

Conseil général de l'Environnement et du Développement durable

Avis de la mission régionale d'autorité environnementale dans le cadre d'une procédure commune sur le rapport d'évaluation environnementale commun au plan local d'urbanisme et au projet de création de la centrale photovoltaïque au sol « Energies des Bouzigues » sur le territoire de la commune de Saint-Féliu-d'Avall (Pyrénées-Orientales)

N°Saisine : 2021-009718 N°MRAe : 2021AO59

Avis émis le 16 novembre 2021

PRÉAMBULE

Pour tous les plans et documents d'urbanisme soumis à évaluation environnementale, une « autorité environnementale » désignée par la réglementation doit donner son avis et le mettre à disposition du maître d'ouvrage, de l'autorité décisionnelle et du public.

Cet avis ne porte pas sur l'opportunité du projet de plan ou document d'urbanisme, mais sur la qualité de la démarche d'évaluation environnementale mise en œuvre par le maître d'ouvrage, ainsi que sur la prise en compte de l'environnement par le projet.

Il n'est donc ni favorable, ni défavorable. Il vise à améliorer la conception du projet et à permettre la participation du public à l'élaboration des décisions qui le concernent.

Par courrier reçu le 16 août 2021, l'autorité environnementale a été saisie par le Préfet des Pyrénées orientales pour avis sur la procédure commune pour le projet de création d'une centrale photovoltaïque au sol « Énergies des Bouzigues » et la mise en compatibilité du PLU par déclaration de projet pour la création de la centrale photovoltaïque au sol « Énergies des Bouzigues » sur la commune de Saint-Féliu-d'Avall (66).

L'avis est rendu dans un délai de 3 mois à compter de la date de réception de la saisine à la direction régionale de l'environnement, de l'aménagement et du logement de la région (DREAL) Occitanie

En application de l'article R. 122-17 du Code de l'environnement et du 2° de l'article R. 104-21 du Code de l'urbanisme relatif à l'autorité environnementale compétente, le présent avis est adopté par la mission régionale d'autorité environnementale de la région Occitanie (MRAe).

Cet avis a été adopté en collégialité électronique conformément aux règles de délégation interne à la MRAe (délibération du 20 octobre 2020) par Maya Leroy, Jean-Pierre Viguier, Jean-Michel Salles et Annie Viu.

En application de l'article 8 du règlement intérieur de la MRAe du 3 novembre 2020, chacun des membres délibérants cités ci-dessus atteste qu'aucun intérêt particulier ou élément dans ses activités passées ou présentes n'est de nature à mettre en cause son impartialité dans le présent avis.

L'avis a été préparé par les agents de la DREAL Occitanie apportant leur appui technique à la MRAe et placés sous l'autorité fonctionnelle de son président.

Conformément à l'article R. 104-24 du code de l'urbanisme, l'agence régionale de santé Occitanie (ARS) a été consultée en date du 16/08/2021 et a répondu le 07/10/2021.

Le préfet de département a également été consulté et a répondu en date du 16 août 2021.

Conformément aux dispositions de l'article R. 104-25 du Code de l'urbanisme, l'avis devra être joint au dossier d'enquête publique.

Il est également publié sur le site internet de la MRAe¹.

www.mrae.developpement-durable.gouv.fr/occitanie-r21.hhtml

SYNTHÈSE

La zone d'implantation du projet se situe au nord-est de la commune de Saint-Féliu-d'Avall au lieu dit des « Campellanes » dans le département des Pyrénées-orientales, à l'est du lac artificiel des « Bouzigues ».

Ce secteur aujourd'hui à caractère naturel, créé au début des années 2000, était un site d'extraction d'alluvions, de sable et de graviers, entre 1970 et 2000. La partie ouest de la zone d'implantation du projet a été utilisée comme décharge illicite entre les années 2000 et 2005.

Le projet consiste en l'aménagement d'un parc photovoltaïque d'une surface de 3,25 ha, d'une puissance de 3,5 MWc pour une production moyenne annuelle de 4,7 GWh, correspondant à la consommation annuelle de 1 600 foyers, soit environ 3 500 habitants.

Le projet est situé en zone N du plan local d'urbanisme (PLU), dans un sous-secteur Nb correspondant au lac et ses abords. L'emprise du parc est également concernée par un espace boisé classé (EBC) situé au sud de la zone d'implantation du projet et au nord par le recul des 100 m vis-à-vis de la RN 116 (article L. 116 du Code de l'urbanisme² - « amendement Dupont »).

La demande objet du présent avis porte sur la mise en compatibilité du PLU et sur le permis de construire du projet, au titre d'une « procédure commune » au sens du code de l'environnement.

La mise en compatibilité du PLU porte sur les éléments suivants :

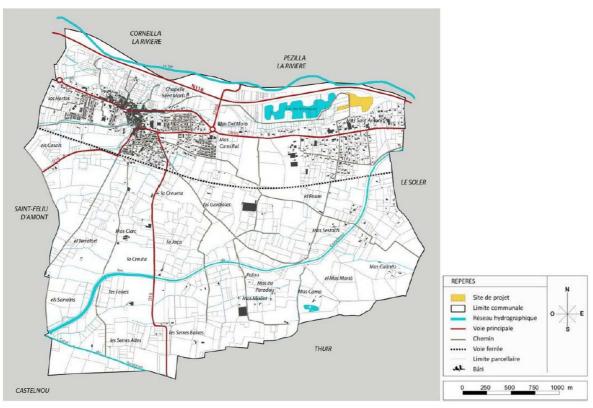
- réduction de l'EBC pour une superficie de 1240 m²;
- création d'un zonage spécifique N-pv pour les deux parcs photovoltaîques avec un règlement permettant uniquement la réalisation du projet, le tout encadré par une orientation d'aménagement et de programation (OAP);
- dérogation à l'amendement Dupont uniquement sur l'emprise du projet avec réduction du recul imposé à 50 m vis-à-vis de la RN 116 et production d'une étude spécifique.

La MRAe relève favorablement la volonté d'utiliser un site anciennement artificialisé et dégradé pour l'implantation du parc photovoltaïque, en application des orientations nationales.

La MRAe considère néanmoins que l'étude d'impact doit présenter de manière plus explicite les raisons pour lesquelles, eu égard aux effets sur l'environnement ou la santé humaine, le site du projet a été retenu, parmi un ensemble de localisations envisageables à l'échelle du bassin de vie concerné.

L'ensemble des recommandations de la MRAe est détaillé dans les pages suivantes.

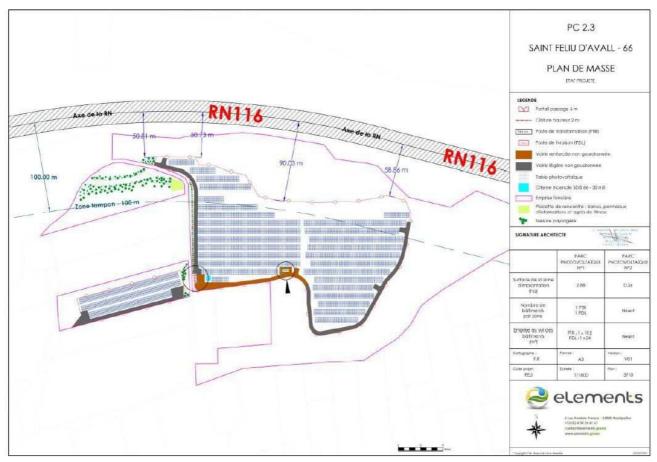
² En dehors des espaces urbanisés des communes, les constructions ou installations sont interdites dans une bande de cent mètres de part et d'autre de l'axe des autoroutes, des routes express et des déviations au sens du code de la voirie routière et de soixante-quinze mètres de part et d'autre de l'axe des autres routes classées à grande circulation. Cette interdiction s'applique également dans une bande de soixante-quinze mètres de part et d'autre des routes visées à l'article L. 141-19.


AVIS DÉTAILLÉ

1 Contexte et présentation du projet

1.1 Contexte

La zone du projet se situe au nord-est de la commune de Saint-Féliu-d'Avall (2 830 habitant en 2018) au lieu dit des « Campellanes » dans le département des Pyrénées-orientales en région Occitanie, à l'est du lac artificiel des « Bouzigues ». Ce secteur aujourd'hui retourné à un état plus naturel, créé au début des années 2000, était un site d'extraction d'alluvions, de sable et de graviers, entre 1970 et 2000. La partie ouest de la zone d'implantation du projet a été utilisée comme décharge illicite entre les années 2000 et 2005.


Le site, rétrocédé à la commune par l'exploitant en 2003, est aujourd'hui en reconversion, géré par la communauté urbaine Perpignan Méditerranée Métropole qui a fait établir un plan d'aménagement et de gestion dans le cadre du projet « Es Têt » de valorisation et d'appropriation des berges de la Têt.

La partie ouest de cette zone a fait l'objet d'une requalification en zone de loisir autour du lac, qui comprend des zones de pêche, un parcours de promenade ou encore des postes d'observations de la faune. La partie est qui comprend la zone d'implantation du projet n'a pas bénéficié de traitement spécifique. Elle est traversée par une route qui fait partie du circuit de la « Boucle des Lacs ».

1.2 Présentation du projet

Le projet consiste en l'aménagement d'un parc photovoltaïque d'une surface de 3,25 ha, d'une puissance de 3,5 MWc pour une production moyenne annuelle de 4,7 GWh, correspondant à la consommation annuelle de 1 600 foyers, soit environ 3 500 habitants.

Le projet sera composé de deux îlots distincts et comprendra 7 317 panneaux photovoltaïques de type monocristallin, d'une hauteur comprise entre 1,5 m en point bas et 3,32 m en point haut, d'une puissance unitaire de 450 Wc, assemblés sur 107 tables fixées au sol par une solution d'ancrage de type pieux battus (sans fondation béton) ou d'ancrage en « Gabion ou bac lesté métallique » (système lesté) en cas de pollution avérée des sols. Les locaux techniques seront composés d'un poste de transformation et d'un poste de livraison intégrant un second poste de transformation.

La durée prévisionnelle des travaux est d'environ 6 mois ; ils comprennent :

- la préparation du site et installation du chantier : bornage et piquetage, création des voies d'accès et de circulation, installation des équipements de chantier ;
- la création de tranchées ;

- la mise en place des panneaux photovoltaïques, des équipements électriques et raccordement interne : fixation des structures au sol, mise en place des structures porteuses, mise en place des panneaux, installation des postes de transformation et du poste de livraison, raccordement électrique interne ;
- la remise en état du site après chantier.

Le trafic généré par ce chantier sera d'environ 80 camions, davantage si un recours aux structures hors-sols dits gabions est envisagé.

Les travaux prévoient notamment : la coupe de la végétation et dessouchage, le concassage des quelques blocs minéraux et le nivellement en surface pour créer une plateforme prête à construire.

Le raccordement électrique est prévu au poste source de Baixas, situé à environ 6 km via une connexion au réseau public à 1,7 km du projet.

La demande de la collectivité objet du présent avis porte sur la mise en compatibilité du PLU et sur le permis de construire du projet, au titre d'une « procédure commune » au sens du Code de l'environnement³.

1.3 Présentation de la mise en compatibilité du PLU de Saint-Féliud'Avall

Le projet est situé en zone N du plan local d'urbanisme (PLU), dans un sous-secteur Nb correspondant au lac et ses abords. Ce sous-secteur n'autorise que les constructions et installations nécessaires aux services publics, les aménagements publics (parcours de santé, pistes cyclables...), les constructions, agrandissements et aménagements sous réserve qu'ils soient liés à des équipements publics existants, ou ayant fait l'objet d'une réservation au PLU ou nécessités par le fonctionnement ultérieur de la zone ainsi que les aménagements liés à l'utilisation du plan d'eau.

L'emprise du parc est également concernée par un espace boisé classé (EBC) situé au sud de la zone d'implantation du projet et au nord par le recul des 100 m vis-à-vis de la RN 116 (article L. 116 du Code de l'urbanisme - « amendement Dupont »).

La mise en compatibilité du PLU porte sur les éléments suivant :

- réduction de l'EBC pour une superficie de 1 240 m²;
- création d'un zonage spécifique N-pv pour les deux parcs photovoltaïques avec un règlement permettant uniquement la réalisation du projet, le tout encadré par une orientation d'aménagement et de programmation (OAP);
- dérogation à l'amendement Dupont uniquement sur l'emprise du projet avec réduction du recul imposé à de 100 à 50 m vis-à-vis de la RN 116 et production d'une étude spécifique.

1.4 Procédures relatives au projet

En application des articles L. 421-1, R. 421-1 et R. 421-2 et 9 du Code de l'urbanisme (CU), les ouvrages de production d'électricité à partir de l'énergie solaire, installés sur le sol, dont la puissance est supérieure à 250 kWc, sont soumis à une demande de permis de construire.

En application des articles L. 122-1 et R. 122-2 (rubrique 30 du tableau annexé) du CE, le projet est également soumis à étude d'impact.

3 Cf. article R. 122-26.

2 Principaux enjeux environnementaux identifiés par la MRAe

Compte tenu des terrains concernés, de la nature du projet et des incidences potentielles de son exploitation, les principaux enjeux environnementaux identifiés par la MRAe sont :

- la préservation de la biodiversité et des fonctionnalités écologiques ;
- l'intégration paysagère du projet ;

3 Qualité de l'étude d'impact

3.1 Caractère complet de l'étude d'impact et qualité des documents

Conformément aux dispositions de l'article R. 122-5.II du CE, l'étude d'impact est jugée formellement complète. Toutefois, si les cartes réalisées pour les enjeux naturalistes et relatives aux différentes espèces et habitats naturels informent sur chacune des zones étudiées, elles ne localisent pas l'implantation des équipements liés à la centrale photovoltaïque. Cela nuit à la compréhension de l'étude, obligeant le lecteur à consulter plusieurs éléments cartographiques en même temps (localisation des secteurs à enjeux et localisation des équipements). Une cartographie synthétique de tous les enjeux naturalistes, associée à la localisation des équipements aurait permis une visualisation et une analyse plus aisées des impacts, et contribuerait ainsi à une meilleure information du public.

La MRAe recommande que les équipements et infrastructures prévus par le projet soient ajoutés sur les cartes présentant les différents enjeux naturalistes, ainsi que sur la carte de synthèse des enjeux, afin de mieux localiser les impacts et ainsi d'en apprécier plus aisément les conséquences.

3.2 Compatibilité avec les documents de planification existants

Selon le Schéma de cohérence territoriale (SCoT) Plaine du Roussillon en vigueur, le site du projet est situé en « zone de nature ordinaire » et identifié comme un des 55 « îlots de nature en ville existant ou à créer » (lac des Bouzigues), décrit comme un « des espaces verts accessibles aux populations qui doivent être préservés et développés ». Le document d'orientation et d'objectifs (DOO) précise que les documents d'urbanisme doivent délimiter précisément ces espaces et définir des mesures de protection et la nature des aménagements nécessaires à leur fonction d'îlots de nature. Le PLU en vigueur de Saint-Feliu-d'Avall est actuellement compatible avec cette disposition du SCoT.

La MRAe relève que la création du parc photovoltaïque sur ce site sera incompatible avec cette vocation d'îlot de nature qui doit être accessible aux populations.

Le dossier précise valablement que l'emprise de l'EBC est ajustée au périmètre du projet de parc car incompatible avec l'usage projeté. La zone concernée par le futur parc représente 1 240 m² soit 0,24 % des EBC de la commune. L'ajustement du périmètre de l'EBC n'aura donc aucun impact direct sur les arbres en présence et respecte la trame végétale existante.

3.3 Justification des choix retenus

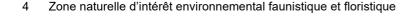
Le projet se situe sur des terrains à caractère naturel en friche ayant accueilli un site d'extraction d'alluvions, de sable et de graviers, entre 1970 et 2000. La partie ouest de la zone d'implantation du projet a été utilisée comme décharge illicite entre les années 2000 et 2005. La MRAe relève favorablement la volonté d'utiliser un site anciennement artificialisé et dégradé pour l'implantation du parc photovoltaïque, en application des orientations nationales.

La MRAe rappelle que les orientations nationales réaffirment la priorité donnée à l'intégration du photovoltaïque aux bâtiments et sur les sites déjà artificialisés. Ainsi, en application de la circulaire du 18 décembre 2009, relative au développement et au contrôle des centrales photovoltaïques au sol, et du guide d'instruction des demandes d'autorisations d'urbanisme pour les centrales solaires au sol de 2020, il convient, pour les implantations au sol, de privilégier une implantation dans les zones U et AU (urbaines et à urbaniser), et en dernier recours dans les zones A et N (agricole et naturelle) sous réserve des dispositions du 1° de l'article L. 151-111 du Code de l'urbanisme. Ces éléments sont par ailleurs repris dans le projet de SRADDET Occitanie arrêté et soumis à consultation, et notamment la règle n°20 qui indique « Identifier les espaces susceptibles d'accueillir des installations ENR1 en priorisant les toitures de bâtiments, les espaces artificialisés et les milieux dégradés (friches industrielles et anciennes décharges par exemple), et les inscrire dans les documents de planification ».

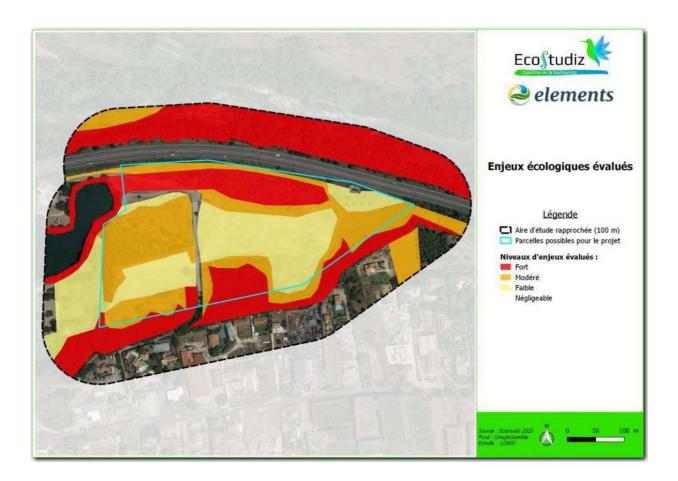
La MRAe considère ainsi que l'étude d'impact devrait présenter de manière plus explicite quels autres sites potentiels ont été examinés et les raisons pour lesquelles, eu égard aux effets sur l'environnement ou la santé humaine, le lieu d'implantation projet a été retenu, conformément au code de l'environnement, à savoir: « Une description des solutions de substitution raisonnables qui ont été examinées par le maître d'ouvrage, en fonction du projet proposé et de ses caractéristiques spécifiques, et une indication des principales raisons du choix effectué, notamment une comparaison des incidences sur l'environnement et la santé humaine .» .

La MRAe recommande de mieux justifier, par une comparaison avec les autres sites envisageables, la localisation du projet eu égard aux impacts environnementaux.

4 Prise en compte de l'environnement


4.1 Biodiversité et continuités écologiques

La pression et les périodes des inventaires naturalistes fournis dans le dossier permettent une analyse correcte de l'état initial.


Les inventaires naturalistes ont permis de mettre en évidence 19 habitats naturels, modifiés ou en mosaïque d'habitats, dont trois présentent des niveaux d'enjeux forts à modérés (les gazons ras à espèces amphibies et mares temporaires, les pelouses siliceuses thérophytiques méditerranéennes, les ourlets thérophytiques et fourrés thermoméditerranéens à calicotome et spartier). Le site est majoritairement constitué de jachères et friches dominées par des plantes annuelles et des communautés d'annuelles sur-piétinées. Ces deux habitats présentent des enjeux de conservation faible.

Parmi les espèces végétales deux espèces à enjeux de conservation forts ont été inventoriés, l'Anémone coronaria L. (espèce protégée) et Phalaris minor. (espèce déterminante ZNIEFF⁴).

Pour la faune les inventaires ont mis en évidence 15 espèces de chiroptères, une espèce de mammifère protégée, 56 espèces d'oiseaux, 7 espèces de reptiles, et, enfin, 7 espèces d'amphibiens protégées ont été recensées essentiellement sur les secteurs humides du nord de la zone d'Implantation.

La MRAe relève favorablement que le choix d'implantation du projet, s'il ne permet pas d'éviter tous les secteurs à forts enjeux, permet néanmoins d'éviter les secteurs à plus forte valeur patrimoniale, et en particulier la dépression humide, zone de reproduction des amphibiens qui présente un fort intérêt pour la conservation de ces espèces. L'implantation permet également de maintenir une continuité écologique satisfaisante sur l'ensemble de la zone. La distance entre les tables supports des panneaux photovoltaïques ainsi que le rehaussement des tables permet de réduire l'impact sur la zone de reproduction de la Cisticole des joncs. Enfin, les autres mesures mises en place comme la perméabilité de la clôture pour la petite faune, la mise en place de barrière anti-intrusion d'amphibiens ou encore l'adaptation du calendrier des travaux en fonction des sensibilités écologiques et la création d'habitats favorables aux amphibiens et aux reptiles, permettent de limiter de manière notable les impacts du projet sur la biodiversité, sous réserve de la stricte application de ces mesures.

Toutefois, la dépression humide représentant un des enjeux les plus important pour la biodiversité du site, il conviendrait au-delà de son évitement, de prévoir un éloignement ou une suppression des tables les plus proches, afin de mieux préserver cette dépression humide et une meilleure continuité écologique

La MRAe recommande de déplacer ou supprimer les quatre table au nord-ouest de la ZIP, les plus proches de la zone de dépression humide du terrain.

4.2 Paysage

L'implantation du parc photovoltaïque au niveau de la plus grande parcelle sur des terrains présentant une faible qualité de sols et la présence du coteau boisé et du talus permettront une intégration paysagère favorable. Toutefois, la zone nord-ouest du projet présente une visibilité plus importante depuis le lac et ces abords.

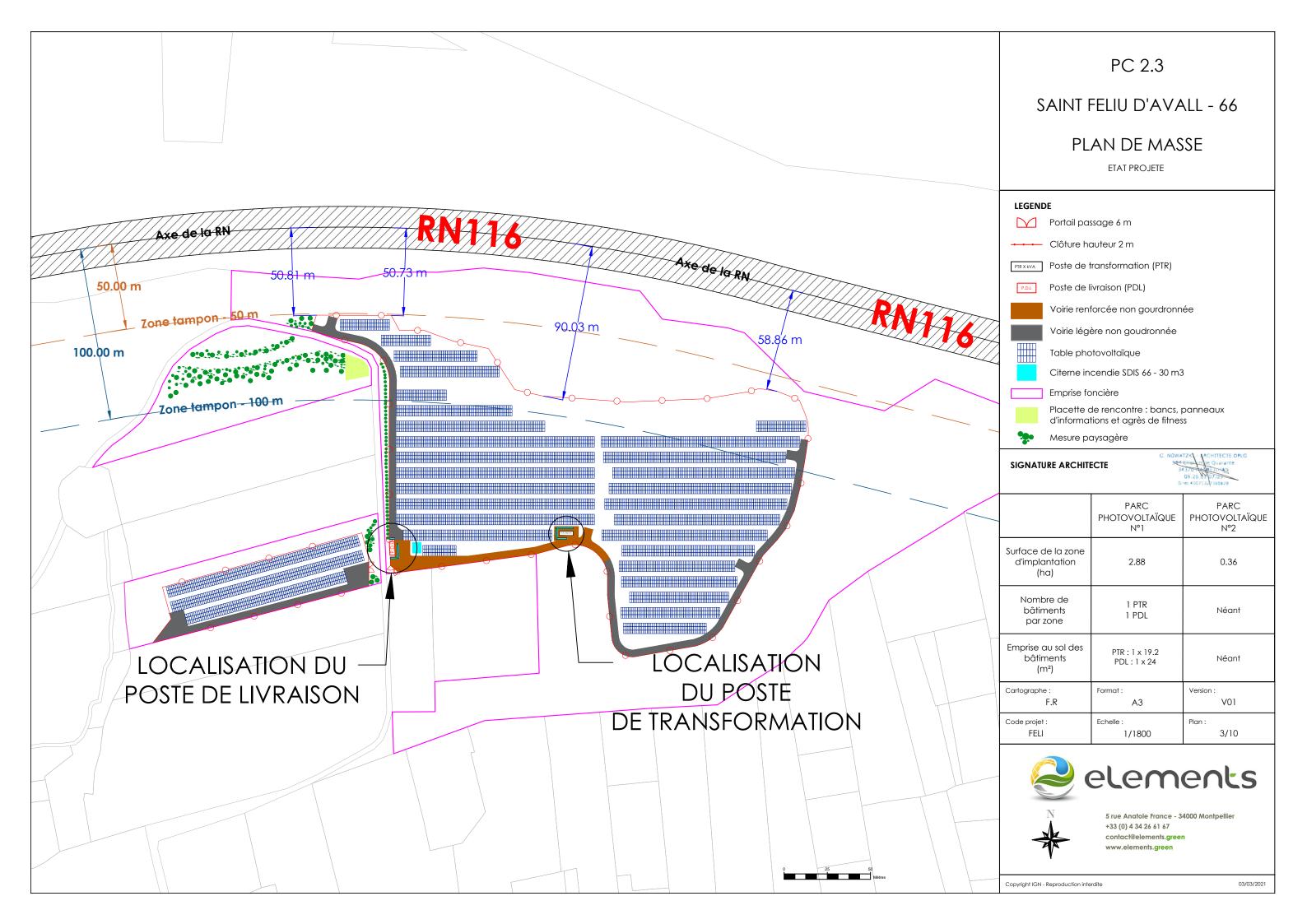
La MRAe recommande d'éloigner ou de supprimer les quatre lignes de tables de la zone nord-ouest du projet présentant une visibilité plus importante depuis le lac et ces abords, et de mettre en place sur cette zone une haie paysagère afin de permettre une meilleure intégration paysagère du projet.

