts non sanitaires doivent également être pris en compte (baisse des rendements agricoles, perte de biodiversité, dégradations des bâtiments, dépenses de prévention et de recherche d'organismes spécialisés, etc.) :

- o Ainsi, le programme de recherche européen CAFE évalue en 2005 le coût de la baisse des rendements agricoles pour les 25 pays européens à 2,5 milliards d'euros.
- o Une étude conjointe de l'INFRAS et de l'Institut für Wirtschaftspolitik und Wirtschaftsforschung (IWW) de l'université de Karlsruhe a retenu, pour la France, un coût lié aux dommages de la pollution sur patrimoine bâti d'environ 3,4 milliards d'euros en 2000³³.
- o Enfin, le rapport du Sénat de 2015 estime le cout non sanitaire de la pollution de l'air en France (baisse des rendements agricoles, dégradation des bâtiments, dépenses de recherche, etc.) à 4,3 milliards d'euros à minima.

5) <u>La Réglementation</u>

La qualité de l'air est réglementée en France par la loi sur l'air et l'utilisation rationnelle de l'énergie du 30 décembre 1996 (loi LAURE n°96/1236). Elle traite notamment : des plans régionaux pour la qualité de l'air (PRQA) intégrés depuis la loi Grenelle II de 2010 au volet Air des Schémas Régionaux Climat Air Energie (SRCAE), des plans de protection de l'atmosphère (PPA), des plans de déplacements urbains (PDU), des mesures d'urgence à mettre en œuvre en cas de dépassement des valeurs limites et des mesures techniques nationales de prévention de la pollution atmosphérique et d'utilisation rationnelle de l'énergie.

La mise en application de la loi sur l'air est à l'origine principalement formulée dans le décret du 6 mai 1998 ainsi que dans l'arrêté ministériel du 17 août 1998. Cette réglementation est amenée à évoluer régulièrement en fonction des nouvelles directives européennes ou politiques nationales. Actuellement, la réglementation française à prendre en compte pour la surveillance de la qualité de l'air est constituée par le décret n°2010-1250 du 21 octobre 2010 portant transposition de la directive européenne n°2008/50/CE. Le tableau 13 récapitule l'ensemble des textes relatifs à la qualité de l'air et son évaluation. Les valeurs limites issues de cette réglementation sont présentées dans les tableaux 14 à 15.

Type de texte	Intitulé
Code de l'Environnement	La loi sur l'air et l'utilisation rationnelle de l'énergie a été intégrée au code de l'environnement (L.221-1 à L.223-2 et R.221-1 à R.223-4)
Loi	Loi n° 96-1236 du 30 décembre 1996 sur l'air et l'utilisation rationnelle de l'énergie
	Directive n° 2008/50/CE du 21 mai 2008 concernant la qualité de l'air ambiant et un air pur pour l'Europe
	Directive n° 2004/107/CE du 15 décembre 2004 concernant l'arsenic, le cadmium, le mercure, le nickel et les hydrocarbures aromatiques polycycliques dans l'air ambiant
Directive	Directive n° 2002/3/CE du 12/02/02 relative à l'ozone dans l'air ambiant
	Directive n° 2000/69/CE du 16 novembre 2000 concernant les valeurs limites pour le benzène et le monoxyde de carbone dans l'air ambiant
	Directive n° 96/62/CE du 27 septembre 1996 concernant l'évaluation et la gestion de la qualité de l'air ambiant
	Arrêté du 17 aout 1998 relatif aux seuils de recommandation et aux conditions de déclenchement de la procédure d'alerte
	Arrêté du 7 juillet 2009 relatif aux modalités d'analyse dans l'air et dans l'eau dans les Installations classées pour l'environnement et aux normes de référence
	Arrêté du 25 octobre 2007 modifiant l'arrêté du 17 mars 2003 relatif aux modalités de surveillance de la qualité de l'air et à l'information du public
	Arrêté du 22 juillet 2004 relatif aux indices de la qualité de l'air
Arrêté	Arrêté du 11 juin 2003 relatif aux informations à fournir au public en cas de dépassement ou de risque de dépassement des seuils de recommandation ou des seuils d'alerte
	Arrêté du 17 mars 2003 relatif aux modalités de surveillance de la qualité de l'air et à l'information du public
	Arrêté du 29 juillet 2010 portant désignation d'un organisme chargé de la coordination technique de la surveillance de la qualité de l'air au titre du code de l'environnement (livre II, titre II)
	Arrêté du 21 octobre 2010 relatif aux modalités de surveillance de la qualité de l'air et à l'information du public
	Décret n° 2010-1250 du 21 octobre 2010 relatif à la qualité de l'air
Décret	Décret n° 2010-1268 du 22 octobre 2010 relatif à la régionalisation des organismes agréés de surveillance de la qualité de l'air
Circulaire	Circulaire du 12 octobre 2007 relative à l'information du public sur les particules en suspension dans l'air ambiant.
Circulaire	Circulaire Equipement/Santé/Ecologie du 25 février 2005 relative à la prise en compte des effets sur la santé de la pollution de l'air dans les études d'impact des infrastructures routières.