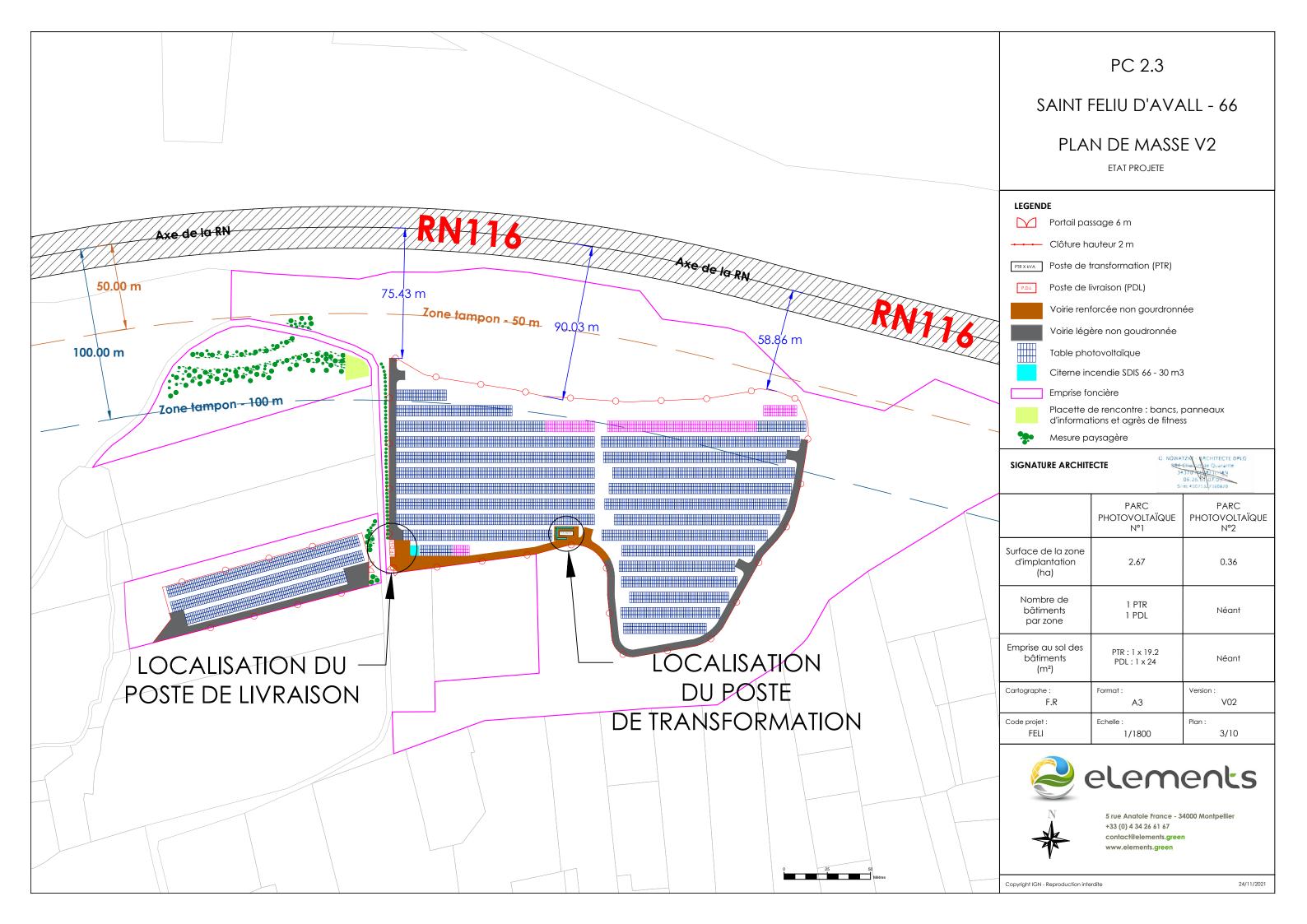
4.3 Incidences de la mise en compatibilité et mesures d'évitement, de réduction et de compensation.

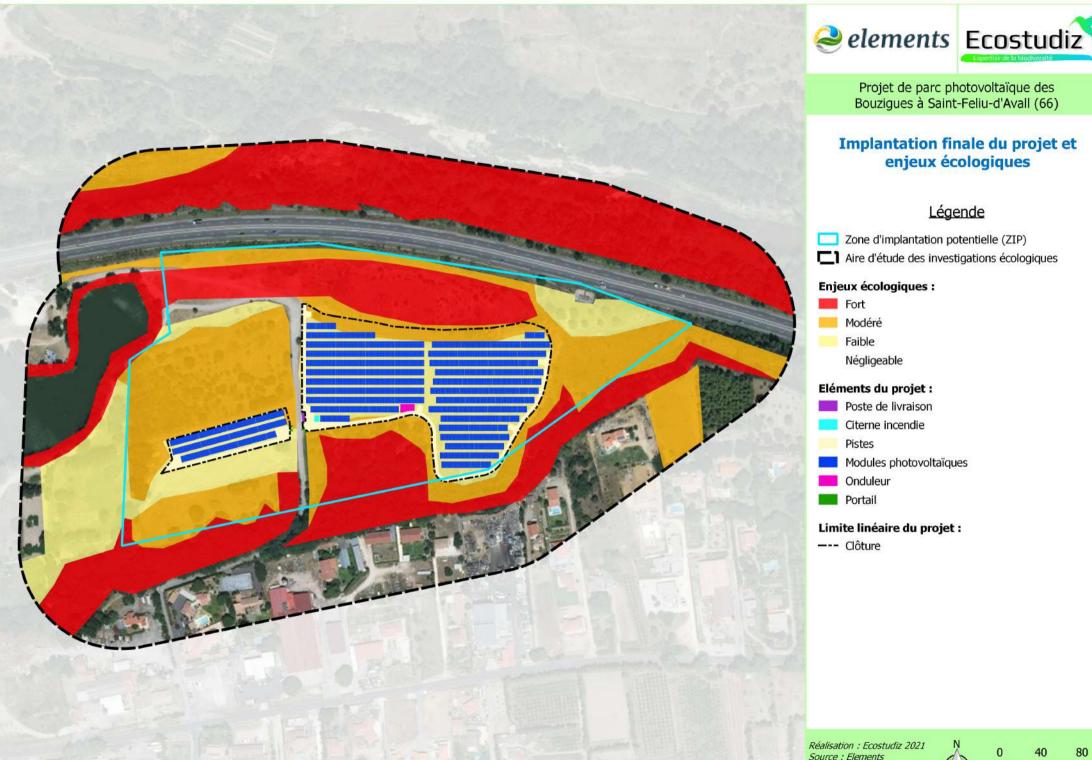
Le document intitulé « Analyse des impacts sur l'environnement valant évaluation environnementale de la mise en compatibilité du PLU » décrit l'ensemble des incidences du PLU sur l'environnement par thématiques (air, eau, risques, biodiversité...). Ce document présente une analyse des incidences d'un niveau de précision suffisant.

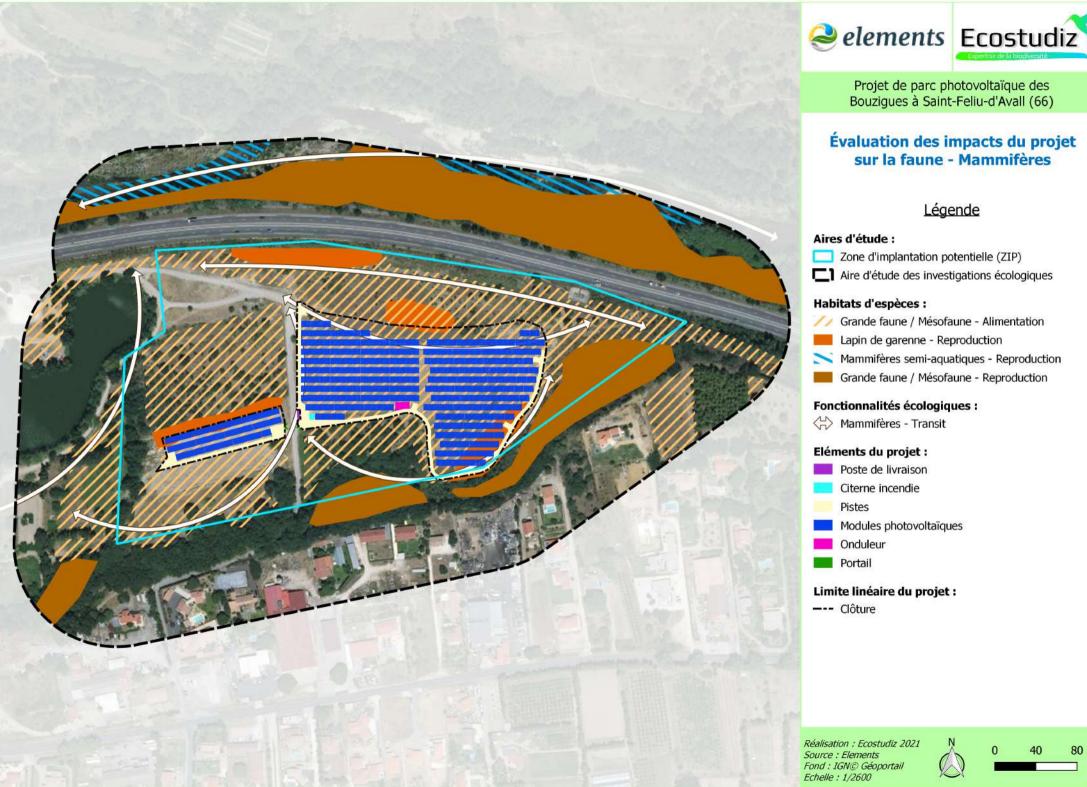
Ainsi, l'évaluation environnementale de la mise en compatibilité du PLU met en évidence certaines mesures qui sont réputées être, par elles-mêmes, des mesures de réduction d'impact, notamment via l'OAP.

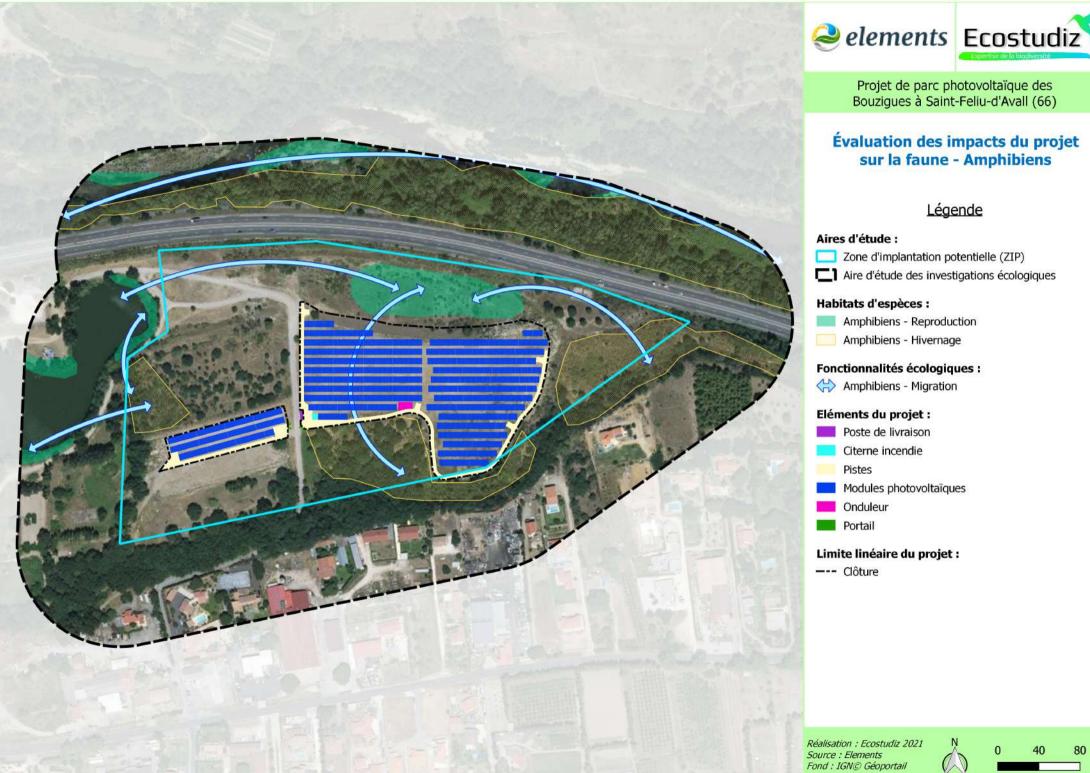
4.3.1 Sur le plan écologique

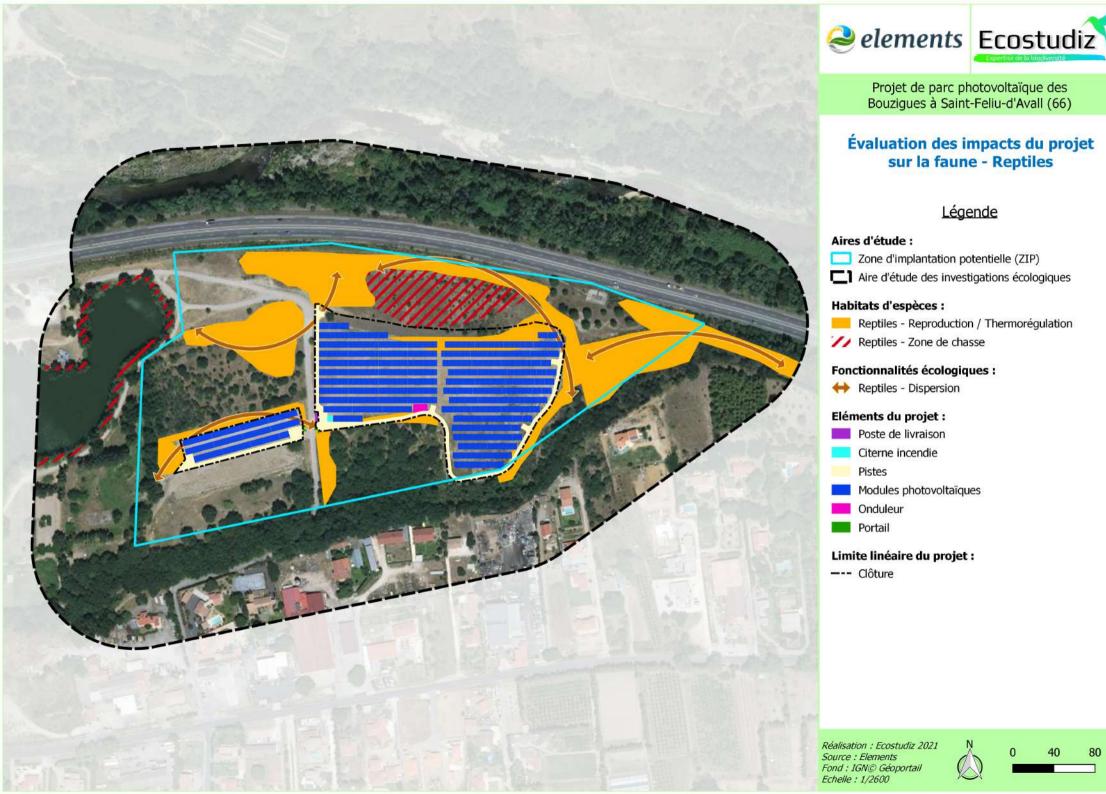

La préservation des espaces à enjeux écologiques significatifs au nord du terrain d'assiette, l'adaptation du calendrier des travaux, la distance entre les tables photovoltaïques, la création d'habitats favorables aux amphibiens et aux reptiles et les suivis de ces mesures permettront une réduction notable des impacts sur l'environnement.

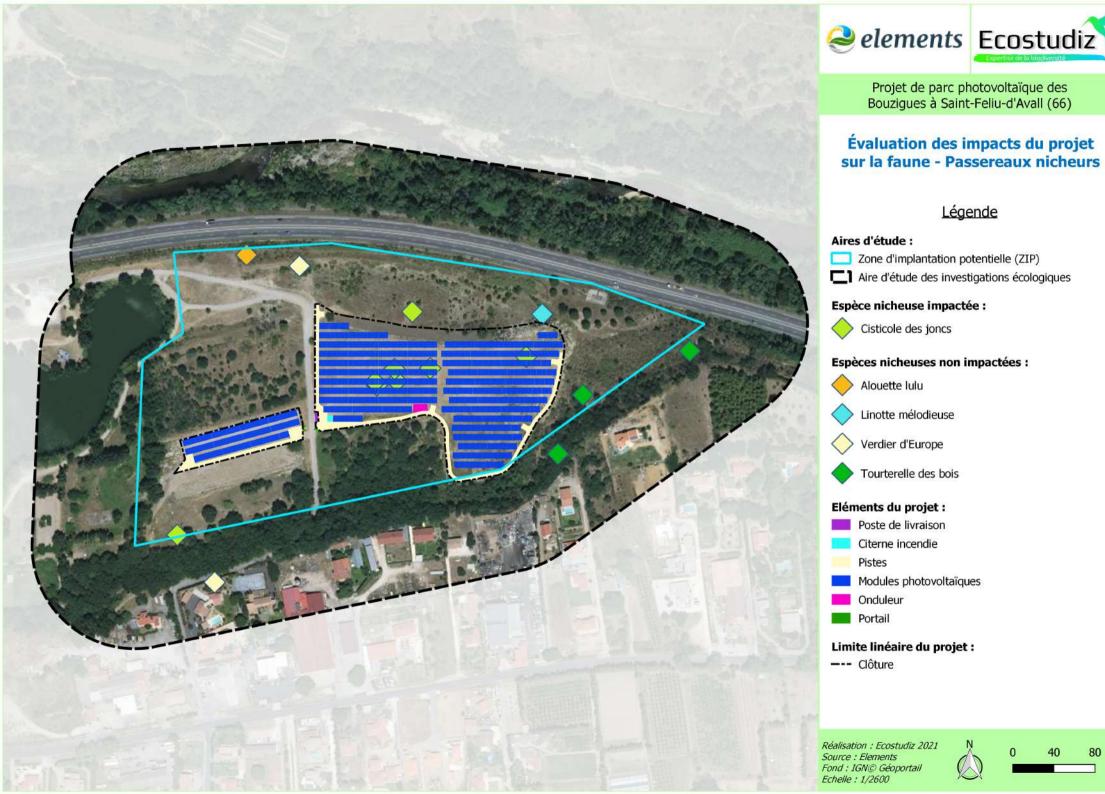

4.3.2 Sur le plan paysager

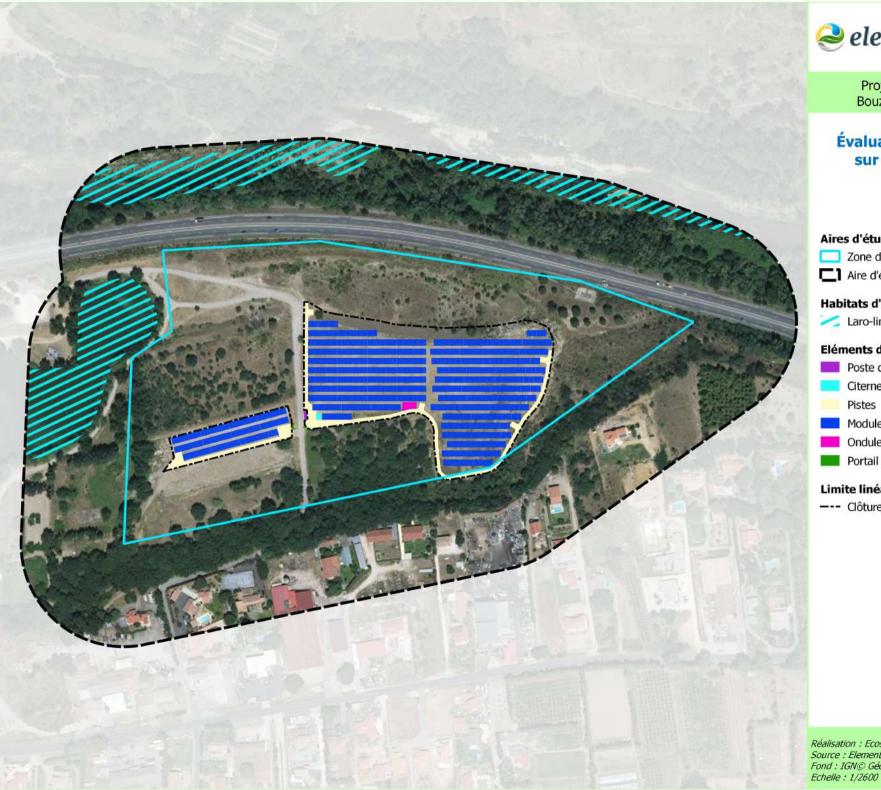

La conservation des terrains boisés, le maintien des talus existants et la mise en place de plantations arbustives et arborées le long des clôtures donnant du côté du chemin des Bouzigues permettent une meilleure insertion paysagère du projet.


Comme évoqué dans cet avis la suppression ou l'éloignement des quatre tables photovoltaïques au nord-ouest permettrait une meilleure insertion paysagère, une meilleure protection de la dépression humide et une meilleure continuité écologique.









Echelle: 1/2600

Évaluation des impacts du projet sur la faune - Laro-limicoles

Légende

Aires d'étude :

- Zone d'implantation potentielle (ZIP)
- Aire d'étude des investigations écologiques

Habitats d'espèces :

Laro-limicoles - Nidification / Repos

Eléments du projet :

- Poste de livraison
- Citerne incendie
- Pistes
- Modules photovoltaïques
- Onduleur
- Portail

Limite linéaire du projet :

--- Clôture

Réalisation : Ecostudiz 2021 Source : Elements Fond : IGN© Géoportail

Évaluation des impacts du projet sur la faune - Rapaces

Légende

Aires d'étude :

- Zone d'implantation potentielle (ZIP)
- Aire d'étude des investigations écologiques

Habitats d'espèces :

Rapaces - Zone de chasse

Eléments du projet :

- Poste de livraison
- Citerne incendie
- **Pistes**
- Modules photovoltaïques
- Onduleur
- Portail

Limite linéaire du projet :

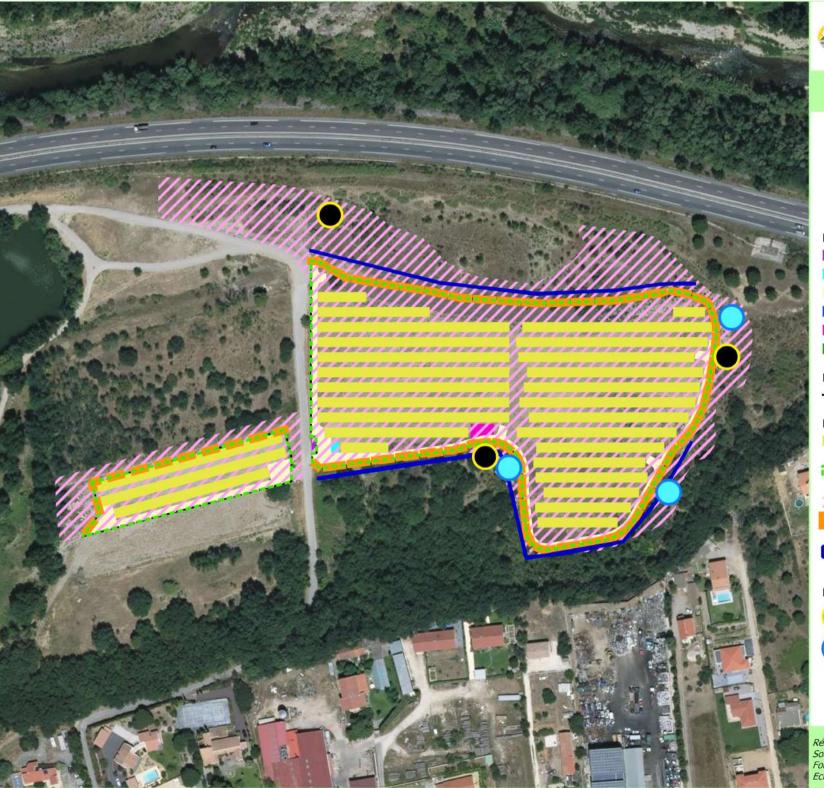
--- Clôture

Réalisation : Ecostudiz 2021 Source : Elements Fond : IGN© Géoportail Echelle : 1/2600

Mesures à mettre en oeuvre pour la faune

Légende

Mesures de réduction :


- Espacement et réhaussement des tables photovoltaïques (MR-Tab)
- Favoriser les déplacements de la petite faune terrestre (MR-Dep)
 - Gestion écologique du site (MR-Ges)
- Mise en défens des zones sensibles et limitation des emprises des travaux (MR-Lim)
- Mise en place d'une barrière anti-intrusion d'amphibiens (MR-Bar)

Mesures d'accompagnement (MA):

- 3 gîtes à reptiles à créer
- 3 mares à créer de 30 m² chacune

Réalisation : Ecostudiz 2021 Source : Elements Fond : IGN© Géoportail Echelle : 1/1600

Mesures à mettre en oeuvre pour la faune

Légende

Eléments du projet :

- Poste de livraison
- Citerne incendie
 - **Pistes**
- Modules photovoltaïques
- Onduleur
- Portail

Limite linéaire du projet :

--- Clôture

Mesures de réduction :

- Espacement et réhaussement des tables photovoltaïques (MR-Tab)
- Favoriser les déplacements de la petite faune terrestre (MR-Dep)
- Gestion écologique du site (MR-Ges)
- Mise en défens des zones sensibles et limitation des emprises des travaux (MR-Lim)
- Mise en place d'une barrière anti-intrusion d'amphibiens (MR-Bar)

Mesures d'accompagnement (MA):

- 3 gîtes à reptiles à créer
- 3 mares à créer de 30 m² chacune

Réalisation : Ecostudiz 2021 Source : Elements Fond : IGN© Géoportail Echelle: 1/1600

Projet d'implantation

Citernes

Modules

Placette de rencontre

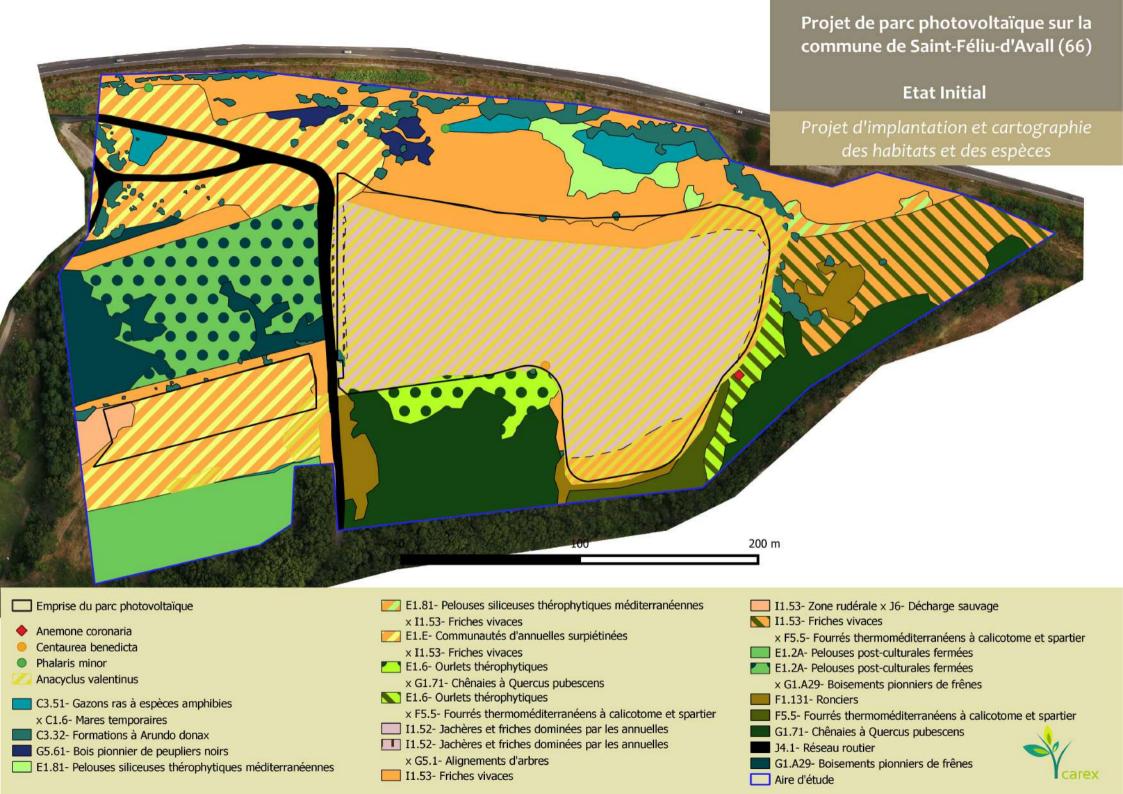
Poste de Livraison

Poste de transformation

Voies d'accès

Zone d'évitement

☐ Clotures


Mesures de réduction

--- MR-Bal : Balises à poser

* MR-Dep : Zone de semis

MR-Gest

ELEMENTS

Lieu-dit des Campellanes – SAINT FELIU D'AVALL (66)

Diagnostic environnemental du milieu souterrain

Rapport

Réf: CESISO212405 / RESISO13233-01

FRP / NSO

06/10/2021

SIGNALETIQUE

CLIENT

RAISON SOCIALE	ELEMENTS
COORDONNÉES	21 rue de Verdun 34000 MONTPELLIER
INTERLOCUTEUR (nom et coordonnées)	L.DESPLANQUES Tel: 07.57.44.27.63 loann.desplanques@elements.green

GINGER BURGEAP

ENTITE EN CHARGE DU DOSSIER	Agence GINGER BURGEAP Agence Sud-Ouest • 2 avenue de Flourens – 31130 Balma Tél : 05.62.88.22.60 • burgeap.toulouse@groupeginger.com
CHEF DU PROJET	Frédéric PERUS
	Tél. 06.78.12.42.21
	E-mail: f.perus@groupeginger.com
COORDONNÉES Siège Social	Siège Social
SAS au capital de 1 200 000 euros dirigée par Claude MICHELOT	143, avenue de Verdun
SIRET 682 008 222 000 79 / RCS Nanterre B 682 008	92442 ISSY LES MOULINEAUX
222/ Code APE 7112B / CB BNP Neuilly – S/S 30004 01925 00010066129 29	Tél: 01.46.10.25.70
	E-mail: burgeap@groupeginger.com

RAPPORT

Offre de référence	PESISO14981-02 du 19/08/2021
Numéro de contrat / de rapport :	Réf : CESISO212405 / RESISO13233-01
Numéro d'affaire :	A57394
Domaine technique :	SP11

SIGNATAIRES

DATE	Indice	Rédaction Nom / signature	Vérification Nom / signature	Supervision / validation Nom / signature
		F.PERUS	N.SONALLY	N.SONALLY
06/10/2021	02		and for	_ndf/

SOMMAIRE

Syn		echnique	
1.	Introd	uction	7
	1.1	Objet de l'étude	7
	1.2	Codification des prestations	
	1.3	Documents de référence et ressources documentaires	
2.	Locali	sation et environnement du site	9
3.	Etude	historique, documentaire et mémorielle (A110)	11
	3.1	Evolution générale du site - Etude des photographies aériennes	11
	3.2	Historique des activités pratiquées sur le site	13
	3.3 3.4	Données disponibles sur l'état du milieu souterrain (études antérieures) Conclusion sur l'étude historique et identification des activités	
	011	potentiellement polluantes	13
4.	Conte	xte environnemental et étude de vulnérabilité des milieux (A120)	
	4.1	Contexte climatique	
	4.2	Contexte géologique	
	4.3 4.4	Contexte hydrologique Contexte hydrogéologique	
5.	Invest	igations sur les sols (A200)	18
	5.1	Nature des investigations	
	5.2	Observations et mesures de terrain 5.2.1 Succession lithologique	
		5.2.2 Niveaux suspects et mesures PID	
	5.3	Stratégie et mode opératoire d'échantillonnage	22
	5.4	Conservation des échantillons	22
	5.5 5.6	Valeurs de référence pour les solsRésultats et interprétation des analyses sur les sols	
		·	
6.	Aspec	t des guides et normes en vigueur	26
7.	Synth	èse et recommandations	
	7.1	Synthèse	
	7.2	Recommandations	
Lim	ites d'u	tilisation d'une étude de pollution	28
	GURE	.	
ГК	JUKE		
Fiauı	re 1 : Loca	alisation du site	10
Figui	e 2 : Cart	e de synthèse de l'étude historique - identification des activités/installations	
pote	ntiellemen	t polluantese géologique 1/50 000 ^{ème} (Source : NEOSOLUS)	14
Figu	re 3 : Cart	e géologique 1/50 000 en (Source : NEOSOLUS)	16
rigui	re 4 : Loca	alisation des investigations, et indices de pollution significatifs relevés	21

TABLEAUX

Tableau 1 : Ressources documentaires consultées	9
Tableau 2 : Localisation et environnement du site	
Tableau 3 : Synthèse du contexte hydrogéologique	17
Tableau 4 : Investigations et analyses réalisées sur les sols	
Tableau 5 : Niveaux suspects et résultats des mesures de terrain	20
Tableau 6 : Résultats d'analyses sur les sols	24

ANNEXES

- Annexe 1. Photographies aériennes historiques
- Annexe 2. Propriétés physico-chimiques
- Annexe 3. Fiches d'échantillonnage des sols
- Annexe 4. Méthodes analytiques, LQ et flaconnage
- Annexe 5. Bordereaux d'analyse des sols
- Glossaire

Synthèse technique

CONTEXTE			
ELEMENTS	ELEMENTS		
Nom / adresse du site	Lieu-dit des Campellanes – S.	AINT FELIU D'AVALL (66)	
Contexte de l'étude	Projet de création d'un parc p	hotovoltaïque.	
Projet d'aménagement	Parc photovoltaïque en lieu et	place du terrain vague actuel	
	Superficie totale	3,2 ha	
	Parcelles cadastrales	N°68, et une partie des parcelles n°61, 63 et 67 de la section AB	
Informations sur	Propriétaire	Non communiqué	
le site lui-même	Exploitant et usage actuel	Sans usage, terrain vague	
	Environnement proche	Péri-urbain mixte	
	Historique connu	Ancien site d'extraction d'alluvion remblayé et ancienne décharge sauvage en partie ouest	
Statut réglementaire	Installation ICPE et régime	Non concerné	
Statut regiementaire	Situation administrative	Néant	
Contexte géologique et	Géologie	 Des alluvions de galets et graviers jusqu'à une profondeur de 4 mètres; Des argiles jaunes, jusqu'à une profondeur de 40 mètres environ. 	
hydrogéologique	Hydrogéologie	 La nappe superficielle est contenue dans les Alluvions quaternaires du Roussillon, et s'établirait vers 7 m de profondeur; Sens d'écoulement présumé est de l'ouest vers l'est 	
Impacts connus sur le milieu souterrain	Etudes antérieures	Aucune étude de la qualité des sols n'a été menée à ce jour au droit du site	

MISSION			
Intitulé et objectifs	Investigations sur les sols afin de caractériser les sols en place, et d'établir un état initial des sols.		
Historique du site	 D'au moins 1947 au début des années 1970 : parcelles agricoles ; entre le début des années 1970, et la fin des années 1990 : extractions de terres/alluvions ; Sans usage précis jusqu'à 2021. A noter qu'une décharge illicite est notée sur la partie ouest en 2005. 		
Investigations réalisées	Sols	12 fouilles à la pelle mécanique réalisées par GINGER CEBTP (jusqu'à 3,2 m de profondeur)	
Polluants recherchés	Sols	HCT C ₅ -C ₄₀ , HAP, BTEX, 8 métaux, COHV, Pack ISDI	
Résultats des investigations	Qualité du sous-sol et impacts identifiés	 Aspect pollution /sanitaire Absence d'impact significatif relevé sur les échantillons analysés Aspect gestion des terres excavées Les remblais foncés retrouvés sur l'ancienne décharge devront être éliminés en ISDND¹ en cas d'évacuation de ceux-ci. Les autres terres semblent inertes, toutefois en cas d'évacuation, une analyse de type ISDI² devra être réalisé afin de confirmer cette tendance. 	
RECOMMANDATIONS	I		
Conséquences sur le projet / recommandations	Mesures de gestion à prévoir	 Hormis les remblais foncés relevés au droit de l'ancienne décharge, en cas d'évacuation des terres, une analyse de type pack ISDI devra être réalisée afin de confirmer le caractère inerte des matériaux en place; Afin de respecter les guides de réhabilitation des décharges, le projet d'aménagement devra permettre de limiter au maximum le ruissellement et l'infiltration des eaux de pluie au travers des déchets. Une gestion spécifique des eaux pluviales devra être prévue en ce sens. Dans la mesure du possible, le site devra être végétalisé pour limiter les infiltrations; en cas de nivellement, déblaiement/remblaiement, les déchets ne devront pas être remis en surface (évacués du site ou maintenus sous au moins 50 cm de terres). Tout déchet visible en surface devra être évacué du site; en cas de découverte d'anomalies dans les sols (terres odorantes, grasses), un diagnostic devra être mené afin de dimensionner les zones impactées et en définir les modalités de gestion. 	

 ¹ Installation de Stockage de Déchets Non Inertes
 ² Installation de Stockage de Déchets Inertes

1. Introduction

1.1 Objet de l'étude

La société ELEMENTS projette de créer un parc photovoltaïque sur un terrain d'environ 3,2 ha situé en bordure est du lac des Bouzigues, au lieu-dit des Campellanes sur la commune de St Felliu d'Avall (66).

C'est dans ce contexte que la société ELEMENTS a missionné BURGEAP pour la réalisation d'un diagnostic environnemental du milieu souterrain objet de ce rapport, faisant suite à notre offre référencée PESISO14981-02 en date du 19/08/2021.

En raison du passif du site (ancien site d'extraction d'alluvion remblayé et ancienne décharge sauvage en partie ouest), ELEMENTS souhaite disposer d'une expertise complémentaire relative au risque pollution.

1.2 Codification des prestations

Le présent rapport est conforme à la méthodologie nationale de gestion des sites et sols pollués d'avril 2017 et aux exigences de la norme AFNOR NF X 31-620 1, 2 et 5 : décembre 2018 - « Qualité du sol – Prestations de services relatives aux sites et sols pollués », pour le domaine A : « Etudes, assistance et contrôle » et le domaine D : « Attestation de prise en compte des mesures de gestion de la pollution des sols et des eaux souterraines dans la conception des projets de construction ou d'aménagement ».

élér	estations mentaires (A)	Objectifs		Prestations globales (A)	Objectifs
COI	ncernées			concernées	
	A100 A110	Visite du site Etudes historiques, documentaires et		AMO AMO en phase études	Assister et conseiller son client pendant tout ou partie de la durée du projet, en phase études.
		mémorielles Etude de vulnérabilité des		LEVE Levée de doute	Le site relève-t-il de la politique nationale de gestion des sites pollués, ou bien est-il « banalisable » ?
	A120	milieux Elaboration d'un programme		INFOS	Réaliser les études historiques, documentaires et de vulnérabilité, afin d'élaborer un schéma conceptuel et, le cas échéant, un programme prévisionnel d'investigations.
	A130	prévisionnel d'investigations — Prélèvements, mesures,			Investiguer des milieux (sols, eaux souterraines, eaux superficielles et sédiments, gaz du sol, air ambiant) afin
	A200	observations et/ou analyses sur les sols		DIAG	d'identifier et/ou caractériser les sources potentielles de pollution, l'environnement local témoin, les vecteurs de
	A210	Prélèvements, mesures, observations et/ou analyses sur les eaux souterraines			transfert, les milieux d'exposition des populations et identifier les opérations nécessaires pour mener à bien le projet Etudier, en priorité, les modalités de suppression des
	A220	Prélèvements, mesures, observations et/ou analyses sur les eaux superficielles et/ou les sédiments		PG	pollutions concentrées. Cette prestation s'attache également à maîtriser les impacts et les risques associés (y compris dans le cas où la suppression des pollutions concentrées s'avère techniquement complexe et financièrement disproportionnée)
	A230	Prélèvements, mesures, observations et/ou analyses sur les gaz du sol		Plan de gestion dans le cadre d'un projet de	et à gérer les pollutions résiduelles et diffuses. Réalisation d'un bilan coûts-avantages (A330) qui permet un arbitrage entre les différents scénarios de gestion possibles (au moins deux), relidée d'un point de vuy conjecte (A330). Précapiactions deux,
	A240	Prélèvements, mesures, observations et/ou analyses sur l'air ambiant et les poussières atmosphériques		réhabilitation ou d'aménagement d'un site	validés d'un point de vue sanitaire (A320). Préconisations sur la nécessité de réaliser, ou non, les prestations un plan de conception des travaux (PCT), un contrôle de la mise en œuvre des mesures (CONT), un suivi environnemental (SUIVI), la mise en place de restrictions d'usage et la définition des modalités de leur mise en œuvre .Précision des mécanismes de conservation de la mémoire en lien avec les scénarios de gestion proposés
	A250	Prélèvements, mesures, observations et/ou analyses sur les denrées alimentaires		IEM	La prestation IEM est mise en œuvre en cas de la mise en évidence d'une pollution historique sur une zone où l'usage est fixé (installation en fonctionnement, quartier résidentiel, etc.),
	A260	Prélèvements, mesures, observations et/ou analyses sur les terres excavées			la mise en évidence d'une pollution hors des limites d'un site, un signal sanitaire Comparable à une photographie de l'état des milieux et des usages, la prestation IEM vise à s'assurer que l'état des milieux d'exposition est compatible avec les usages existants [9]. Elle permet de distinguer les situations qui ne nécessitent aucune action particulière, peuvent faire l'objet d'actions simples de gestion pour rétablir la compatibilité entre l'état des
	A270	Interprétation des résultats des investigations		Interprétation de l'Etat des Milieux	
	A300	Analyse des enjeux sur les ressources en eaux			
	A310	Analyse des enjeux sur les ressources environnementales		SUIVI	milieux et leurs usages constatés, nécessitent la mise en œuvre d'un plan de gestion Suivi environnemental
-			H	551VI	Interpréter les résultats des données recueillies au cours des
	A320	Analyse des enjeux sanitaires Identification des différentes		BQ Bilan quadriennal	quatre dernières années de suivi Mettre à jour l'analyse des enjeux concernés par le suivi sur la
	A330	options de gestion possibles et réalisation d'un bilan		and quadronial	période sur les ressources en eau, environnementales et l'analyse des enjeux sanitaires Vérifier la conformité des travaux d'investigation ou de
		coûts/avantages		CONT Contrôles	surveillance Contrôler que les mesures de gestion sont réalisées conformément aux dispositions prévues
	□ A400	Dossiers de restriction d'usage, de servitudes		XPER	Expertise dans le domaine des sites et sols pollués
				passif environnemental	Effectuer les vérifications en vue d'évaluer le passif environnemental lors d'un projet d'acquisition d'une entreprise
			glo	estations obales (D) ncernées	Objectifs
				ATTES	Attestation à joindre aux demandes de permis de construire (PC) ou d'aménager dans les secteurs d'information sur les sols (SIS) ou au second changement d'usage (loi ALUR).

1.3 Documents de référence et ressources documentaires

Les documents utilisés pour la réalisation de cette étude sont présentés dans le Tableau 1.

Tableau 1 : Ressources documentaires consultées

Organisme consulté	Nature des données/références
ELEMENTS	Etude d'impact réalisée par NEOSOLUS, référencée NEOSOLUS_EIE_1sur2_ST_FELIU_ÉLÉMENTS_V1, et datée de janvier 2021
Cadastre.gouv	Parcelles cadastrales
IGN	Photographies aériennes de 1942 à 2009
IGN	Topographie, situation géographique, fonds de carte

2. Localisation et environnement du site

Le tableau et la figure ci-dessous permettent d'appréhender la localisation et les abords du site d'étude.

Tableau 2: Localisation et environnement du site

Adresse du site	Lieu-dit des Campellanes – SAINT FELIU D'AVALL (66)		
Superficie totale	3,2 ha environ		
Parcelles cadastrales	N°68, et une partie des parcelles n°61, 63 et 67 de la section AB		
Propriétaire du site	Non communiqué		
Exploitant du site (et activité de l'exploitant)	Non exploité (terrain vague végétalisé)		
Altitude moyenne / Topographie	67 m NGF (Nivellement Général de la France) en moyenne / terrain globalement plat, avec un léger dénivelé positif vers l'ouest.		
Abords du site (Figure 1)	Le site est localisé au nord et à l'ouest d'une zone mixte constituée de commerces divers et d'habitations individuelles, à l'est d'un lac artificiel, et au sud de la N116 et de La Têt.		