Tableau 36 : récapitulatif de la réglementation en vigueur en France sur la qualité de l'air

Rincent Air Etude air et santé Page 37 sur 41

²⁹ Commissariat Général au Développement Durable. Rapport de la Commission des comptes et de l'économie de l'environnement - Santé et qualité de l'air extérieur. Juin 2012.

³⁰ OMS & OCDE. Economic cost of the health impact of air pollution in Europe [Le coût économique de l'impact sanitaire de la pollution de l'air en Europe]. 2015.

³¹ Commission d'enquête sénatoriale. Pollution de l'air, le coût de l'inaction. Tome 1 : Rapport. Juillet 2015.

³² Banque Mondiale & Université de Washington (IHME). The Cost of Air Pollution: Strengthening the economic case for action [Le coût de la pollution atmosphérique: Renforcer les arguments économiques en faveur de l'action]. Septembre 2016.

³³ INFRAS & IWW. External Costs of Transport (accident, environmental and congestion costs) in Western Europe. 2000.

Benzène (CهHه)								
Objectif de qualité	2 μg/m³	Moyenne annuelle						
Valeur limite pour la protection	5 μg/m³	Moyenne annuelle						
de la same nomaine								
Dioxyde d'azote (NO ₂)								
Objectif de qualité	40 μg/m³	Moyenne annuelle						
Valeur limite pour la protection de la santé humaine	200 μg/m³	Moyenne horaire à ne pas dépasser plus de 18 heures par an						
	40 μg/m ³	Moyenne annuelle						
Valeur limite pour la protection de la végétation	30 µg/m³	Moyenne annuelle d'oxydes d'azote						
Seuil d'information et de recommandation	200 μg/m³	Moyenne horaire						
	400 μg/m³	Moyenne tri-horaire						
Seuil d'alerte	200 μg/m³	Moyenne tri-horaire prévue à J+1 si 200 µg/m³ dépassés à J0 et J-1 en moyenne tri-horaire						
	Ozone (O ₃)							
Objectif de qualité pour la protection de la santé humaine	120 µg/m³	Maximum journalier de la moyenne sur 8 heures par an						
Objectif de qualité pour la protection de la végétation	6 000 µg/m³.h	AOT40 ³⁴ calculée à partir des valeurs sur 1 heure de mai à juillet						
Valeur cible pour la protection de la santé humaine	120 µg/m³	Maximum journalier de la moyenne sur 8 heures à ne pas dépasser plus de 25 jours par an en moyenne calculée sur 3 ans						
Valeur cible pour la protection de la végétation	18 000 µg/m³.h	AOT40, calculée à partir des valeurs sur 1 heure de mai à juillet (en moyenne sur 5 ans)						
Seuil d'information et de recommandation	180 µg/m³	Moyenne horaire						
Seuil d'alerte	240 μg/m³	Moyenne horaire						
Seuils d'alerte nécessitant la	1 ^{er} seuil : 240 µg/m³	Moyenne tri-horaire						
mise en œuvre progressive de	2 ^{ème} seuil : 300 µg/m³	Moyenne tri-horaire						
mesures d'urgence	3ème seuil : 360 µg/m³	Moyenne horaire						
	Monoxyde de carb							
Valeur limite pour la protection de la santé humaine	10 000 μg/m³	Maximum journalier de la moyenne glissante sur 8 heures						
	Dioxyde de soufre	e (SO ₂)						
Objectif de qualité	50 μg/m³	Moyenne annuelle						
Valeur limite pour la protection	350 μg/m³	Moyenne horaire à ne pas dépasser plus de 24 heures par an						
de la santé humaine	125 µg/m³	Moyenne journalière à ne pas dépasser plus de 3 jours par an						
Valeur limite pour la protection des écosystèmes	20 μg/m³	Moyenne annuelle et moyenne sur la période du 1er octobre au 31 mars						
Seuil d'information et de recommandation	300 µg/m³	Moyenne horaire						
Seuil d'alerte	500 µg/m³	Moyenne horaire pendant 3 heures consécutives						

Tableau 37 : valeurs réglementaires pour les composés gazeux dans l'air ambiant

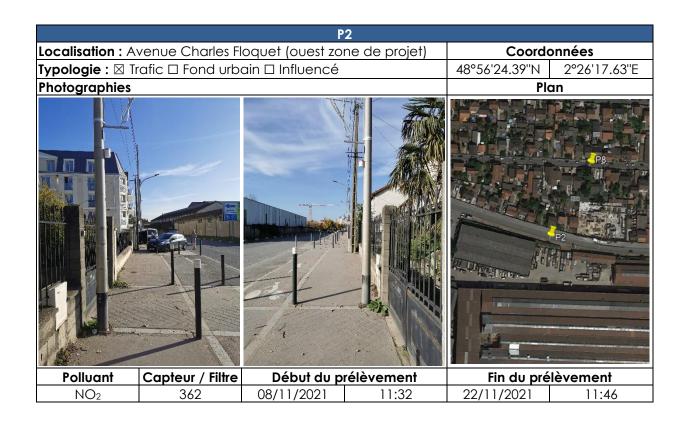
Particules PM ₁₀						
Objectif de qualité	30 µg/m³	Moyenne annuelle				
Valeur limite pour la protection	50 μg/m³	Moyenne journalière à ne pas dépasser plus de 35 jours par an				
de la santé humaine	40 μg/m³	Moyenne annuelle				
Seuil d'information et de recommandation	50 μg/m³	Moyenne sur 24 heures				
Seuil d'alerte	80 μg/m³	Moyenne sur 24 heures				
	Particules PM	M _{2.5}				
Objectif de qualité	10 μg/m³	Moyenne annuelle				
Valeur limite pour la protection de la santé humaine	25 μg/m³	Moyenne annuelle				
Valeur cible	20 μg/m³	Moyenne annuelle				
	Plomb (Pb)					
Objectif de qualité	0,25 μg/m ³	Moyenne annuelle				
Valeur limite	0,5 μg/m ³	Moyenne annuelle				
	Arsenic (As	s)				
Valeur cible	6 ng/m ³	Moyenne annuelle				
	Cadmium (C	Cd)				
Valeur cible	5 ng/m³	Moyenne annuelle				
	Nickel (Ni					
Valeur cible	20 ng/m ³	Moyenne annuelle				
	Benzo[a]pyrène	(BaP)				
Valeur cible	1 ng/m ³	Moyenne annuelle				

Tableau 38 : valeurs réglementaires pour les composés particulaires dans l'air ambiant