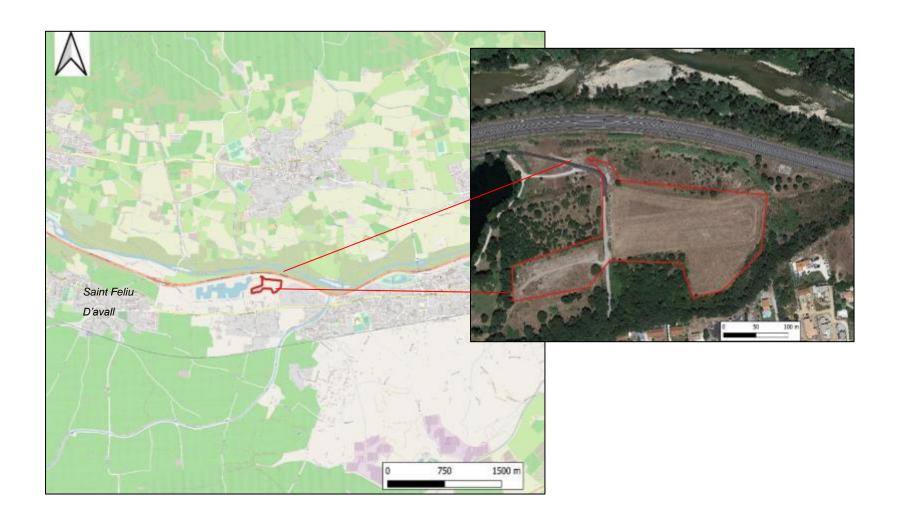


Figure 1 : Localisation du site

3. Etude historique, documentaire et mémorielle (A110)

3.1 Evolution générale du site - Etude des photographies aériennes

D'après les photographies aériennes anciennes des années 1942, 1967, 1977, 1980, 1985, 1988, 1991, 1994, 1998 et 2009, le site a subi des mouvements de terres (excavations, remblaiements) entre le début des années 1970, et la fin des années 1990. Le site était auparavant composé de parcelles agricoles aux cultures variées.

Ces informations sont reprises sur la Figure 2 et les clichés (ou extrait de clichés) les plus significatifs des évolutions historiques du site et de ses environs figurent ci-après.

1942-1967: Le site est composé de parcelles agricoles de diverses cultures (céréalières et arbres fruitier).

Extérieur du site : L'environnement du site est composé de parcelles agricoles

1971-1977: Des mouvements de terres sont visibles sur la partie centrale du site (parcelle verticale).

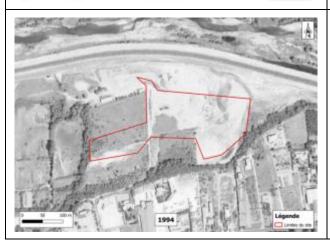
Extérieur du site : Le lit de la Têt a été dévié, et des mouvements de terres sont notés au nord-ouest du site.

1978-1980 : des mouvements de terres sont identifiables sur l'ensemble de la partie centrale.

Extérieur du site : Le lit de la Têt semble avoir subi des modifications supplémentaires.

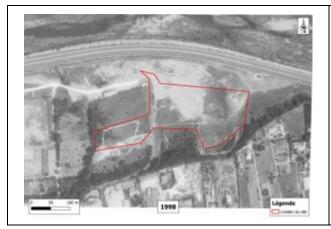
1982-1985: des stocks de terres sont clairement identifiables sur la partie centrale.

Extérieur du site : Au nord et à l'ouest du site, on note la présence d'activités et structures non identifiable



1988 : Peu de changements notables visibles

1991: Des stockages de terres sont toujours présents au centre du site. On note des décaissements significatifs jusqu'à la nappe sur la partie est, et la tranche nord.


Extérieur du site : Au nord, de nombreuses zones ont été décaissées jusqu'à la nappe. Des unités de décaissements sont également visibles

1994: Les zones décaissées ont été remblayées. La plupart des stocks semblent avoir disparus. La partie est du site semble remaniée, et est potentiellement excavée.

Extérieur du site : Au nord, les zones décaissées ont disparues et ont laissé place à la construction de la N116

1998 : Le site semble sans usages, comme à ce jour.

3.2 Historique des activités pratiquées sur le site

Les données historiques relevées sur les photographies aériennes historiques et dans l'étude d'impact de janvier 2021 mettent en évidence que le site d'étude est localisé sur une ancienne zone d'extraction de terres / alluvions. De plus, certains secteurs, notamment la partie ouest, ont été utilisés pour stocker des déchets de nature indéterminée (d'après les données, en 2005).

Le site n'est pas référencé dans la base de données des ICPE.

3.3 Données disponibles sur l'état du milieu souterrain (études antérieures)

Aucune étude de la qualité des sols n'a été réalisée au droit du site

3.4 Conclusion sur l'étude historique et identification des activités potentiellement polluantes

Les données recueillies ont permis de montrer que le site a successivement abrité :

- D'au moins 1947 au début des années 1970 : parcelles agricoles ;
- entre le début des années 1970, et la fin des années 1990 : extractions de terres/alluvions ;
- Sans usage précis jusqu'à 2021. A noter qu'une décharge illicite est notée sur la partie ouest en 2005.

Le site n'est pas référencé dans la base de données des ICPE.

Des activités potentiellement polluantes ont été identifiées. Elles sont localisées en Figure 2.

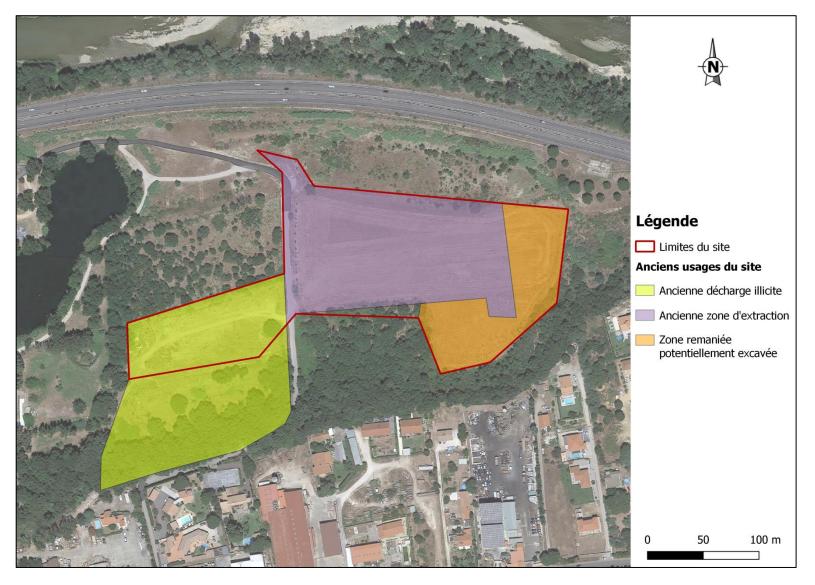


Figure 2 : Carte de synthèse de l'étude historique - identification des activités/installations potentiellement polluantes

4. Contexte environnemental et étude de vulnérabilité des milieux (A120)

Le contexte environnemental du site correspond à la synthèse des données recueillies dans l'étude d'impact réalisée par NEOSOLUS en janvier 2021.

4.1 Contexte climatique

La pluviométrie annuelle de la ville de Perpignan présente à environ 8 km du site, est modérée durant l'hiver de décembre à février (175,2 mm cumulée), faible en été entre juin et août (63 mm cumulée), et orageuse en automne (76 mm cumulée).

Les vents dominants sont orientés vers le nord-ouest.

4.2 Contexte géologique

Le site est localisé sur les terrasses alluviales du quaternaire, plus précisément sur les alluvions de la terrasse de Rivesaltes – Ille-sur-Têt (Fyb).

D'après le sondage « 10907X0081/ BAROCA » situé à 150 m au sud du site dans le même contexte géologique) dont les données sont archivées sur le serveur de la banque de données Infoterre, les formations géologiques susceptibles d'être rencontrées au droit de la zone d'étude sous d'éventuels remblais sont de la surface vers la profondeur :

- Des alluvions de galets et graviers jusqu'à une profondeur de 4 mètres ;
- Des argiles jaunes, jusqu'à une profondeur de 40 mètres environ.

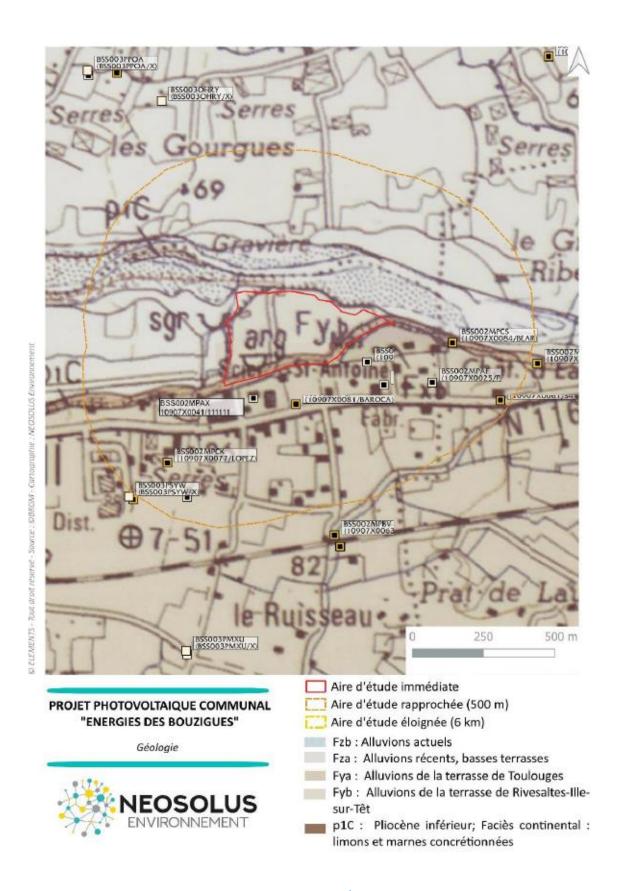


Figure 3 : Carte géologique 1/50 000 ème (Source : NEOSOLUS)

4.3 Contexte hydrologique

L'aire d'étude s'inscrite dans le bassin-versant de la Têt, sur la partie aval. Plus précisément, elle se localise entre la Têt (100 m au nord) et son affluent : le Rec du Castelnou (400 m à l'est).

4.4 Contexte hydrogéologique

Le Tableau 3 présente le contexte hydrogéologique du site.

Tableau 3 : Synthèse du contexte hydrogéologique

Aquifère	Typologie	Sens d'écoulement supposé	Profondeur du toit de la nappe (m/sol)	Relation nappe/eaux superficielles	Usage au droit du site
FR DG 351 « Alluvions quaternaires du Roussillon »	Alluviale libre	De l'ouest vers l'est	7	Des échanges avec les cours d'eau existent	Sans usage
FR DG 243 « Multicouche pliocène du Roussillon »	Captive	De l'ouest vers l'est	NC	Non	Sans usage

5. Investigations sur les sols (A200)

5.1 Nature des investigations

Le programme des investigations est présenté dans le Tableau 4.

Date d'intervention	15/09/2021
Prestataire de forage Technique de forage	GINGER CEBTP Pelle mécanique
Investigations menées	Cf. Tableau 4 et Figure 4
Ecarts au programme prévisionnel	Aucun écart au programme initial n'a été noté
Repli en fin de chantier	Sondages rebouchés avec les déblais de forage. Réfection des surfaces : Effectuées avec la pelle Déchets de chantier : Non générés

Tableau 4 : Investigations et analyses réalisées sur les sols

			Investigations						Analyses	
Milieux reconnus	Prestations /méthode	Localisation	on Objectifs		Prof. (ml)	Total ml	Mesures in situ	Pack pollution : 8 métaux, HC C10-C40 HAP BTEX COHV PCB	Pack ISDI conformément à l'arrêté du 12/12/2014	8 Métaux sur éluât (y compris lixiviation)
Sols	Sondage à la pelle mécanique	Répartis sur l'ensemble du site (remblais)	Reconnaître l'épaisseur des remblais avec éventuellement des déchets et le terrain naturel sous-jacent. Les caractériser d'un point de vue chimique.	12	2	24	PID	15	optionnel	optionnel
			TOTAL Sols	14		28		17	0	0

- HCT = indice hydrocarbures totaux
- BTEX = Benzène, Toluène, Ethylbenzène, Xylènes (5 composés)
- HAP = hydrocarbures aromatiques polycycliques (16 composés)
- 8 métaux = arsenic, cadmium, chrome, cuivre, nickel, plomb, zinc, mercure
- PCB = polychlorobiphényles (7 congénères réglementaires)
- COHV = composés organo-halogénés volatils (13 composés)
- Pack ISDI conformément à l'arrêté du 12/12/2014 incluant :
 - a) sur sol brut : matière sèche, hydrocarbures C10-C40, hydrocarbures aromatiques polycycliques (HAP), hydrocarbures aromatiques monocycliques (BTEX), polychlorobiphényles (PCB), carbone organique total (COT), test de lixiviation EN 12457-2 (L/S = 10, 1x 24h)
 - b) sur éluat : métaux et métalloïdes (As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, Zn), chlorures, fluorures, sulfates, indice phénol, carbone organique total (COT), fraction soluble

Les propriétés chimiques des polluants recherchés, les méthodes analytiques, les limites de quantification et le descriptif du flaconnage utilisé figurent en **Annexe 4.** On présente en **Annexe 2** les propriétés chimiques des polluants recherchés et un glossaire.

5.2 Observations et mesures de terrain

Les terrains recoupés en sondage ont été décrits avant échantillonnage :

- succession lithologique;
- présence ou non de niveaux jugés suspects (traces de souillures, caractéristiques organoleptiques anormales (odeur, couleur, texture), présence de matériaux de type déchets, mâchefers, verre, bois...);
- présence ou non de composés organiques volatils dans les gaz des sols (évaluée au niveau de chaque échantillon prélevé au moyen d'un détecteur à photo-ionisation (PID) régulièrement calibré).

Les échantillons ont ensuite été sélectionnés pour analyses chimiques en laboratoire (cf. \$ 5.3).

5.2.1 Succession lithologique

Au regard des observations réalisées au cours des investigations, la succession des formations géologiques au droit du site est la suivante, de la surface vers la profondeur :

- des remblais sont retrouvés entre la surface et jusqu'à 3 mètres de profondeur selon les zones;
- le terrain naturel sous les remblais correspond à des horizons sableux à graveleux.

Des déchets de chantier (briques, carrelages, ferrailles, morceaux de bois, plastiques...) sont retrouvés dans les horizons de remblais sur l'ensemble du site.

5.2.2 Niveaux suspects et mesures PID

Les caractéristiques des niveaux suspects sont reportées dans le tableau ci-dessous.

D'une manière générale, les remblais ont un aspect marron à gris avec la présence de déchets de chantier en faible quantité au niveau de l'ancienne zone d'extraction.

Au niveau de l'ancienne décharge illicite, des niveaux de remblais foncés présentant des déchets de chantier en quantité bien supérieure aux autres sondages ont été mis en évidence entre 1,1 à 1,6 jusqu'à 3 m de profondeur (profondeur maximale d'investigations).

L'intégralité des observations figure dans les fiches d'échantillonnage de sols rassemblées en Annexe 3.

Tableau 5 : Niveaux suspects et résultats des mesures de terrain

Sondage	Profondeur (m)	Lithologie	Indices de pollution
	0-1	Remblais	Morceaux de briques
F1	1,1-2,6	Remblais foncés	Morceaux de briques, quelques déchets plastiques et ferrailles
	0-0,3	Remblais	Morceaux de briques
F2	1,6-3	Remblais foncés	Légère odeur d'hydrocarbures, briques, ardoises, quelques morceaux de plastique, ferrailles et bois
F3	0-1,4	Remblais	Morceaux de briques, quelques déchets plastiques, quelques morceaux de carrelage
гэ	1,4-3	Remblais foncés	Quelques déchets plastiques, ferrailles, morceaux de bois
F6	0,5-2,3	Remblais	Quelques déchets plastiques, morceaux de carrelages et d'enrobés
F7	0,5-2,1	Remblais	Quelques déchets plastiques, et morceaux de briques
Г	2,1-2,9	Remblais	Quelques morceaux de plastique
	0,4-1,6	Remblais	Quelques déchets plastiques
F8	1,6-2,3	Remblais	Odeur d'hydrocarbures? Un bout de planche en bois et quelques déchets plastiques
F9	0,4-2,8	Remblais	Quelques déchets plastiques, morceaux de brique et d'enrobé
F10	0,5-1,6	Remblais	Quelques déchets plastiques, morceaux de brique et d'enrobé
	1,6-2 ;9	Remblais	Aspect gris foncé
F11	0,5-1,6	Remblais	Quelques déchets plastiques ponctuels
F12	0,25-1,6	Remblais	Morceaux de plastique et briques
F12	1,6-3,2	Remblais	Morceaux de briques, et débris divers

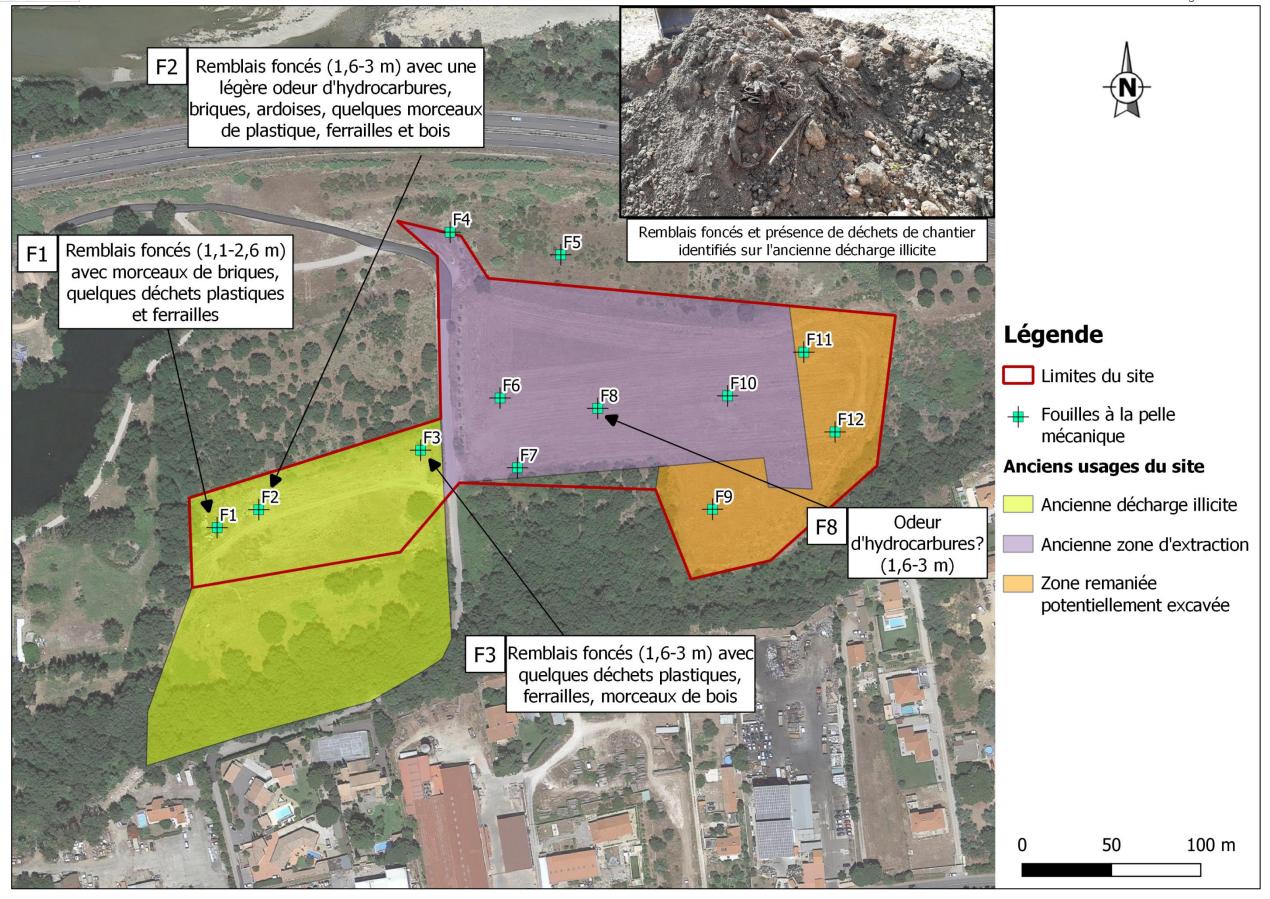


Figure 4 : Localisation des investigations, et indices de pollution significatifs relevés

Réf : CESISO212405 / RESISO13233-01 FRP / NSO 06/10/2021 Page 21/28

5.3 Stratégie et mode opératoire d'échantillonnage

Après le levé de la coupe du sondage, le collaborateur de GINGER BURGEAP a procédé au prélèvement des échantillons de sols les plus représentatifs selon le protocole détaillé ci-après :

- un échantillon pour chaque horizon lithologique homogène identifié sur l'ensemble du site;
- un échantillon de chaque niveau lithologique suspect.

Une fois prélevés, les échantillons ont été conditionnés dans des bocaux d'une contenance de 375 ml.

Les échantillons soumis à analyses en laboratoire ont été choisis en fonction des observations de terrain et/ou de leur proximité d'une installation potentiellement polluante ayant pu avoir un impact sur les milieux étudiés.

5.4 Conservation des échantillons

Après description, conditionnement et étiquetage, les échantillons de sol ont été stockés en glacière jusqu'à leur arrivée au laboratoire.

5.5 Valeurs de référence pour les sols

Conformément à la méthodologie en vigueur, les concentrations dans les sols au droit de la zone d'étude ont été comparées en premier lieu à des concentrations caractéristiques de bruit de fond régionaux ou propre à certains contextes (urbain, agricole...). Dans un second temps, l'ensemble des résultats obtenus sur le site sera pris en compte pour évaluer le bruit de fond propre au site pour chaque famille de polluants et déterminer si le site présente des zones de pollution concentrée.

Ces valeurs de comparaison sont présentées dans les premières colonnes des tableaux de présentation des résultats d'analyse.

Métaux et métalloïdes sur sol brut	La gamme de concentrations qui sera utilisée pour comparaison est celle mise en évidence dans les sols naturels ordinaires (sans anomalie géochimique) dans le cadre du programme INRA-ASPITET. A défaut, nous utiliserons également les valeurs proposées par l'ATSDR (Agency for Toxic Substances and Disease Registry). Pour le plomb, le Haut Conseil de Santé Publique (HCSP) mentionne une valeur de 300 mg (Pb)/kg sol, comme étant une valeur seuil entraînant un dépistage du saturnisme infantile. Un seuil de vigilance a également été établi à 100 mg/kg de plomb dans les sols. Ces valeurs sont des valeurs de gestion mais ne constituent pas la valeur du bruit de fond.
НАР	En l'absence de données locales, les valeurs de référence qui seront utilisées sont issues de celles établies par l'ATSDR (Toxicological profile for PAHs, 1995 et 2005) et de celles des fiches toxicologiques de l'INERIS pour des sols urbains ou agricoles.
Autres composés	Pour les autres composés, en l'absence de valeurs caractérisant le bruit de fond, un simple constat de présence ou d'absence a été réalisé en référence à des teneurs supérieures ou inférieures aux limites de quantification du laboratoire.
	Les concentrations sur le sol brut et sur l'éluât ont été comparées : • aux critères d'acceptation définis dans l'arrêté du 12 décembre 2014 relatif aux
Gestion des déblais	déchets inertes ; • à la Décision du Conseil du 19 décembre 2002 « établissant des critères et des procédures d'admission des déchets dans les décharges, conformément à l'article 16 et à l'annexe II de la directive 1999/31/CE » ;
	 aux valeurs couramment utilisées par les exploitants d'installations de stockage de déchets. Il s'agit ici de données issues de notre expérience et de notre connaissance du marché local³.

Notons que si une réutilisation des terres est effectivement envisagée, les caractéristiques géotechniques des terrains à réutiliser devront être évaluées par le maitre d'ouvrage et l'ensemble des recommandations des guides cités ci-dessus devra être pris en compte.

5.6 Résultats et interprétation des analyses sur les sols

Les résultats d'analyse sont synthétisés dans le Tableau 6.

Les bordereaux des analyses réalisées dans le cadre de ce diagnostic sont présentés en Annexe 5

Réf : CESISO212405 / RESISO13233-01 FRP / NSO 06/10/2021 Page 23/28

³ Rappelons que ces critères n'ont pas de valeur réglementaire mais l'acceptation des terres dans un centre de stockage de déchets dépend de l'accord de l'exploitant, dernier décisionnaire quant à l'acceptation des terres au regard de ses arrêtés préfectoraux et de sa stratégie pour l'exploitation de son installation.

Tableau 6 : Résultats d'analyses sur les sols

				Localisation	Ancienne	décharge	Ancienne zone d'extraction		on	
				Sondage	F2	F3	F4	F8	F10	
				Profondeur (m)	1,6-2,5	1,4-2,5	0-0,5	1,6-2	0,5-1	
		Bruit de fond	Valeurs limite	Lithologie	Remblais foncés	Remblais foncés	Remblais brun clair	Remblais limons sableux	Remblais	
		(b)	des ISDI*	Indices organoleptiques	Légère odeur d'hydrocarbures, briques, ardoises, quelques morceaux de plastique, ferrailles et bois	Quelques déchets plastiques, ferrailles, morceaux de bois	-	Odeur d'hydrocarbures? Un bout de planche en bois et quelques déchets plastiques	Quelques déchets plastiques, morceaux de brique et d'enrobé	
ANALYSES SUR SOL BRUT	0/		ı		00.4	70.0	05.7	00.0	00.0	
Matière sèche COT	%	-	-		86,4	79,3	95,7	93,2	89,9	
COT Carbone Organique Total (a) Métaux et métalloïdes	mg/kg Ms	-	30 000		7 200					
Arsenic (As) Cadmium (Cd)	mg/kg Ms mg/kg Ms	25 0,45	Résultats de lixiviation			20 0,4	14 0,2	20 <0,1	12 0,2	
Chrome (Cr)	mg/kg Ms	90	conformes aux			20	13	20	16	
Cuivre (Cu) Mercure (Hg)	mg/kg Ms mg/kg Ms	20 0,1	seuils définis pour les déchets			110 <0,05	20 <0,05	41 <0,05	31 <0,05	
Nickel (Ni) Plomb (Pb)	mg/kg Ms mg/kg Ms	60 50	inertes dans l'arrêté du			22 63	12 12	20 20	13 18	
Zinc (Zn) Hydrocarbures volatils C5-C10	mg/kg Ms	100	12/12/2014			130	78	68	52	
Fraction C5-C6 Fraction C6-C8	mg/kg Ms mg/kg Ms	LQ LQ	-		<0,20 <0,40	0,57 0,88	<0,20 <0,40	<0,20 <0,40	<0,20 <0,40	
Fraction C8-C10	mg/kg Ms	LQ	-		<0,40	0,92	<0,40	< 0,40	<0,40	
Somme des hydrocarbures C5-C10 Indice hydrocarbure C10-C40	mg/kg Ms	LQ	•		<1,0	2,4	<1,0	<1,0	<1,0	
Fraction C10-C12 Fraction C12-C16	mg/kg Ms mg/kg Ms	LQ LQ	-		<4,0 <4,0	<4,0 <4,0	<4,0 <4,0	<4,0 <4,0	<4,0 <4,0	
Fraction C16-C20 Fraction C20-C24	mg/kg Ms mg/kg Ms	LQ LQ	-		3,4 5,4	6,7 6,8	<2,0 <2,0	5,7 5	2,9 4,1	
Fraction C20-C24 Fraction C24-C28 Fraction C28-C32	mg/kg Ms	LQ	-		8,4	9	<2,0 <2,0 <2,0	5	8,3	
Fraction C32-C36	mg/kg Ms mg/kg Ms	LQ LQ	-		8,8 4,4	8,2 3,8	<2,0	5,9 5,3	11 10,2	
Fraction C36-C40 Somme des hydrocarbures C10-C40	mg/kg Ms mg/kg Ms	LQ LQ	500		<2,0 34,5	<2,0 41,6	<2,0 <20,0	2,7 34,5	5 46,2	
HAP Naphtalène	mg/kg Ms	0,125	-		<0,050	<0,050	<0,050	<0,050	<0,050	
Acénaphtylène	mg/kg Ms	-	-		<0,050	<0,050 <0,050 <0,050	< 0,050	<0,050 <0,050 <0,050	<0,050 <0,050 <0,050	
Acénaphtène Fluorène	mg/kg Ms mg/kg Ms	-	-		<0,050 <0,050	<0,050	<0,050 <0,050	<0,050	<0,050	
Phénanthrène Anthracène	mg/kg Ms mg/kg Ms	-	-		0,17 <0,050	0,067 <0,050	<0,050 <0,050	0,3 0,056	<0,050 <0,050	
Fluoranthène Pyrène	mg/kg Ms mg/kg Ms	-	-		0,58 0,41	0,19 0,19	<0,050 <0,050	0,71 0,53	0,12 0,096	
Benzo(a)anthracène	mg/kg Ms	-	-		0,29	0,084	<0,050	0,32	0,097	
Chrysène Benzo(b)fluoranthène	mg/kg Ms mg/kg Ms	-	-		0,25 0,25	0,084 0,14	<0,050 <0,050	0,36 0,31	0,1 0,11	
Benzo(k)fluoranthène Benzo(a)pyrène	mg/kg Ms mg/kg Ms	-	-		0,16 0,32	<0,050 <0,050	<0,050 <0,050	0,19 0,4	0,063 0,13	
Dibenzo(a,h)anthracène Benzo(g,h,i)pérylène	mg/kg Ms mg/kg Ms	-	-		<0,050 0,31	<0,050 0,076	<0,050 <0,050	<0,050 0,28	<0,050 0,11	
Indéno(1,2,3-cd)pyrène Somme des HAP	mg/kg Ms mg/kg Ms	- 25	- 50		0,29 3,03	0,11 0,941	<0,050 <lq< td=""><td>0,29 3,75</td><td>0,11 0,936</td></lq<>	0,29 3,75	0,11 0,936	
BTEX			50							
Benzène Toluène	mg/kg Ms mg/kg Ms	LQ LQ	-		<0,050 <0,050	0,32 0,33	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	
Ethylbenzène m,p-Xylène	mg/kg Ms mg/kg Ms	LQ LQ	-		<0,050 <0,10	<0,10 <0,20	<0,05 <0,10	<0,05 <0,10	<0,05 <0,10	
o-Xylène Somme des BTEX	mg/kg Ms mg/kg Ms	LQ LQ	- 6		<0,050 <lq< td=""><td><0,10 0,65</td><td><0,050 <lq< td=""><td><0,050 <lq< td=""><td><0,050 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<0,10 0,65	<0,050 <lq< td=""><td><0,050 <lq< td=""><td><0,050 <lq< td=""></lq<></td></lq<></td></lq<>	<0,050 <lq< td=""><td><0,050 <lq< td=""></lq<></td></lq<>	<0,050 <lq< td=""></lq<>	
COHV					729		<0.05	<0.05		
Tétrachloroéthylène (PCE) Trichloroéthylène (TCE)	mg/kg Ms mg/kg Ms	LQ LQ	-			<0,10 <0,10	<0,05	< 0,05	<0,05 <0,05	
cis-1,2-dichloroéthylène trans-1,2-dichloroéthylène	mg/kg Ms mg/kg Ms	LQ LQ	-			<0,050 <0,050	<0,025 <0,025	<0,025 <0,025	<0,025 <0,025	
1,1-dichloroéthylène Chlorure de Vinyle	mg/kg Ms mg/kg Ms	LQ LQ	-			<0,20 <0,04	<0,10 <0,02	<0,10 <0,02	<0,10 <0,02	
1,1,2-trichloroéthane 1,1,1-trichloroéthane	mg/kg Ms mg/kg Ms	LQ LQ	-			<0,10 <0,10	<0,05 <0,05	<0,05 <0.05	<0,05 <0.05	
1,2-dichloroéthane	mg/kg Ms	LQ	-			<0,10	<0,05	<0,05	<0,05	
1,1-dichloroéthane Tétrachlorométhane (tétrachlorure de carbone)	mg/kg Ms mg/kg Ms	LQ LQ	-			<0,20 <0,10	<0,10 <0,05	<0,10 <0,05	<0,10 <0,05	
Trichlorométhane (chloroforme) Dichlorométhane	mg/kg Ms mg/kg Ms	LQ LQ	-			<0,10 <0,10	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	
Somme des COHV PCB	mg/kg Ms	LQ	2 (e)			<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
PCB (28)	mg/kg Ms	LQ LQ	-		<0,001 <0,001					
PCB (52) PCB (101) PCD (440)	mg/kg Ms mg/kg Ms	LQ	-		<0,001					
PCB (118) PCB (138)	mg/kg Ms mg/kg Ms	LQ LQ	-		<0,001 <0,001					
PCB (153) PCB (180)	mg/kg Ms mg/kg Ms	LQ LQ	-		<0,001 <0,001					
Somme des PCB	mg/kg Ms	LQ	1		<lq< td=""><td></td><td></td><td></td><td></td></lq<>					
ANALYSES SUR ELUAT Paramètres généraux										
рН	0/2	-	-		8,3 160					
Conductivité corrigée à 25 °C Fraction soluble (c)	μS/cm mg/kg M.S.	-	4000		160 1400					
Carbone organique total Indice phénol	mg/kg M.S. mg/kg M.S.	-	500 1		55 <0,10					
Anions		-								
Fluorures Chlorures (***)	mg/kg M.S. mg/kg M.S.	-	10 800		6 35					
Sulfates (***)	mg/kg M.S.	-	1000		150					
Métaux et métalloïdes Antimoine	mg/kg M.S.	-	0,06		0,05					
Arsenic	mg/kg M.S.	-	0,5		0,07					
Baryum Cadmium	mg/kg M.S. mg/kg M.S.	-	20 0,04		0,15 <0,001					
Chrome Cuivre	mg/kg M.S. mg/kg M.S.	-	0,5 2		<0,02 0,12					
Mercure	mg/kg M.S.	-	0,01		<0,0003					
Molybdène Nickel	mg/kg M.S. mg/kg M.S.	-	0,5 0,4		0,08 <0,05					
Plomb	mg/kg M.S.		0,5		<0,05					
Zinc Selenium	mg/kg M.S. mg/kg M.S.	-	4 0,1		<0,02 <0,05					
* Valeurs limites indicatives issues des textes européens.		l .		***************************************	-7			•	• • • • • • • • • • • • • • • • • • • •	

Selenium mg/kg M.S. - 0,1

* Valeurs limites indicatives issues des textes européens, des arrêtés ministériel et des critères communément appliqués par les centres de stockage (a) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 (b) Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols, Denis BAIZE, INRA. En italique : source = ATSDR (c) si le dechet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet neut être anoración lund conforma aux critères LQ : Limite de quantification du laboratoire concentration supérieure au bruit de fond

Sur sol brut

Métaux et métalloïdes

- Les remblais de l'ancienne zone d'extraction présentent des réponses en métaux peu significatives (inférieures ou proches du bruit de fond)
- Les remblais foncés retrouvés sur l'ancienne décharge présentent des dépassements du bruit de fond en cuivre (plus de 5 fois la valeur du bruit de fond), ainsi qu'en plomb et en zinc (valeurs proches du bruit de fond). Au regard des analyses sur éluât, ces métaux présentent un potentiel lixiviable faible.

Composés organiques

- Des réponses ponctuelles mais peu significatives sont mises en évidence pour les HCT C₅-C₄₀, les HAP, et les BTEX.
- On note l'absence de détection des COHV et des PCB

Sur éluats

L'absence de dépassement des seuils ISDI est notée sur l'échantillon de remblais de la zone de décharge analysé.

Zones de pollutions concentrées identifiées

Aucune pollution significative de la qualité chimique des sols n'est notée sur la base des analyses réalisées. On note toutefois des remblais foncés sur l'ancienne zone de décharge (cf. §5.2.2 et Figure 4), qui présentent des déchets de chantier de manière plus importante, mais dont la qualité chimique ne présente pas d'anomalie significative. S'ils doivent être évacués, ces remblais devront être éliminés en ISDND à cause de l'aspect de ceux-ci.

Gestion des déblais hors site

	de leurs caractéris		,	base des critères d'acceptation des filières de res d'élimination identifiées envisageables sont
⊠ ISDI	☐ ISDI+	⊠ ISDND		☐ Biotraitement

Au vu des résultats disponibles, les matériaux excavés pourront être réutilisés sur site en respectant les guides en vigueurs de réhabilitation des anciennes décharges (cf. §6).

En cas d'élimination hors site pour les besoins du projet (fondations), les matériaux contenant des déchets pourront faire l'objet d'un criblage avec élimination en ISDI, les DIB seront éliminés en filière adaptée.

En cas d'anomalie, les matériaux devront faire l'objet d'analyses complémentaires

Sur la base des éléments relevés lors de cette étude, la qualité chimique des sols est compatible avec les usages projetés (centrale de panneaux photovoltaïques).

6. Aspect des guides et normes en vigueur

D'après les guides de réhabilitation des décharges de l'ADEME (guide pratique de travaux, et le guide et cahier des charges), ainsi que la méthodologie des sites et sols pollués (BRGM) :

- Les travaux de réhabilitation d'une décharge viseront à réduire voire annuler les différents impacts du site sur son environnement, notamment par la réduction des entrées d'eau dans le massif des déchets :
- Au regard des enjeux pour la santé humaine, les ressources en eau et la biodiversité, il n'est ainsi plus envisageable de laisser en place des pollutions sans démontrer leur maîtrise et il en va notamment des sources de pollution et des pollutions concentrées. Aussi, il est recommandé d'excaver les zones d'impacts concentrées identifiées;
- Tout déchet apparent après réhabilitation devra être enlevé manuellement. Il est également recommander de végétaliser le site dans la mesure du possible, afin de limiter les infiltrations d'eau.

7. Synthèse et recommandations

7.1 Synthèse

La société ELEMENTS projette de créer un parc photovoltaïque sur un terrain d'environ 3,2 ha situé en bordure est du lac des Bouzigues, au lieu-dit des Campellanes sur la commune de St Felliu d'Avall (66).

C'est dans ce contexte que la société ELEMENTS a missionné BURGEAP pour la réalisation d'un diagnostic environnemental du milieu souterrain objet de ce rapport.

Historique du site

Les données recueillies ont permis de montrer que le site a successivement abrité :

- D'au moins 1947 au début des années 1970 : parcelles agricoles ;
- entre le début des années 1970, et la fin des années 1990 : extractions de terres/alluvions ;
- Sans usage précis jusqu'à 2021. A noter qu'une décharge illicite est notée sur la partie ouest en 2005.

Le site n'est pas référencé dans la base de données des ICPE.

Investigations

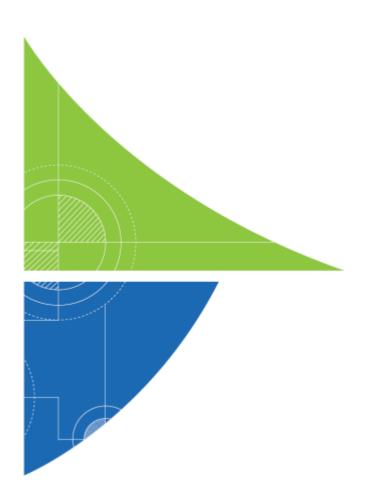
Les investigations sur les sols ont montré :

- La présence de remblais avec la présence de déchets de chantier relevés sur l'ensemble du site.
 On note toutefois des remblais foncés sur l'ancienne zone de décharge qui présentent des déchets de chantier de manière plus importante, mais dont la qualité chimique ne présente pas d'anomalie significative;
- L'absence d'impact significatif relevé sur les échantillons analysés ;
- Au vu des résultats disponibles, les matériaux excavés pourront être réutilisés sur site en respectant les guides en vigueurs de réhabilitation des anciennes décharges (cf. §6).
- En cas d'élimination hors site pour les besoins du projet (fondations), les matériaux contenant des déchets pourront faire l'objet d'un criblage avec élimination en ISDI, les DIB seront éliminés en fillère adaptée.
- Sur la base des éléments relevés lors de cette étude, la qualité chimique des sols est compatible avec les usages projetés (centrale de panneaux photovoltaïques).

7.2 Recommandations

Compte tenu de ces impacts, nous recommandons :

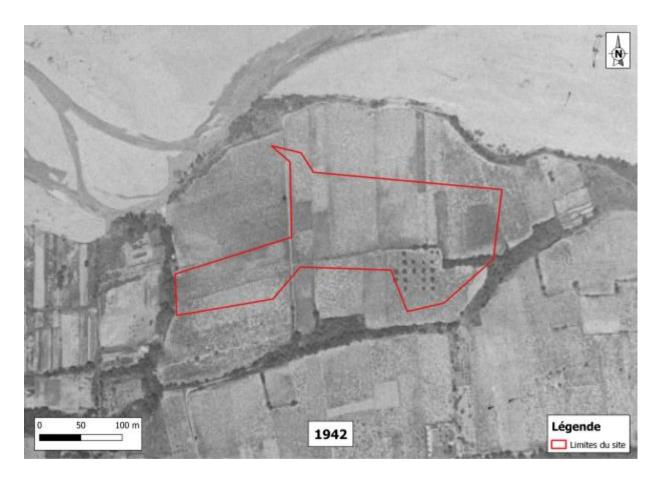
- Hormis les remblais foncés relevés au droit de l'ancienne décharge, en cas d'évacuation des terres, une analyse de type ISDI devra être réalisé afin de confirmer la tendance inerte des matériaux;
- Afin de respecter les guides de réhabilitation des décharges, le projet d'aménagement devra permettre de limiter au maximum le ruissellement et l'infiltration des eaux de pluie au travers des déchets. Une gestion spécifique des eaux pluviales devra être prévue en ce sens. Dans la mesure du possible, le site devra être végétalisé pour limiter les infiltrations;
- En cas de nivellement, déblaiement/remblaiement, les déchets ne devront pas être remis en surface (évacués du site ou maintenus sous au moins 50 cm de terres). Tout déchet visible en surface devra être évacué du site ;
- en cas de découverte d'anomalies dans les sols (terres odorantes, grasses), un diagnostic devra être mené afin de dimensionner les zones impactées et en définir les modalités de gestion.

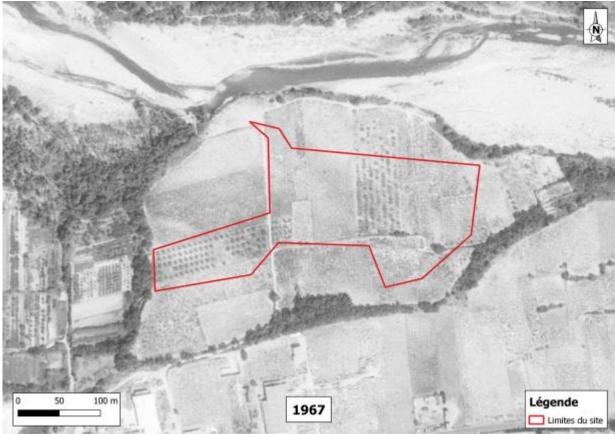

Limites d'utilisation d'une étude de pollution

- 1- Une étude de la pollution du milieu souterrain a pour seule fonction de renseigner sur la qualité des sols, des eaux ou des déchets contenus dans le milieu souterrain. Toute utilisation en dehors de ce contexte, dans un but géotechnique par exemple, ne saurait engager la responsabilité de notre société.
- 2- Il est précisé que le diagnostic repose sur une reconnaissance du sous-sol réalisée au moyen de sondages répartis sur le site, soit selon un maillage régulier, soit de façon orientée en fonction des informations historiques ou bien encore en fonction de la localisation des installations qui ont été indiquées par l'exploitant comme pouvant être à l'origine d'une pollution. Ce dispositif ne permet pas de lever la totalité des aléas, dont l'extension possible est en relation inverse de la densité du maillage de sondages, et qui sont liés à des hétérogénéités toujours possibles en milieu naturel ou artificiel. Par ailleurs, l'inaccessibilité de certaines zones peut entraîner un défaut d'observation non imputable à notre société.
- 3- Le diagnostic rend compte d'un état du milieu à un instant donné. Des évènements ultérieurs au diagnostic (interventions humaines, traitement des terres pour améliorer leurs caractéristiques mécaniques, ou phénomènes naturels) peuvent modifier la situation observée à cet instant.
- 4- La responsabilité de BURGEAP ne pourra être engagée si les informations qui lui ont été communiquées sont incomplètes et/ou erronées et en cas d'omission, de défaillance et/ou erreur dans les informations communiquées.

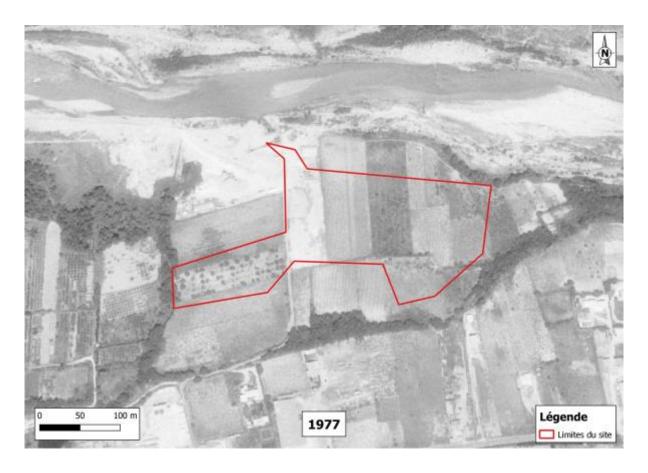
La responsabilité de BURGEAP ne pourra être engagée si les préconisations ne sont pas mises en œuvre

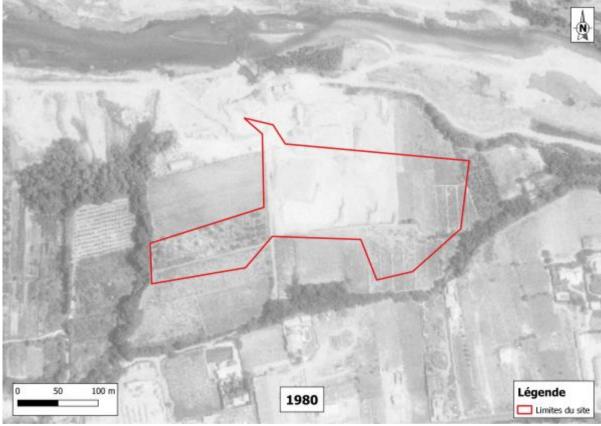
ANNEXES



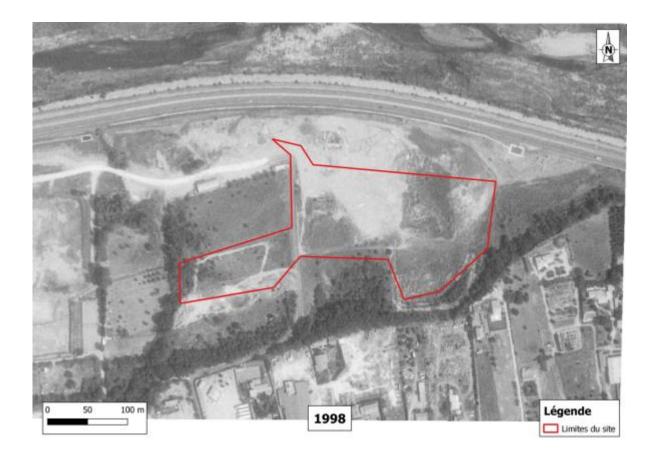


Annexe 1. Photographies aériennes historiques


Cette annexe contient 5 pages.







Annexe 2. Propriétés physico-chimiques

Cette annexe contient 6 pages.