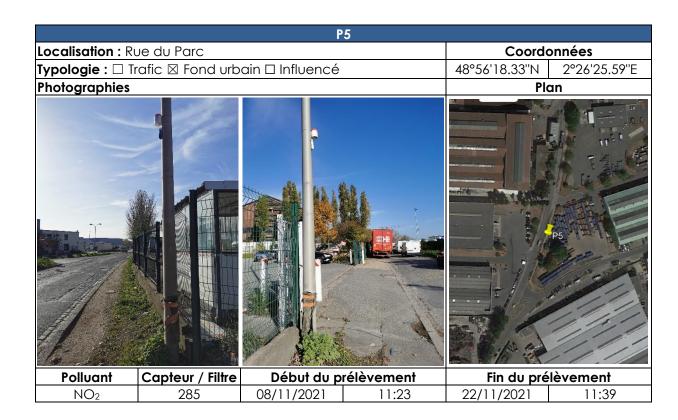
Définition des seuils					
Objectif de qualité	Niveau à atteindre à long terme et à maintenir, sauf lorsque cela n'est pas réalisable par des mesures proportionnées, afin d'assurer une protection efficace de la santé humaine et de l'environnement dans son ensemble.				
Valeur limite	Niveau à atteindre dans un délai donné et à ne pas dépasser, et fixé sur la base des connaissances scientifiques afin d'éviter, de prévenir ou de réduire les effets nocifs sur la santé humaine ou sur l'environnement dans son ensemble.				
Valeur cible	Niveau à atteindre, dans la mesure du possible, dans un délai donné, et fixé afin d'éviter, de prévenir ou de réduire les effets nocifs sur la santé humaine ou l'environnement dans son ensemble.				
Seuil de recommandation et d'information	Niveau au-delà duquel une exposition de courte durée présente un risque pour la santé humaine de groupes particulièrement sensibles au sein de la population et qui rend nécessaires l'émission d'informations immédiates et adéquates à destination de ces groupes et des recommandations pour réduire certaines émissions.				
Seuil d'alerte	Niveau au-delà duquel une exposition de courte durée présente un risque pour la santé de l'ensemble de la population ou de dégradation de l'environnement, justifiant l'intervention de mesures d'urgence.				

Tableau 39 : définition des seuils réglementaires

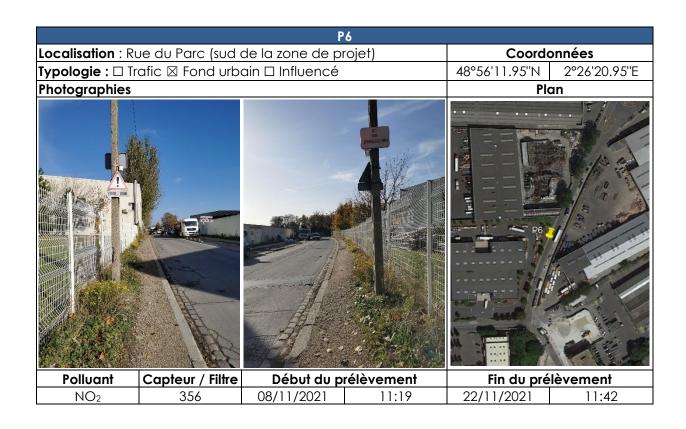
Rincent Air Etude air et santé Page 38 sur 41


³⁴ AOT 40 (exprimé en µg/m³.heure) signifie la somme des différences entre les concentrations horaires supérieures à 80 µg/m³ et 80 µg/m³ durant une période donnée en utilisant uniquement les valeurs horaires mesurées quotidiennement entre 8 h et 20 h.

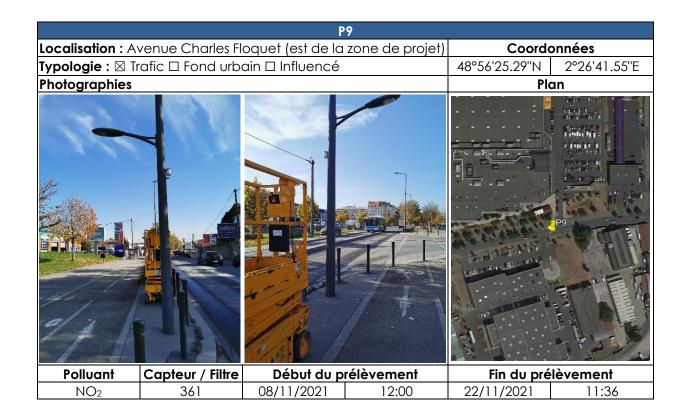
Annexe 2 : Fiches de point de mesure


	P 1			
Localisation: Croisement D41 / Avenue Charles Floquet			Coordonnées	
Typologie: $oxtimes$ Trafic $oxtimes$ Fond urb	ain 🗆 Influencé		48°56'26.85"N	2°26'6.48"E
Photographies			Plo	ın
TOTAL				P1
Polluant Capteur / Filtre	Début du prélèvement		Fin du prél	lèvement
NO ₂ 357	08/11/2021	11:44	22/11/2021	11:54