LEGENDE Volatilité :

LEGENDE Solubilité : ++ : S>100

++ :Pv > 1000 PA (COV) - : 10 >P> 10-2 Pa (non COV)

mg/l -: 1>S>0.01 mg/l

+ : 1000 > Pv > 10 Pa (COV) -- : 10-2 >P> 10-5 Pa (non COV)

+ : 100>S>1 mg/l -- : S<0.01 mg/l

	Volatilité	solubilité	Classement	Mention de danger	classement o	cancérogén	éicité
CAS n°R	Pv	S	symboles	Mendon de danger	UE	CIRC (IARC)	EPA

METAUX ET METALLOIDES

Antimoine (Sb)	7440-36-0	non adequat	non adequat	SGH07, SGH09	H332, H302, H411	C2	-	-
Arsenic (As)	7440-38-2	non adequat	non adequat	SGH06, SGH09	H331, H301, H400, H410	C1A	1	Α
Baryum (Ba)	non adéquat	non adequat	Soluble dans l'éthanol ?	-	-	-	-	D
Cadmium (Cd)	7440-43-9	non adequat	non adequat	SGH06, SGH08, SGH09	H350, H341, H361fd, H330, H372, H400, H410	C1B/C2 M1B/M2 R1B/R2	1	prob canc
Chrome III (CrIII)	1308-38-9	non adequat	non adequat	-	-	-	3	D
Chrome VI (CrVI)	trioxyde de Cr 1333-82-0	non adequat	non adequat	SGH03, SGH05, SGH06, SGH08, SGH09	H271, H350, H340, H361f, H330, H311, H301, H372, H314, H334, H317, H410	C1A M1B R2	1	A (inh°) D (oral)
Cobalt (Co)	7440-48-4	non adequat	non adequat	SGH08	H334, H317, H413	C1B M2 R1B	2B	-
Cuivre (Cu)	7440-50-8	non adequat	non adequat	-	-	-	3	D
Etain (Sn)	non adéquat	non adequat	non adequat	-	-	-	-	-
Manganèse (Mn)	non adéquat	non adequat	non adequat	SGH07 (dioxyde)	H332, H302 (dioxyde)	-	-	D
Mercure (Hg)	7439-97-6	non adequat	non adequat	SGH06, SGH08, SGH09	H360D, H330, H372, H400, H410	R1B	3	CàD
Molybdène (Mo)	7439-98-7	non adequat	non adequat	trioxyde : SGH07, SGH08	Trioxyde : H351, H319, H335	trioxyde : C2	-	-
Nickel (Ni)	7440-02-0	non adequat	non adequat	SGH07, SGH08	H351, H372, H317, H412	C2	2B	А
Plomb (Pb)	7439-92-1	non adequat	non adequat	SGH07, SGH08, SGH09	H360Df, H332, H373, H400, H410	R1A	2B	B2
Sélénium (Se)	7782-49-2	non adequat	non adequat	SGH06, SGH08	H331, H301, H373, H413	-	3	D
Thallium (TI)	7440-28-0	non adequat	non adequat	SGH06, SGH08	H330, H300, H373, H413	-	-	D
Vanadium (Va)	7440-62-2	non adequat	non adequat	-	-	-	3	D
Zinc (Zn)	7440-66-6 (poudre)	non adequat	non adequat	SGH02 (pyrophorique) SGH09	H250, H260 (pyrophorique) H400, H410	-	-	D
H	IYDROCAR	BURES	AROM	ATIQUES	POLYCYCLIQ	UES		
Naphtalène	91-20-3	+	+	SGH07, SGH08, SGH09	H351, H302, H400, H410	C2	2B	С
Acenaphtylène	208-96-8	-	+	-	-	-	-	D
Acenaphtène	83-29-9	-	+	-	-	-	-	-
Fluorène	86-73-7	-	+	-	-	-	3	D
Phénanthrène	85-01-8	-	+	-	-	-	3	D
		1	1				1	L

LEGENDE Volatilité : LEGENDE Solubilité :

++: S>100 mg/l -: 1>S>0.01 mg/l

++: Pv > 1000 PA (COV) -: 10 >P> 10-2 Pa (non COV) +: 1000 > Pv > 10 Pa (COV) --: 10-2 >P> 10-5 Pa (non COV) +:100>S>1 · 10-2 \P\ 10-5 Pa (non COV)

	+: 1000 > Pv >	10 Pa (COV)		: 10-2 >P> 10-5	mg/l : S<0.		01 mg/l	
		Volatilité	solubilité	Classement		classement	cancérogér	néicité
	CAS n°R	Pv	S	symboles	Mention de danger	UE	CIRC (IARC)	EPA
Anthracène	120-12-7		-	-	-	-	3	D
Fluoranthène	206-44-0		-	-	-	-	3	D
Pyrène	129-00-0		-	-	-	-	3	D
Benzo(a)anthracène	56-55-3			SGH08, SGH09	H350, H400, H410	C1B	2B	B2
Chrysene	218-01-9		-	SGH08, SGH09	H350, H341, H400, H410	C1B M2	3	B2
benzo(b)fluoranthène	205-99-2			SGH08, SGH09	H350, H400, H410	C1B	2B	B2
benzo(k)fluoranthène	207-08-9			SGH08, SGH09	H350, H400, H410	C1B	2B	B2
Benzo(a)pyrène	50-32-8			SGH07, SGH08, SGH09	H340, H350, H360FD, H317, H400, H410	C1B M1B	1	B2
Dibenzo(a,h)anthracène	53-70-3			SGH08, SGH09	H350, H400, H410	C1B	2A	B2
benzo(g,h,i) pérylène	191-24-2			-	-	-	3	D
indéno(1,2,3-c,d)pyrène	193-39-5		-	-	-	-	2B	B2

-: 1>S>0.01 mg/l

LEGENDE Volatilité : LEGENDE Solubilité :

++:Pv > 1000 PA (COV) -: 10 >P> 10-2 Pa (non COV) | ++: \$>100 mg/l

+:100>S>1

+ : 1000 > Pv > 10 Pa (COV) -- : 10-2 >P> 10-5 Pa (non COV) mg/l -- : S<0.01 mg/l

CAS n°R Pv S symboles Mention de danger Classement cancérogénéicité

UE CIRC (IARC) EPA

COMPOSES AROMATIQUES MONOCYLCIQUES

benzène	71-43-2	++	++	SGH02, SGH07, SGH08	H225, H350, H340, H372, H304, H319, H315	C1A M1B	1	А
toluène	108-88-3	++	++	SGH02, SGH07, SGH08	H225, H361d, H304, H373, H315, H336	R2	3	D
ethylbenzène	100-41-4	+	++	SGH02, SGH07	H225, H332	-	2B	-
xylènes	1330-20-7	+	++	SGH02, SGH07	H226, H332, H312, H315	-	3	-
styrène	100-42-5	+	++	SGH02, SGH07	H226, H332, H319, H315	-	2B	-
cumène (isopropylbenzène)	98-82-8	+	+	SGH02, SGH07, SGH08, SGH09	H226, H304, H335, H411	-	2B	D
mesitylène (1,3,5 Triméthylbenzène)	108-67-8	+	+	SGH02, SGH07, SGH09	H226, H335, H411	-		-
pseudocumène (1,2,4 Triméthylbenzène)	95-63-6	+	+	SGH02, SGH07, SGH09	H226, H332, H319, H335, H315, H411	-	-	-

COMPOSES ORGANO-HALOGENES VOLATILS

PCE (tétrachloroéthylène)	127-18-4	++	++	SGH08, SGH09	H351, H411	C2	2A	B1
TCE (trichloroéthylène)	79-01-6	++	++	SGH07, SGH08	H350, H341, H319, H315, H336, H412	C1B M2	1	Α
cis 1,2DCE (dichloroéthylène)	156-59-2	++	++	SGH02, SGH07	H225, H335, H412	-	-	D
trans 1,2DCE (dichloroéthylène)	156-60-5	77	++	SGH02, SGH07	H225, H335, H412	-	-	D
1,1 DCE (1,1 dichloroéthylène)	75-35-4	++	++	SGH02, SGH07, SGH08	H224, H351, H332	C2	3	С
VC (chlorure de vinyle)	75-01-4	++	++	SGH02, SGH08	H220, H350	C1A	1	Α
1,1,2 trichloroéthane	79-00-5	++	++	SGH07, SGH08	H351, H332, H312, EUH066	C2	3	С
1,1,1 trichloroéthane	71-55-6	++	++	SGH07	H332, EUH059	-	3	D
1,2 dichloroéthane	107-06-2	++	++	SGH02, SGH07, SGH08.	H225, H350, H302, H319, H335, H315	C1B	2B	B2
1,1 dichloroéthane	75-34-3	++	++	SGH02, SGH07	H225, H302, H319, H335, H412	-	-	С
Tétrachlorométhane	56-23-5	++	++	SGH06, SGH08	H351, H331, H311, H301, H372, H412, EUH059	C2	2B	B2
TCmA (trichlorométhane ou chloroforme)	67-66-3	++	++	SGH07, SGH08	H351, H302, H373, H315	C2	2B	B2
dichlorométhane	75-09-2	++	++	SGH08, SGH09	H351	C2	2B	B2
trichlorobenzènes	87-61-1 120-82-1 108-70-3	+	+	SGH07, SGH09	H302, H315, H400, H410	-	-	(1,2,4) D
1,2 dichlorobenzène	95-50-1	+	+	SGH07, SGH09	H302, H319, H335, H315, H400, H410	-	3	D
1,3 dichlorobenzène	541-73-1	+	++	-	-	-	3	D
1,4 dichlorobenzène	106-46-7	+	+	SGH08, SGH09	H351, H319, H400, H410	C2	2B	-
chlorobenzène	108-90-7	++	++	SGH02, SGH07,	H226, H332, H411	-	-	D

-: 1>S>0.01 mg/l

LEGENDE Volatilité : LEGENDE Solubilité :

++: Pv > 1000 PA (COV) -: 10 >P> 10-2 Pa (non COV) #g/l

+:100>S>1

+: 1000 > Pv > 10 Pa (COV) --: S<0.01 mg/l --: S<0.01 mg/l

	Volatilité	solubilité	Classement	Mention de danger	classement cancérogénéicité					
CAS n°R	Pv	S	symboles	Mendon de danger	UE	CIRC (IARC)	EPA			
			SGH09							

HYDROCARBURES SUIVANT LES TPH

Aliphatic nC>5-nC6	non adéquat	++	+					
Aliphatic nC>6-nC8	"	++	+					
Aliphatic nC>8-nC10	"	+	-		white spirit, essences spéciales, solvants aromatiques légers, pétroles lampants white spirit, essences tout type d'hydrocarbures: fonction des hydrocarbures hydrocarbures			
Aliphatic nC>10-nC12	"	+	-					
Aliphatic nC>12-nC16	"	-						
Aliphatic nC>16-nC35	"	-		spéciales,		.1	coment	
Aliphatic nC>35	"							
Aromatic nC>5-nC7 benzène	"	++	++	légers, pétroles lampants		hydrocarbures		
Aromatic nC>7-nC8 toluène	"	++	++	(kérosène):				
Aromatic nC>8-nC10	"	+	+	SGH08				
Aromatic nC>10-nC12	"	+	+					
Aromatic nC>12-nC16	"	-	+					
Aromatic nC>16-nC21	"	-	-	1				
Aromatic nC>21-nC35	11							

MENTIONS DE DANGER

28 mentions de danger physique

- H200 : Explosif instable
- H201: Explosif; danger d'explosion en masse H202 : Explosif ; danger sérieux de projection
- H203 : Explosif : danger d'incendie, d'effet de souffle ou de projection
- H204 : Danger d'incendie ou de projection
- H205: Danger d'explosion en masse en cas d'incendie
- H220 : Gaz extrêmement inflammable
- H221 · Gaz inflammable
- H222: Aérosol extrêmement inflammable
- H223: Aérosol inflammable
- H224 : Liquide et vapeurs extrêmement inflammables
- H225 : Liquide et vapeurs très inflammables
- H226: Liquide et vapeurs inflammables
- H228: Matière solide inflammable

- H240 : Peut exploser sous l'effet de la chaleur
- H241 : Peut s'enflammer ou exploser sous l'effet de la chaleur
- H242 : Peut s'enflammer sous l'effet de la chaleur
- H250 : S'enflamme spontanément au contact de l'ai
- H251: Matière auto-échauffante : peut s'enflammer
- H252 : Matière auto-échauffante en grandes quantités : peut s'enflammer
- H260 : Dégage au contact de l'eau des gaz inflammables qui peuvent s'enflammer spontanément
- H261 : Dégage au contact de l'eau des gaz
- H270: Peut provoquer ou aggraver un incendie; comburant
- H271: Peut provoquer un incendie ou une explosion: comburant puissant
- H272: Peut aggraver un incendie; comburant
- H280 : Contient un gaz sous pression ; peut exploser sous l'effet de la chaleur
- H281 : Contient un gaz réfrigéré ; peut causer des brûlures ou blessures cryogéniques
- H290 : Peut être corrosif pour les métaux

38 mentions de danger pour la santé

- H300: Mortel en cas d'ingestion
- H301: Toxique en cas d'ingestion H302: Nocif en cas d'ingestion
- H304 : Peut être mortel en cas d'ingestion et de pénétration dans les voies respiratoires
- H310: Mortel par contact cutané
- H311: Toxique par contact cutané
- H312: Nocif par contact cutané
- H314 : Provoque des brûlures de la peau et des lésions oculaires graves
- H315 : Provoque une irritation cutanée

- H317 : Peut provoquer une allergie cutanée
- H318 : Provoque des lésions oculaires graves
- H319 : Provoque une sévère irritation des yeux
- H330: Mortel par inhalation
- H331: Toxique par inhalation
- H332: Nocif par inhalation
- H334: Peut provoquer des symptômes allergiques ou d'asthme ou des difficultés respiratoires par inhalation
- H335 : Peut irriter les voies respiratoires
 - H336: Peut provoquer somnolence ou vertiges
- H340 : Peut induire des anomalies génétiques «indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>
- H341 : Susceptible d'induire des anomalies génétiques «indiquer la voie d'exposition s'î est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même dangert»
- H350: Peut provoquer le cancer <indiquer la voie d'exposition s'il est H370: Risque avéré d'effets graves pour les organes <ou indiquer tous les organes affectés, s'ils sont formellement prouvé qu'aucune autre voie d'exposition ne conduit au même connus> <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne dangera conduit au même danger>
- H351 : Susceptible de provoquer le cancer <indiquer la voie d'exposition s'il H371 : Risque présumé d'effets graves pour les organes <ou indiquer tous les organes affectés, s'ils est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune autre voie d'exposition
- autre voie d'exposition ne conduit au même danger>
- H361 : Susceptible de nuire à la fertilité ou au foetus <indiquer l'effet s'il est autre voie d'exposition ne conduit au même danger>
 • H362 : Peut être nocif pour les bébés nourris au lait maternel
- ne conduit au même danger> H360 : Peut nuire à la fertilité ou au foetus <indiquer l'effet spécifique s'îl • H372 : Risque avéré d'effets graves pour les organes <indiquer tous les organes affectés, s'ils sont est connu> <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune connus> à la suite d'expositions répétées ou d'une exposition prolongée <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>
- * H3/3 : Kisque presume u enters graves pour so organization s'il est formellement prouvé qu'aucune connus > à la suite d'expositions répétées ou d'une exposition prolongée cindiquer la voie d'exposition s'il est H373 : Risque présumé d'effets graves pour les organes <indiquer tous les organes affectés, s'ils sont formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>

Pour certaines mentions de danger pour la santé des lettres sont ajoutées au code à 3 chiffres :

- H350i: Peut provoquer le cancer par inhalation
- H360F : Peut nuire à la fertilité H360D: Peut nuire au foetus
- H361f : Susceptible de nuire à la fertilité
- H361d : Susceptible de nuire au foetus
- H360FD: Peut nuire à la fertilité. Peut nuire au foetus
- H361fd : Susceptible de nuire à la fertilité. Susceptible de nuire au foetus
- H360Fd: Peut nuire à la fertilité. Susceptible de nuire au foetus
- H360Df: Peut nuire au foetus. Susceptible de nuire à la fertilité.
- ▶ 5 mentions de danger pour l'environnement
- H400 : Très toxique pour les organismes aquatiques
- H410: Très toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme
- H411 : Toxique pour les organismes aquatiques, entraı̂ne des effets néfastes à long terme
- H412 : Nocif pour les organismes aquatiques, entraîne des effets néfastes à long terme
- H413: Peut être nocif à long terme pour les organismes aquatiques

Symboles de danger

- SHG01: Explosif (ce produit peut exploser au contact d'une flamme, d'une étincelle, d'électricité statique, sous l'effet de la chaleur, d'un choc ou de frottements).
- SGH02: Inflammable (Le produit peut s'enflammer au contact d'une flamme, d'une étincelle, d'électricité statique, sous l'effet de la chaleur, de frottements, au contact de l'air ou au contact de l'eau en dégageant des gaz inflammables).
- SGH03: Comburant (peut provoquer ou aggraver un incendie peut provoquer une explosion en présence de produit inflammable).
- SGH04: Gaz sous pression (peut exploser sous l'effet de la chaleur (gaz comprimé, liquéfié et dissous) peut causer des brûlures ou blessures liées au froid (gaz liquéfiés réfrigérés).
- SGH05: Corrosif (produit qui ronge et peut attaquer ou détruire des métaux peut provoquer des brûlures de la peau et des lésions aux yeux en cas de contact ou de projection).
- SGH06: Toxique ou mortel (le produit peut tuer rapidement empoisonne rapidement même à faible dose).
- SGH07: Dangereux pour la santé (peut empoisonner à forte dose peut irriter la peau, les yeux, les voies respiratoires peut provoquer des allergies cutanées peut provoquer somnolence ou vertige - produit qui détruit la couche d'ozone).
- SGH08: Nuit gravement pour la santé (peut provoquer le cancer, modifier l'ADN, nuire à la fertilité ou au fœtus, altérer le fonctionnement de certains organes peut être mortele en cas d'ingestion et de pénétration dans les voies respiratoires - peut provoquer des difficultés respiratoires ou des allergies respiratoires).
- SGH09: Dangereux pour l'environnement (produit polluant provoque des effets néfastes à court et/ou long terme sur les organismes des milieux aquatiques).

De Classification en termes de cancérogénicité

UE	US-EPA	CIRC			
C1 (H350 ou H350i) : cancérogène avéré ou présumé l'être :					
C1A: Substance dont le potentiel cancérogène pour l'être humain est avéré	A: Preuves suffisantes chez l'homme	1 : Agent ou mélange cancérigène pour l'homme			
C1B : Substance dont le potentiel cancérogène pour l'être humain est supposé					
	B1 : Preuves limitées chez l'homme				
C2 : Substance suspectée d'être cancérogène pour l'homme	B2 : Preuves non adéquates chez l'homme et preuves suffisantes chez l'animal	2A : Agent ou mélange probablement cancérigène pour l'homme			
Carc.3 : Substance préoccupante pour l'homme en raison d'effets cancérogènes possibles (R40)	C : Preuves inadéquates chez l'homme et preuves limitées chez l'animal	2B : Agent ou mélange peut-être cancérigène pour l'homme			
	D : Preuves insuffisantes chez l'homme et l'animal	3 : Agent ou mélange inclassables quant-à sa cancérogénicité pour l'homme			
	E : Indications d'absence de cancérogénicité chez l'homme et chez l'animal	4 : Agent ou mélange probablement non cancérigène chez l'homme			

De Classification en termes de mutagénicité

	UE
M1 (H340) : Substance dont la capacité d'induire des mutations héréditaires est avérée ou qui sont à considérer	M1A: Classification fondée sur des résultats positifs d'études épidémiologiques humaines. Substance considérée comme induisant des mutations héréditaires dans les cellules germinales des êtres humains.
	M1B: Classification fondée sur des essais in vivo de mutagénicité sur des cellules germinales et somatiques et qui ont donné un ou des résultats positifs et sur des essais qui ont montré que la substance a des effets mutagènes sur les cellules germinales humaines, sans que la transmission de ces mutations à la descendance n'ait été établie.
M2 (H341) : Substance préoccupantes du fait qu'elle pourra	it induire des mutations héréditaires dans les cellules germinales des êtres humains.

▶ Classification en termes d'effets reprotoxiques

UE								
R1 (H360 ou H360F ou H360D ou H360FD ou H360Fc	R1A: Substance dont la toxicité pour la reproduction humaine est avérée. La classification d'une substance dans cette catégorie s'appuie largement sur des études humaines.							
ou H360fD) : Reprotoxique avéré ou présumé	R1B : Substance présumée toxique pour la reproduction humaine. La classification d'une substance dans cette catégorie s'appuie largement sur des données provenant d'études animales.							
classées dans cette catégorie lorsque les résultats des étu	ce suspectée d'être toxique pour la reproduction humaine. Les substances sont ides ne sont pas suffisamment probants pour justifier une classification dans la ésirable sur la fonction sexuelle et la fertilité ou sur le développement.							

Annexe 3. Fiches d'échantillonnage des sols

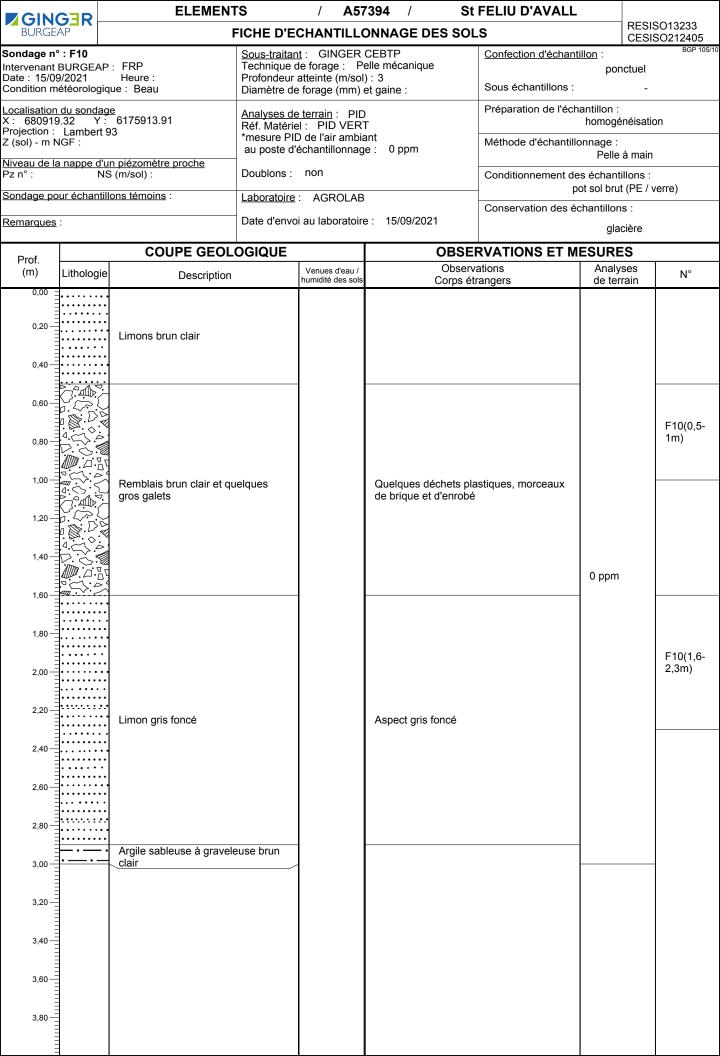
Cette annexe contient 12 pages.

CINI	23D	ELEMENT	S	/ A57	'394 / St	FELIU D'AVALL			
GIN (BURGE/	AP	i	FICHE D'E	CHANTILLO	ONNAGE DES SOL	S			O13233 O212405
Sondage n° Intervenant I Date: 15/09 Condition m	BURGE <i>A</i> 9/2021	NP : FRP Heure : gique : Beau	Technique d Profondeur	t: GINGER le forage: P atteinte (m/sol e forage (mm)	elle mécanique) : 2,6	Confection d'échant Sous échantillons :		ctuel -	BGP 105/10
Localisation X: 680633 Projection:	3.45 Y	· 6175840.13	Réf. Matériel : PID VERT			Préparation de l'échantillon : homogénéisation			
Z (sol) - m N	IGF :	'un piézomètre proche				Méthode d'échantillonnage : Pelle à main			
Pz n° : NS (m/sol) :			Doublons :	non		Conditionnement de	s échanti ot sol brut		erre)
Sondage po	ur échan	tillons témoins :	Laboratoire	: AGROLAB		Conservation des éc			
Remarques	:			i au laboratoir	e: 15/09/2021			cière	
Prof.		COUPE GEOL	OGIQUE			RVATIONS ET M			
(m)	Litholog	ie Description		Venues d'eau / humidité des sols	Observa Corps étr		Analy: de ter		N°
0,20		Remblais sableux brun c	lair et		Morceaux de briques				F1(0-0,5 m)
0,60		cailloux			morecaux de briques				
1,00		Argile grise					0 ppm		
1,40 — — — — 1,60 —		37							
1,80		Remblais sablo-limoneux	c gris		Morceaux de briques, plastiques et ferrailles				F1(1,1-2, 6m)
2,00									·
2,20 — — — — 2,40 —									
2,60		Blocs							
2,80		3.000							
3,00									
3,20									
3,40									
3,60									
3,80									

CINO	23D	ELEMENT	rs	/ A57	A57394 / St FELIU D'AVALL					
GIN (BURGE/	AP	F	FICHE D'E	CHANTILLO	ONNAGE DES SOL	S			SO13233 SO212405	
Sondage n° Intervenant I Date: 15/09 Condition m	BURGE <i>A</i> 9/2021	AP : FRP Heure : gique : Beau	Technique of Profondeur	t: GINGER de forage : P atteinte (m/sol e forage (mm)	elle mécanique) : 3	Confection d'échant Sous échantillons :		ctuel -	BGP 105/10	
Localisation X: 680656 Projection:	3.78 Y	7: 6175850.18	Réf. Matérie	e terrain : PID	Γ	Préparation de l'éch	antillon : homogé	néisatio	n	
Z (sol) - m N	IGF :		*mesure PID de l'air ambiant au poste d'échantillonnage : 0 ppm			Méthode d'échantillonnage : Pelle à main				
Niveau de la nappe d'un piézomètre proche Pz n°: NS (m/sol):			Doublons : non			Conditionnement des échantillons : pot sol brut (PE / verre)				
		ntillons témoins :		: AGROLAB		Conservation des éc		•	,	
Remarques	:		Date d'envoi au laboratoire : 15/09/2021			glacière				
Prof.		COUPE GEOL	OGIQUE	ı		RVATIONS ET M				
(m)	Litholog	pie Description		Venues d'eau / humidité des sols	Observa Corps étr		Analys de terr		N°	
0,00 =					Morceaux de briques				F2(0-0,5 m)	
0,40		A A A								
0,60		777								
1,00		Remblais sableux brun c graviers	lair et							
1,20		· \								
1,40							0 ppm			
1,60 —		. () A . W								
2,00									F2(1,6-2,	
2,20		Remblais gris foncé/brun	ı foncé		Légère odeur d'hydrocarbures, briques, ardoises, quelques morceaux de plastique, ferrailles et bois				5m)	
2,40		No.	101100							
2,60 — = = = = = = = =										
2,80		· ()								
3,20										
3,40										
3,60										
3,80										

Z GIN(ELEMENT	s	/ A57	7394 / St	FELIU D'AVALL				
BURGEA	AP	F	FICHE D'E	CHANTILLO	ONNAGE DES SOL	.s			SO13233 SO212405	
Sondage n° Intervenant I Date : 15/09 Condition me	BURGE <i>A</i> 9/2021	AP : FRP Heure : gique : Beau	Technique d Profondeur a	t: GINGER le forage: P atteinte (m/sol e forage (mm)	elle mécanique	Confection d'échantillon : ponctuel Sous échantillons : -			BGP 105/10	
Localisation X: 680747 Projection:	7.4 Y	′: 6175883.5	Analyses de terrain : PID Réf. Matériel : PID VERT			Préparation de l'échantillon : homogénéisation				
Z (sol) - m N	IGF :	d'un piézomètre proche	*mesure PID de l'air ambiant au poste d'échantillonnage : 0 ppm			Méthode d'échantillo		à main		
Pz n°: NS (m/sol):			Doublons :	non		Conditionnement de	s échanti ot sol brut		verre)	
Sondage por	ur échan	tillons témoins :	Laboratoire	: AGROLAB	l .	Conservation des éc				
Remarques :				Date d'envoi au laboratoire : 15/09/2021			glacière			
Prof.		COUPE GEOL	OGIQUE							
(m)	Litholog	ie Description		Venues d'eau / humidité des sols	Observ Corps éti		Analy: de ter		N°	
0,00 = 0,20 = 0,40 = 0,60 = 0,80 = 1,20 = 1,20 = 1,40 = 1,		Remblais sableux brin cla cailloux	air et		Morceaux de briques, plastiques, quelques i carrelage	quelques déchets norceaux de				
1,60 — 1,80 — 2,00 — 2,20 — 2,40 —		Remblais sablo-limoneux foncé	ς brun		Quelques déchets pla morceaux de bois	stiques, ferrailles,	0 ppm		F3(1,4-2, 5m)	
3,00 — 3,20 — 3,40 — 3,60 — 3,80 —		Sable brun clair à gris							F3(2,9-3 m)	

CINIC	23D	ELEMENT	S	/ A57	'394 /	St F	ELIU D'AVALL			
GIN (BURGE	AP	F	ICHE D'E	CHANTILL	ONNAGE DES S	OLS	3			SO13233 SO212405
Sondage n° Intervenant I Date : 15/09 Condition me	BURGE <i>A</i> 9/2021	NP: FRP Heure: jique: Beau	Technique of Profondeur	t: GINGER le forage: P atteinte (m/sol e forage (mm)	elle mécanique) : 2,5		Confection d'échanti		ictuel -	BGP 105/10
Localisation X: 680763 Projection:	3.93 Y	: 6176005.57	Réf. Matériel : PID VERT			Préparation de l'échantillon : homogénéisation				
Z (sol) - m NGF : Niveau de la nappe d'un piézomètre proche			*mesure PID de l'air ambiant au poste d'échantillonnage : 0 ppm Méthode d'éch				Méthode d'échantillo	illonnage : Pelle à main		
Pz n° :	I	NS (m/sol) :	Doublons :				Conditionnement de	s échant ot sol brut		erre)
		tillons témoins :		: AGROLAB	e: 15/09/2021		Conservation des éc			
Remarques	:	001105 0501		i au iaboratoli		<u> </u>	VATIONO ET M		cière	
Prof. (m)	Litholog	COUPE GEOL	OGIQUE	Venues d'eau /			VATIONS ET MI	Analy		NIO.
0,00 =	Littlolog	Description		humidité des sols	Corps	s étra	angers	de ter		N°
0,20		Remblais sableux brun c	lair							F4(0-0,5 m)
0,60										
0,80 — — — — 1,00 —	₽.	•								
1,20		•						0 ppm		
1,40	· .	Sable brun clair, graves of galets	et gros							
1,60	. >	•								
1,80 — = = 2,00 —	. U \(\frac{1}{2}\), .									
2,20	. V .									
2,40	• •	2								
2,60										
2,80 — = = = 3,00 —										
3,20										
3,40										
3,60										
3,80										


CIN C	23D	ELEMENT	S	/ A57	'394 /	St	FELIU D'AVALL			
GINC BURGEA	AP -	F	ICHE D'E	CHANTILL	ONNAGE DE	S SOL	S			SO13233 SO212405
Sondage n° Intervenant I Date: 15/09 Condition me	BURGEAI 9/2021	Heure :	Technique of Profondeur	t: GINGER de forage: P atteinte (m/sol e forage (mm)	elle mécanique) : 3		Confection d'échanti		ctuel -	BGP 105/10
Localisation X: 680825 Projection:	.93 Y	: 6175992.93	Analyses de terrain : PID Réf. Matériel : PID VERT			Préparation de l'échantillon : homogénéisation				
Z (sol) - m NGF : Niveau de la nappe d'un piézomètre proche			*mesure PID de l'air ambiant au poste d'échantillonnage : 0 ppm				Méthode d'échantillonnage : Pelle à main			
Pz n° :	N	S (m/sol):	Doublons :				Conditionnement des échantillons : pot sol brut (PE / verre)			
Sondage por		llons témoins :		: AGROLAB	e: 15/09/2021	1	Conservation des éc			
rtemarques		COUPE GEOL		r du laboratoir			RVATIONS ET M		cière	
Prof. (m)	Lithologie		OGIQUE	Venues d'eau /		Observa	ations	Analy	ses	N°
0,00 =	· · ·	Description		humidité des sols	(Corps étr	angers	de ter	rain	IV
0,20										F5(0-0,5 m)
0,60 — 0,60 — — — — 0,80 —		•								
1,00										
1,20		Limons sableux brun clai quelques galets	r et							
1,40								0 ppm		
1,60								- 11		
1,80 —		1								
2,00										
2,20										
2,40 —										
2,80		Sable grossier légèremei brun clair	nt humide							
3,00	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\									
3,20										
3,40										
3,60										
3,80										

CIN	23D	ELEMENT	S	/ A57	7394 / 5	t FELIU D'AVALL				
GIN (BURGE	AP AP	F	ICHE D'E	CHANTILLO	ONNAGE DES SO	LS			SO13233 SO212405	
Sondage n° Intervenant I Date : 15/09 Condition m	BURGEAF 9/2021	Heure :	Technique d Profondeur	t: GINGER le forage : Patteinte (m/sol forage (mm)	elle mécanique) : 3,2	Confection d'échant		nctuel -	BGP 105/10	
Localisation X: 680791 Projection:	.88 Y:	6175912.73	Réf. Matériel : PID VERT			Préparation de l'éch	Préparation de l'échantillon : homogénéisation			
Z (sol) - m NGF : Niveau de la nappe d'un piézomètre proche			*mesure PID de l'air ambiant au poste d'échantillonnage : 0 ppm			Méthode d'échantill	Méthode d'échantillonnage : Pelle à main			
Pz n°: NS (m/sol):			Doublons: non			Conditionnement de	es échant ot sol bru		erre)	
Sondage po	<u>ur échanti</u>	llons témoins :	Laboratoire	: AGROLAB		Conservation des é		`		
Remarques :				i au laboratoir	e: 15/09/2021			cière		
Prof.		COUPE GEOL	OGIQUE			ERVATIONS ET M rvations				
	Lithologie	Description		Venues d'eau / humidité des sols		étrangers	Analy de ter		N°	
0,00 = 0,20 = 0,40 = 0		Limons brun clair							F6(0,1-0, 5m)	
1,00 — 1,20 — 1,40 — 1,80 — 2,00 —		Remblais sablo-limoneux et quelques galets	s brun clair		Quelques déchets p de carrelages et d'e	lastiques, morceaux nrobés	0 ppm			
2,40 — 2,60 — 2,80 — 3,00 — 3,40 — 3,60 —		Sable légèrement argileu à ocre	x orangé							
3,80										

CINO	23D	ELEMENT	S	/ A57	7394 /	St	FELIU D'AVALL			
GIN (BURGE	AP -	F	ICHE D'E	CHANTILLO	ONNAGE DES	SOL	S			O13233 O212405
Sondage n° Intervenant I Date : 15/09 Condition me	BURGEAF 9/2021	Heure :	Technique d Profondeur	t: GINGER de forage: Po atteinte (m/sol e forage (mm)	elle mécanique) : 3		Confection d'échanti		ctuel -	BGP 105/10
Localisation X: 680801 Projection:	.61 Y:	6175873.66	Analyses de terrain : PID Réf. Matériel : PID VERT			Préparation de l'échantillon : homogénéisation			n	
Z (sol) - m NGF : Niveau de la nappe d'un piézomètre proche			*mesure PID de l'air ambiant au poste d'échantillonnage : 0 ppm			Méthode d'échantillonnage : Pelle à main				
Pz n° :	N:	S (m/sol) :	Doublons :	non			Conditionnement des échantillons : pot sol brut (PE / verre)			erre)
Sondage po	ur échantil	lons témoins :	Laboratoire	: AGROLAB			Conservation des éc		`	
Remarques	:			i au laboratoir	e: 15/09/2021				cière	
Prof.		COUPE GEOL	OGIQUE			SEF	RVATIONS ET M			
	Lithologie	Description		Venues d'eau / humidité des sols			angers	Analy de ter		N°
0,00 = 0,20 = 0,40 = 0,40 = 0		Limons brun clair								F7(0-0,4 m)
0,60 — 0,80 — 1,00 — 1,20 — 1,40 — 1,80 —		Remblais sablo-limoneux et quelques galets	t brun clair		Quelques déchet morceaux de bric		stiques, et	0 ppm		
2,40 —		Remblais sableux brun c galets Sable légèrement argileu			Quelques morcea	aux d	e plastiques			
3,00 —	,									
3,20										
3,40										
3,60 — - - - - - 3,80 —										
=		1		Ī						

CIN	23D	ELEMENT	S	/ A57	7394 / St	FELIU D'AVALL			
GIN (BURGE	AP AP	F	ICHE D'E	CHE D'ECHANTILLONNAGE DES SOLS					SO13233 SO212405
Sondage n°	: F8		Sous-traitan	t: GINGER	CEBTP	Confection d'échantillon :			
Intervenant I Date: 15/09 Condition me	BURGEAI 9/2021	Heure :	Technique of Profondeur	de forage : Poatteinte (m/sole forage (mm)	elle mécanique) : 3	Sous échantillons :		ctuel -	
Localisation X : 680846 Projection :	6.6 Y Lambert	6175906.9	Analyses de terrain: PID Réf. Matériel: PID VERT *mesure PID de l'air ambiant			Préparation de l'échantillon : homogénéisation			
Z (sol) - m N Niveau de la	IGF : nappe d'	un piézomètre proche	au poste d'e	échantillonnag		Méthode d'échantillonnage : Pelle à main			
Pz n° :		S (m/sol):	Doublons :	non		Conditionnement des échantillons : pot sol brut (PE / verre)			
Sondage po	ur échant	llons témoins :	<u>Laboratoire</u>	: AGROLAB		Conservation des éc		`	
Remarques	:		Date d'envo	i au laboratoir	e: 15/09/2021			cière	
Prof.		COUPE GEOL	OGIQUE			RVATIONS ET M			
(m)	Lithologie	Description		Venues d'eau / humidité des sols	Observ Corps éti		Analy de ter		N°
0,00 =		•			·	<u> </u>			
0,20		Limons brun clair							F8(0-0,4 m)
0,40		•							
0,60									
0,80									
1,00		Remblais sablo-limoneux	Remblais sablo-limoneux brun clair		Quelques déchets pla	stiques			
1,20									
1,40							0 ppm		
1,60									
1,80		Limons sableux brun clai quelques galets	r à gris et		Odeur d'hydrocarbure planche en bois et qu				F8(1,6-2 m)
2,00					plastiques	eiques decilets			
2,20	• • • •								
2,40									
2,60		Sable légèrement argileu	ix ocre						
2,80	· · ·	-							
3,00 —									
3,20									
3,40									
3,60									
3,80									
Ξ									

CIN	27D	ELEMENT	S	/ A57	7394 / S	FELIU D'AVALL				
GIN (BURGE	AP AP	F	FICHE D'E	CHANTILL	ONNAGE DES SO	RESISO1323 CESISO2124				
Sondage n° Intervenant I Date: 15/09 Condition me	BURGEAI 9/2021	Heure :	Technique of Profondeur	t: GINGER le forage : P atteinte (m/sol forage (mm)	elle mécanique) : 3,1	Confection d'échant Sous échantillons :		ictuel -	BGP 105/10	
Localisation X: 680910 Projection:).85 Y	: 6175850.43	Réf. Matérie	e terrain : PID	Τ	Préparation de l'échantillon : homogénéisation				
Z (sol) - m N	IGF :	un piézomètre proche		O de l'air ambia échantillonnag		Méthode d'échantillonnage : Pelle à main				
Pz n° :	N	IS (m/sol) :	Doublons :	Doublons: non			Conditionnement des échantillons : pot sol brut (PE / verre)			
Sondage po	ur échanti	illons témoins :	Laboratoire	: AGROLAB		Conservation des é		`		
Remarques	:			i au laboratoir	e: 15/09/2021			cière		
Prof.		COUPE GEOL	OGIQUE	Venues d'eau /		RVATIONS ET M vations	ESURE Analy			
(m) 0,00 =	Lithologie	Description		humidité des sols		trangers	de ter		N°	
0,00	D. O.W.	Limons sableux brun clai	r						F9(0-0,5 m)	
0,60										
1,00										
1,20										
1,40		22 \(\frac{2}{3}\)								
1,60		Remblais sablo-limoneux	d brun clair		Quelques déchets p de brique et d'enrob		0 ppm			
1,80										
2,00		\(\frac{1}{4}\)								
2,20										
2,40										
2,60		\display \di								
2,80		Argile sableuse à gravele	euse hrun							
3,00		clair	suse bruit							
3,20										
3,40										
3,60										
3,80										
=							1			

CINI	23D	ELEMENT	S	/ A57	7394 / St	FELIU D'AVALL				
GIN (BURGE/	AP AP	F	ICHE D'E	CHANTILLO	ONNAGE DES SOL	.s			SO13233 SO212405	
Sondage n°		P: FRP	Technique of	t: GINGER le forage : P	elle mécanique	Confection d'échant		ctuel	BGP 105/10	
Date : 15/09 Condition m	9/2021	Heure :	Profondeur Diamètre de	atteinte (m/sol e forage (mm)) : 3,1 et gaine :	Sous échantillons :	P 0.	-		
Localisation X: 680961 Projection:	.99 Y	: 6175938.37	Réf. Matérie	e terrain : PID	Γ	Préparation de l'échantillon : homogénéisation				
Z (sol) - m N	IGF :	un piézomètre proche		*mesure PID de l'air ambiant au poste d'échantillonnage : 0 ppm			Méthode d'échantillonnage : Pelle à main			
Pz n° :	N	S (m/sol):	Doublons: non			Conditionnement de	s échant ot sol bru		orro)	
Sondage po	ur échanti	llons témoins :	Laboratoire	: AGROLAB		Conservation des éc		`	erre)	
Remarques	:		Date d'envo	i au laboratoir	e: 15/09/2021			cière		
Prof.		COUPE GEOL	OGIQUE			RVATIONS ET M				
(m)	Lithologie	Description		Venues d'eau / humidité des sols	Observ Corps ét		Analy de ter		N°	
0,00 =		•								
0,20									E44/0.0	
5,20		Limon brun clair							F11(0-0, 5m)	
0,40		•							,	
., .										
0,60										
0,80	4.00									
		V								
1,00		Remblais sablo-limoneux	brun clair		Quelques déchets pla	etiques ponetuals				
		et galets			Quelques decriets pia	istiques porictueis				
1,20										
	4.67									
1,40										
		4					0 ppm			
1,60	• • • • • • • •	:								
1,80		<u>:</u>								
1,80	• • • • • • •	:								
2,00		•								
_,,,										
2,20		<u>:</u>								
		Limons gris clair à brun c	clair							
2,40		:								
2,60		.†								
	• • • • • • •									
2,80	• • • • • • • •									
		· ·								
3,00	~	Sable brun clair, graves e	et gros							
3,20		galets	/							
5,20										
3,40										
7 =										
3,60										
3,80										
=	ł	1		1	i		i			

CIN C	IGINGER ELEMENTS			/ A57	7394 / St	FELIU D'AVALL			
BURGE/	AP	F	ICHE D'E	CHANTILLO	ONNAGE DES SOL	S			SO13233 SO212405
Sondage n° Intervenant I Date: 15/09 Condition m	BURGEA 9/2021	P:FRP Heure: ique:Beau	Technique d Profondeur	t: GINGER le forage: P atteinte (m/sol e forage (mm)	elle mécanique) : 3,2	Confection d'échantillon : ponctuel Sous échantillons : -			
Localisation X: 680979 Projection:	9.5 Y	6175893.71	Réf. Matérie	terrain : PID	Γ	Préparation de l'échantillon : homogénéisation			n
Z (sol) - m NGF : Niveau de la nappe d'un piézomètre proche			*mesure PID de l'air ambiant au poste d'échantillonnage : 0 ppm			Méthode d'échantillo		à main	
Pz n° :	۱	NS (m/sol) :	Doublons :	non		Conditionnement de	s échant ot sol brut		orro)
Sondage po	ur échant	tillons témoins :	Laboratoire	: AGROLAB		Conservation des éc			erre)
Remarques	:		Date d'envo	i au laboratoire	e: 15/09/2021	glacière			
Prof.		COUPE GEOL	OGIQUE			RVATIONS ET M			
(m)	Lithologi	e Description		Venues d'eau / humidité des sols	Observa Corps étr		Analy de ter		N°
0,00 = = = 0,20 =		Limon brun clair			·				
0,40 —		Remblais limoneux et gra	aves		Morceaux de briques,	et plastiques			
1,60 — 1,80 — 2,00 — 2,20 — 2,40 — 2,60 — 3,00 — 3,20 —		Remblais limono-sableux			Morceaux de briques, et débrits divers		0 ppm		
3,40									

Annexe 4. Méthodes analytiques, LQ et flaconnage

Cette annexe contient [...] pages.