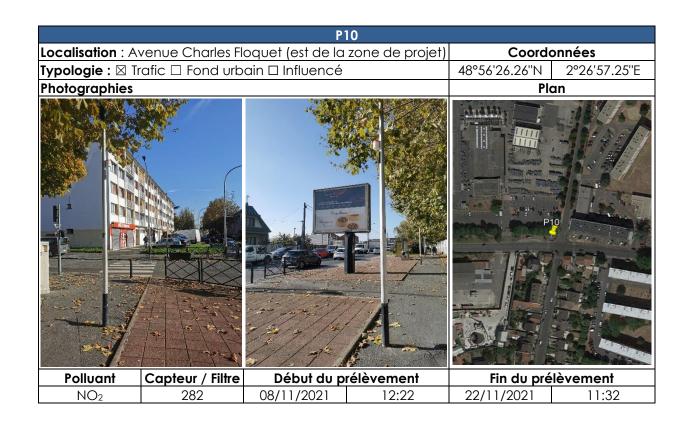
P3						
Localisation : Extrémité ouest « Tubes de Montreuil »			Coordonnées			
Typologie : □ Tr	afic 🛭 Fond urbo	ain 🗆 Influencé		48°56'20.25"N	2°26'11.26"E	
Photographies				Plo	Plan	
				P3		
Polluant	Capteur / Filtre	Début du prélèvement		Fin du pré	lèvement	
NO ₂	363	08/11/2021	11:38	22/11/2021	11:50	

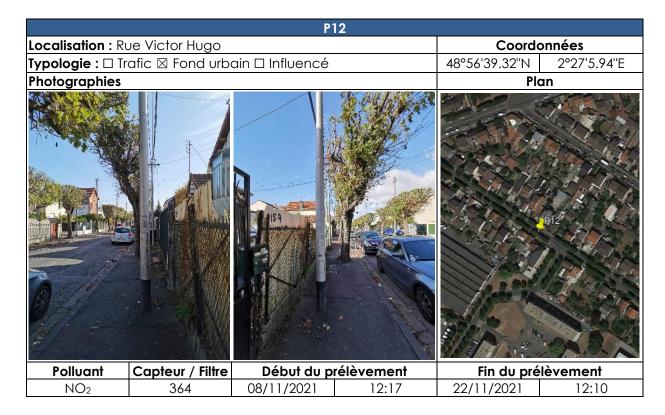


P4						
Localisation: Rue du Capitaine Dreyfus			Coordonnées			
Typologie: □ Trafic ⊠ Fond	d urbain 🗆 Influencé		48°56'29.73"N	2°26'27.06"E		
Photographies			Plo	Plan		
Polluant Capteur /	Filtre Début du p	Début du prélèvement		lèvement		
NO ₂ 359	08/11/2021	11:54	22/11/2021	12:00		



P7						
Localisation: Avenue Aristide Briand (RD41)			Coordonnées			
Typologie: $oxtimes$ Trafic $oxtimes$ Fond urb	ain 🗆 Influencé		48°56'36.10"N	2°26'34.79"E		
Photographies			Plo	an		
ATTENTION TRAVAUX 30						
Polluant Capteur / Filtre	Début du prélèvement		Fin du prélèvement			
NO ₂ 355	08/11/2021	12:11	22/11/2021	12:03		




P8						
Localisation: Avenue Marcel Legrand			Coordonnées			
Typologie : □ Tro	afic 🛭 Fond urb	ain 🗆 Influencé		48°56'26.86"N	2°26'19.68"E	
Photographies				Plo	an	
				P2		
Polluant	Capteur / Filtre	Début du prélèvement		Fin du pré	lèvement	
NO ₂	354	08/11/2021	12:11	22/11/2021	11:56	

P11						
Localisation: Rue Iqbal Masih			Coordonnées			
Typologie : □ Tr	afic 🗵 Fond urb	ain 🗆 Influencé		48°56'32.80"N	2°26'46.95"E	
Photographies			Plan			
Polluant	Capteur / Filtre	Début du prélèvement		Fin du pré	lèvement	
NO ₂	365	08/11/2021	12:05	22/11/2021	12:06	