AGROLAB Flaconnage

	AL-West Aromatische en	AL-West	AL-West	Methaan/ethaan/etheen CKW-	At work	
Nom Hollandais	chloorhoudende oplosmiddelen	Waterdampvluchtige fenolen	Cyanide	afbraak	pH/Ec	Blanco
Equivalence Française	BTEX, COHV	Indice phénols	Cyanures	Méthane/éthane/éthylène biodégradation, paquet étendu	pH/Conductivité	Blanc
Contenance	100 mL	100 mL	100 mL	100 mL	100 mL	500 mL
Conservateur	HNO3	H3PO4/CuSO4	NaOH	HNO3	sans	sans
	HCT méthode interne - 100 mL BTEX et COHV - 100 mL	Indice phénols - 40 mL	Cyanures libres - 40 mL Cyanures totaux - 40 mL	Méthane/éthane/éthylène biodégradation, paquet étendu - 100 mL	Chrome VI - 100 mL Conductivité - 50 mL	Alcools et solvants polaires - 100 mL AOX - 500 mL
Analyses	Chlorobenzènes volatils - 80 mL GC-MS volatils - 100 mL Hydrocarbures volatils C6-C10 - 80				Fluorures - 20 mL Métaux lourds avec filtration au labo - 100 mL	Biphényl et biphényléthers - x 2 bouteilles Bromures - 60 mL Chlorobenzènes non volatils - x 2 bouteilles
	mL Solvants bromés - 80 mL				Nitrate - 40 mL Nitrite - 40 mL	Chlorures - 40 mL
Quantité					pH - 40 mL	DBO5 - x 2 bouteilles
					Sulfate - 60 mL	Dioxines - x 2 bouteilles
	AL SECUL					GC-MS non volatils - x 2 bouteilles HAP Interne - 100 mL HAP ISO - x 2 bouteilles Hulles et graisses - x 2 bouteilles
Nom Hollandais	stikstof ammonium /stikstof Kjeldahl/CZV	Zware metalen	ТРН	clhoor - en alkylfenolen		Matières inhibitrices - x 2 bouteilles
Equivalence Française	DCO /azote ammoniacal/azote Kjeldahl/phosphore total	Métaux lourds	EOX HCT ISO HCT 10 μg/L	Phénois et chlorophénois		MES - 500 mL
Contenance Conservateur	250 mL H2SO4	100 mL HNO3	500 mL HNO3	500 mL H3PO4		Organoétains - 500 mL
Conservateur Code étiquette	41-8-250 / LV2490	2-39-8 / LV2265	945-5 / LV2634	23-55-5 / LV2600		Organostalis * 500 IIIL
Code enquene	Ammonium NH4+ - 50 mL	Métaux lourds - 100 mL	EOX - x 2 bouteilles	Phénois et chlorophénois - x 2		Orthophosphates - 60 mL
	Azote Kjeldhal - 100 mL		HCT ISO - x 2 bouteilles	bouteilles		PCB - 100 mL Pesticides organo-N et P - x 2 bouteilles
Analyses	COT - 200 mL		HCT seuil 10 μg/l - x 2 bouteilles			Pesticides organochlorés - 100 mL
	CIT - 200 mL		TPH-MADEP - x 2 bouteilles			Sulfures - 400 mL
	DCO - 80 mL Phosphore total - 60 MI					

Matrice sols

Désignation _, ,	Catégorie d'article	Méthode	LOUII EF	Unités 🚽
Cyanures libres	Autres/Sols & Déchets/Analyses	NEN 6655 eq. ISO/DIS 17380	1	mg CN/kg
Cyanures totaux	Autres/Sols & Déchets/Analyses	NEN 6655 eq. ISO/DIS 17380 - DIN ISO 11262	1	mg CN/kg
Indice phénols	Autres/Sols & Déchets/Analyses	EN ISO 14402	0,1	mg/kg
Hydrocarbures totaux par CPG, fraction C10-C40; PROFIL ORGANIQUE QUALITATIF (C10 - C40)	Hydrocarbures & COHV/Sols & Déchets/Analyses	CPG/FID Méthode interne, nC10 à nC40 (>C10-C12, >C12-C16, >C16-C20, >C20-C24, >C24-C28, >C28-C32, >C32-C36, >C36-C40) chromatogramme fourni	20	mg/kg
Hydrocarbures totaux par CPG, fraction C10-C40; PROFIL ORGANIQUE QUALITATIF (C10 - C40)	Hydrocarbures & COHV/Sols & Déchets/Analyses	CPG/FID Méthode ISO 16703, nC10 à nC40 (>C10-C12, >C12-C16, >C16-C20, >C20-C24, >C24-C28, >C28-C32, >C32-C36, >C36-C40), chromatogramme fourni	20	mg/kg
Hydrocarbures totaux volatils (C6 - C10) découpage fractions C6-C8 et >C8-C10	Hydrocarbures & COHV/Sols & Déchets/Analyses	HS/CPG/MS méthode interne basé sur ISO 22155 (Head-Space) : Somme des C6 - C10 et découpage fractions C6-C8 et >C8-C10	1	mg/kg
Solvants chlorés (13 composés, chlorure de vinyle inclus)	Hydrocarbures & COHV/Sols & Déchets/Analyses	Méthode interne basé sur ISO 22155 (Head-Space): 1,1,1-Trichloroéthane, 1,1,2- Trichloroéthane, 1,1-Dichloroéthane, 1,1-Dichloroéthylène, 1,2 Cis-Dichloroéthylène, 1,2 Trans-Dichloroéthylène, 1,2-Dichloroéthane, Chloroforme, Chlorure de vinyle, Dichlorométhane, Tétrachloréthylène, Tetrachlorure de Carbone, Trichloréthylène	0,02 à 0,1	mg/kg
Solvants chlorés (19 composés MACAOH)	Hydrocarbures & COHV/Sols & Déchets/Analyses	Méthode interne basé sur ISO 22155 (Head-Space): 1,1,1-Trichloroéthane, 1,1,2- Trichloroéthane, 1,1-Dichloroéthane, 1,1-Dichloroéthylène, 1,2 Cis-Dichloroéthylène, 1,2 Trans-Dichloroéthylène, 1,2-Dichloroéthane, Chloroforme, Chlorure de vinyle, Dichlorométhane, Tétrachloróthylène, Tetrachlorure de Carbone, Trichloréthylène + extension MACAOH: Chlorométhane, Chloroéthane, Pentachloroéthane, Hexachloroéthane, 1,1,1,2-Tétrachloroéthane, 1,1,2,2-Tetrachloroéthane	0,02 à 0,5	mg/kg
BTEX (5 composés)	Hydrocarbures & COHV/Sols & Déchets/Analyses	Méthode interne basé sur ISO 22155 (Head-Space) : Benzène, Toluène, Ethyl benzène, m+p Xylène, o-Xylène		mg/kg
BTEX bilan étendu (13 composés)	Hydrocarbures & COHV/Sols & Déchets/Analyses	Méthode interne basé sur ISO 22155 (Head-Space): Benzène, Toluène, Ethyl benzène, m+p Xylène, o-Xylène, Naphtalène, Styrène, a-Méthylstyrène, Propylbenzène, iso-Propylbenzène, 1,2,3-Triméthylbenzène, 1,2,4-Triméthylbenzène, 1,3,5-Triméthylbenzène		mg/kg
Chlorobenzènes volatils (7 composés)	Hydrocarbures & COHV/Sols & Déchets/Analyses	par HS /GC/MS , basé sur ISO 22155 : Chlorobenzènes volatils :monochlorobenzène ; 1,2-dichlorobenzène ; 1,3-dichlorobenzène ; 1,4-dichlorobenzène ; 1,2,3-trichlorobenzène ; 1,2,4-trichlorobenzène	0,1	mg/kg MS
Chlorobenzènes non-volatils (4 composés)	Hydrocarbures & COHV/Sols & Déchets/Analyses	méthode interne, analyse selon ISO 10382 : 1,2,3,4-tétrachlorobenzène ; 1,2,3,5/1,2,4,5-tétrachlorobenzène ; pentachlorobenzène ; hexachlorobenzène	1	μg/kg MS
COV bromés	Hydrocarbures & COHV/Sols & Déchets/Analyses	Méthode interne basé sur ISO 22155 (HS): Bromochlorométhane, Dibromochlorométhane, Dichlorobromométhane, Dibromoethane, Tribromométhane (Bromoforme)	0,1	mg/kg
Hydrocarbures par TPH (Liste réduite)	Hydrocarbures & COHV/Sols & Déchets/Analyses	8 fractions aliphatiques + 8 fractions aromatiques (Cf Annexe 1). Analyse par GC/MS méthode interne	-	voir Annexe 1
HAP (16 - liste EPA)	Hydrocarbures & COHV/Sols & Déchets/Analyses	méthode interne : Naphtalène, Acénaphtène, Acénaphtylène, Anthracène, Benzo(a)anthracène, Benzo(a)pyrène, Benzo(b) fluoranthène, Benzo(g,h,i)pérylène, Benzo(l) fluoranthène, Bibenzo(k) fluoranthène, Fluorène, Indéno (1,2,3) pyrène, Phénanthrène, Fyrène	0,05	mg/kg
HAP (16 - liste EPA)	Hydrocarbures & COHV/Sols & Déchets/Analyses	ISO 13877: Naphtalène, Acénaphtène, Acénaphtylène, Anthracène, Benzo(a)anthracène, Benzo(a)pyrène, Benzo(b) fluoranthène, Benzo(g,h,i)pérylène, Benzo(b) fluoranthène, Chrysène, Dibenzo(a,h)anthracène, Fluoranthène, Fluorène, Indéno (1,2,3) pyrène, Phénanthrène, Pyrène	0,05	mg/kg
PCB congénères réglementaires (7 composés)	PCB Dioxines et furanes/Sols & Déchets/Analyses	EN ISO 10382 par GC/ECD (ou méthode interne par GC/MS suivant capacité laboratoire): PCB 28, 52, 101, 118, 138, 153, 180	1	μg/kg
PCB de type dioxine (12 congénères)	PCB Dioxines et furanes/Sols & Déchets/Analyses	Méthode dériveée de la méthode EPA 1613, par CPG SM-HR (PCB n° 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, 189)	1 à 10	ng//kg
Dioxines et furanes (17 congénères)	PCB Dioxines et furanes/Sols & Déchets/Analyses	selon la NF EN 1948, GC-SM haute résolution -	1	ng//kg
Pesticides organochlorés (21 composés)	Pesticides/Sols & Déchets/Analyses	EN ISO 10382 par GC/ECD (ou méthode interne par GC/MS suivant capacité laboratoire): HCH alpha, HCH béta, HCB, Lindane, HCH delta, Heptachlore, cis-Heptachlore époxyde, Endosulfan alpha, Aldrine, Dieldrine, Endrine, Isodrine, Telodrine, Endosulfan alpha, o,p'-DDE, p,p'-DDE, o,p'-DDD, p,p'-DDD, o,p'-DDT, p,p'-DDT, trans-chlordane	1	μg/kg
Pesticides Organo-Azotés	Pesticides/Sols & Déchets/Analyses	Organo-N-pesticides par CPG/SM: Atrazine, Cyanazine, Desméthrine, Prométhrine, Propazine, Simazine, Terbutrine, Terbutylazine	0,1 à 0,2	mg/kg
Pesticides Organo-Phosphorés	Pesticides/Sols & Déchets/Analyses	Organo-N-pesticides par CPG/SM: Azinphos-éthyle, Azinphos-méthyle, Bromophos- éthyle, Bromophos-méthyle, Chloropyrophos-éthyle, Coumaphos, diazinon, Diméthoate, Disulphoton, Ethion, Fénitrothion, Fenthion, Malathion, Méthidathon, Mévinphos, Parathion-méthyle, Parathion-éthyle, Pyrazophos, Triazophos, Trifluralin.	0,1 à 0,5	mg/kg
Arsenic	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	1	mg As/kg
Baryum	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	1	mg Ba/kg
Cadmium	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,1	mg Cd/kg
Chrome total	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,2	mg Cr/kg
Chrome hexavalent	Métaux/Sols & Déchets/Analyses	DIN 38405-D24	1	mg CrVI/kg
Cobalt	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885 (rajouter une minéralisation)	0,5	mg Co/kg
Cuivre	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,2	mg Cu/kg
Mercure	Métaux/Sols & Déchets/Analyses	ISO 16772	0,05	mg Hg/kg
Nickel	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,5	mg Ni/kg
Plomb	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,5	mg Pb/kg
Sélénium	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885 (rajouter une minéralisation)	1	mg Se/kg
Zinc	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	1	mg Zn/kg
Antimoine	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,5	mg Sb/kg

Annexe 5. Bordereaux d'analyse des sols

Cette annexe contient 16 pages.

sont identifiées par le symbole " *) ".

Seules les activités non accréditées

Date de validation

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (Toulouse 31) 143 avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 23.09.2021 N° Client 35005793

RAPPORT D'ANALYSES 1081373 - 690036

1081373 BC21-5341 -CESISO212405 -ELEMENTS St FELIU n° Cde

16.09.2021

N° échant. 690036 Solide / Eluat Projet 86140 ELEMENTS St Feliu

Prélèvement 15.09.2021 20:18

Prélèvement par: Client Spécification des échantillons F10 (0,5-1)

	Unité		Résultat	Quant.	Résultat %	Méthode
Prétraitement des échantillons	i					
Prétraitement de l'échantillon		0				Conforme à NEN-EN 16179
Broyeur à mâchoires		۰				méthode interne
Matière sèche	%	0	89,9	0,01	+/- 1	NEN-EN15934; EN12880

Limite

Incert.

Prétraitement pour analyses des métaux

Minéralisation à l'eau régale	۰				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	12	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,2	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	16	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	31	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	13	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	18	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	52	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hvdrocarl	oures Aromati	aues Polvc	vcliaues ((ISO)

Minéralisation à l'eau régale	•				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Métaux Arsenic (As)	mg/kg Ms	12	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,2	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd) Chrome (Cr) Cuivre (Cu)	mg/kg Ms	16	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
	mg/kg Ms	31	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	13	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg) Nickel (Ni) Plomb (Pb) Zinc (Zn)	mg/kg Ms	18	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	52	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatique Naphtalène Acénaphtylène Acénaphtène Fluorène Phénapthrène	s Polycycliques (ISO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ဋଁ <u>Acénaphtylène</u>	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Reference Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
χ Fluoranthène	mg/kg Ms	0,12	0,05	+/- 17	équivalent à NF EN 16181
Pyrène Pyrène	mg/kg Ms	0,096	0,05	+/- 19	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	0,097	0,05	+/- 14	équivalent à NF EN 16181
ਉ Chrysène	mg/kg Ms	0,10	0,05	+/- 14	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	0,11	0,05	+/- 12	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	0,063	0,05	+/- 14	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	0,13	0,05	+/- 14	équivalent à NF EN 16181
Anthracène Fluoranthène Pyrène Benzo(a)anthracène Chrysène Benzo(b)fluoranthène Benzo(k)fluoranthène Benzo(a)pyrène					page 1 de 3

RvA L 005

Kamer van Koophandel Nr. 08110898 VAT/BTW-ID-Nr.: NL 811132559 B01

Directeur ppa. Marc van Gelder Dr. Paul Wimmer

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 23.09.2021 N° Client 35005793

RAPPORT D'ANALYSES 1081373 - 690036

Spécification des échantillons F10 (0,5-1)

*.		Unité	Résultat	Quant.	Résultat %	Méthode
=	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
polog	Benzo(g,h,i)pérylène	mg/kg Ms	0,11	0,05	+/- 14	équivalent à NF EN 16181
Σ	Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,11	0,05	+/- 17	équivalent à NF EN 16181
e	HAP (6 Borneff) - somme	mg/kg Ms	0,643	0,00	., .,	équivalent à NF EN 16181
arl	Somme HAP (VROM)	mg/kg Ms	0,730 ^{x)}			équivalent à NF EN 16181
Sp	HAP (EPA) - somme	mg/kg Ms	0,936 x)			équivalent à NF EN 16181
fiée	Composés aromatiques	<u> </u>	0,000			
enti	Benzène	mg/kg Ms	<0,05	0,05		ISO 22155
ğ	Toluène	mg/kg Ms	<0,05	0,05		ISO 22155
out	Ethylbenzène	mg/kg Ms	<0,05	0,05		ISO 22155
Ś	m,p-Xylène	mg/kg Ms	<0,10	0,1		ISO 22155
tée	o-Xylène	mg/kg Ms	<0,050	0,05		ISO 22155
.édi	Somme Xylènes	mg/kg Ms	n.d.	0,00		ISO 22155
3001	COHV	g,g	man			100 22 100
on 8	Chlorure de Vinyle	mg/kg Ms	-0 02	0,02		ISO 22155
s nc	Dichlorométhane	mg/kg Ms	<0,02 <0,05	0,02		ISO 22155
ité	Trichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
cŧi	Tétrachlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
S	Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
<u>e</u>	Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
ne	1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
Se	1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
7.	1,1-Dichloroéthane	mg/kg Ms	<0,10	0,03		ISO 22155
20,	1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
25:	cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
170	1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,020		ISO 22155
\tilde{c}	Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
=	Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	0,020		ISO 22155
nent sont accréditées selon EN ISO/IEC 17025:2017. Seules les activités non accréditées sont identifiées par le symbole	Hydrocarbures totaux (ISO)					100 == 100
Z	Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
- uc	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
sele	Fraction aliphatique >C0-C0	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
es	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Jité	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
ŗé	Fraction C5-C10	mg/kg Ms	<1,0 ^{x)}	1		conforme à NEN-EN-ISO 16558-1
acc	Fraction >C6-C8	mg/kg Ms	<0,40 ^{x)}	0,4		conforme à NEN-EN-ISO 16558-1
ont	Fraction >C8-C10	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
ıt S(Hydrocarbures totaux C10-C40	mg/kg Ms	46,2	20	+/- 21	ISO 16703
ner		mg/kg Ms	<4,0	4		ISO 16703
cur	Fraction C12-C16		<4,0	4		ISO 16703
ဓ	Fraction C16-C20	mg/kg Ms	2,9	2	+/- 21	ISO 16703
ce		mg/kg Ms	4,1	2	+/- 21	ISO 16703
สทร	Fraction C24-C28	mg/kg Ms	8,3	2	+/- 21	ISO 16703
ğ		mg/kg Ms	11	2	+/- 21	ISO 16703
ées		mg/kg Ms	10,2	2	+/- 21	ISO 16703
201	Fraction C36-C40	mg/kg Ms	5,0	2	+/- 21	ISO 16703
Les activités rapportées dans ce docur						page 2 de 3
_						, ,

Limite

Incert.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 23.09.2021 N° Client 35005793

RAPPORT D'ANALYSES 1081373 - 690036

Spécification des échantillons

F10 (0,5-1)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 16.09.2021 Fin des analyses: 21.09.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

par le symbole

Date de validation

Matière sèche

Seules les activités non accréditées

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (Toulouse 31) 143 avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 23.09.2021 N° Client 35005793

> > NEN-EN15934; EN12880

RAPPORT D'ANALYSES 1081373 - 690037

sont identifiées par le symbole " *) ". 1081373 BC21-5341 -CESISO212405 -ELEMENTS St FELIU n° Cde

16.09.2021

N° échant. 690037 Solide / Eluat Projet 86140 ELEMENTS St Feliu

%

Prélèvement 15.09.2021 20:18

Prélèvement par: Client Spécification des échantillons F8 (1,4-2)

	Unité		Résultat	Quant.	Résultat %	Méthode
Prétraitement des échantillons						
Prétraitement de l'échantillon		0				Conforme à NEN-EN 16179
Broyeur à mâchoires		•				méthode interne

93,2

Limite

0,01

Incert.

+/- 1

Prétraitement pour analyses des métaux

Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux		-			(444444)
Arsenic (As)	mg/kg Ms	20	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	20	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	41	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	20	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	20	0,5	+/- 11	Conforme à EN-ISO 11885, EN

Hydrocarbures Aromatiques Polycycliques (150)
---	------

Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux		·			
Arsenic (As)	mg/kg Ms	20	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	20	0,2	+/- 12	Conforme à EN-ISO 11885, Et 16174
Cuivre (Cu)	mg/kg Ms	41	0,2	+/- 20	Conforme à EN-ISO 11885, Ef 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	20	0,5	+/- 11	Conforme à EN-ISO 11885, EI 16174
Plomb (Pb)	mg/kg Ms	20	0,5	+/- 11	Conforme à EN-ISO 11885, EI 16174
Zinc (Zn)	mg/kg Ms	68	1	+/- 22	Conforme à EN-ISO 11885, El 16174
Hydrocarbures Aromatique	es Polycycliques (IS	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
riodriaprityrono	mg/ng mo	10,000			
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618 ²
	0 0		0,05		équivalent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05 0,05	+/- 20	équivalent à NF EN 1618
Acénaphtène Fluorène	mg/kg Ms mg/kg Ms	<0,050 <0,050	0,05	+/- 20 +/- 24	équivalent à NF EN 1618' équivalent à NF EN 1618' équivalent à NF EN 1618' équivalent à NF EN 1618'
Acénaphtène Fluorène Phénanthrène	mg/kg Ms mg/kg Ms mg/kg Ms	<0,050 <0,050 0,30	0,05 0,05		équivalent à NF EN 1618 équivalent à NF EN 1618 équivalent à NF EN 1618
Acénaphtène Fluorène Phénanthrène Anthracène	mg/kg Ms mg/kg Ms mg/kg Ms mg/kg Ms	<0,050 <0,050 0,30 0,056	0,05 0,05 0,05	+/- 24	équivalent à NF EN 1618' équivalent à NF EN 1618' équivalent à NF EN 1618' équivalent à NF EN 1618'
Acénaphtène Fluorène Phénanthrène Anthracène Fluoranthène	mg/kg Ms mg/kg Ms mg/kg Ms mg/kg Ms mg/kg Ms mg/kg Ms	<0,050 <0,050 0,30 0,056 0,71	0,05 0,05 0,05 0,05	+/- 24 +/- 17	équivalent à NF EN 1618 équivalent à NF EN 1618 équivalent à NF EN 1618 équivalent à NF EN 1618 équivalent à NF EN 1618
Acénaphtène Fluorène Phénanthrène Anthracène Fluoranthène Pyrène	mg/kg Ms	<0,050 <0,050 0,30 0,056 0,71 0,53	0,05 0,05 0,05 0,05 0,05	+/- 24 +/- 17 +/- 19	équivalent à NF EN 1618'
Acénaphtène Fluorène Phénanthrène Anthracène Fluoranthène Pyrène Benzo(a)anthracène	mg/kg Ms	<0,050 <0,050 0,30 0,056 0,71 0,53 0,32	0,05 0,05 0,05 0,05 0,05 0,05	+/- 24 +/- 17 +/- 19 +/- 14	équivalent à NF EN 1618'
Acénaphtène Fluorène Phénanthrène Anthracène Fluoranthène Pyrène Benzo(a)anthracène	mg/kg Ms	<0,050 <0,050 0,30 0,056 0,71 0,53 0,32 0,36	0,05 0,05 0,05 0,05 0,05 0,05 0,05	+/- 24 +/- 17 +/- 19 +/- 14 +/- 14	équivalent à NF EN 1618 ^a équivalent à NF EN 1618 ^a

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 23.09.2021 N° Client 35005793

RAPPORT D'ANALYSES 1081373 - 690037

Spécification des échantillons F8 (1,4-2)

".	eposition de conditione	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
- (1)	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
g	Benzo(g,h,i)pérylène	mg/kg Ms	0,28	0,05	+/- 14	équivalent à NF EN 16181
Æ	Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,29	0,05	+/- 17	équivalent à NF EN 16181
S.	HAP (6 Borneff) - somme	mg/kg Ms	2,18	0,00	17 17	équivalent à NF EN 16181
ar	Somme HAP (VROM)	mg/kg Ms	2,91 ^{x)}			équivalent à NF EN 16181
Seules les activités non accréditées sont identifiées par le symbole " *)	HAP (EPA) - somme	mg/kg Ms	3,75 ^{x)}			équivalent à NF EN 16181
fiée	Composés aromatiques		,			
ənti	Benzène	mg/kg Ms	<0,05	0,05		ISO 22155
ğ	Toluène	mg/kg Ms	<0,05	0,05		ISO 22155
out	Ethylbenzène	mg/kg Ms	<0,05	0,05		ISO 22155
S	m,p-Xylène	mg/kg Ms	<0,10	0,1		ISO 22155
tée	o-Xylène	mg/kg Ms	<0,050	0,05		ISO 22155
rédi	Somme Xylènes	mg/kg Ms	n.d.	0,00		ISO 22155
300	COHV	<u> </u>				100 =2.00
'n	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		ISO 22155
S DC	Dichlorométhane	mg/kg Ms	<0,02	0,02		ISO 22155
ité	Trichlorométhane	mg/kg Ms		0,05	+	ISO 22155
Ę	Tétrachlorométhane	mg/kg Ms	<0,05		+	ISO 22155
s a			<0,05	0,05		
<u>6</u>	Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
les	Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Set	1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
	1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05	+	ISO 22155
20	1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
5:5	1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
702	cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
	1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Ĕ	Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	<0,025	0,025		ISO 22155
sont accréditées selon EN ISO/IEC 17025:2017.		mg/kg Ms	n.d.			ISO 22155
z	Hydrocarbures totaux (ISO)	I			1	
Ш	Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
<u> </u>	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Š	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
tée	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
édi	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
S	Fraction C5-C10	mg/kg Ms	<1,0 ×)	11	1	conforme à NEN-EN-ISO 16558-1
ıt a	Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
sor	Fraction >C8-C10	mg/kg Ms	<0,40 x)	0,4	1	conforme à NEN-EN-ISO 16558-1
υţ	Hydrocarbures totaux C10-C40	mg/kg Ms	34,5	20	+/- 21	ISO 16703
ce docume		mg/kg Ms	<4,0	4		ISO 16703
00		mg/kg Ms	<4,0	4	,	ISO 16703
ō ه		mg/kg Ms	5,7	2	+/- 21	ISO 16703
Š		mg/kg Ms	5,0	2	+/- 21	ISO 16703
Jan		mg/kg Ms	5,0	2	+/- 21	ISO 16703
S		mg/kg Ms	5,9	2	+/- 21	ISO 16703
portées dans		mg/kg Ms	5,3	2	+/- 21	ISO 16703
Б	Fraction C36-C40	mg/kg Ms	2,7	2	+/- 21	ISO 16703

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 23.09.2021 N° Client 35005793

RAPPORT D'ANALYSES 1081373 - 690037

Spécification des échantillons

F8 (1,4-2)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 16.09.2021 Fin des analyses: 21.09.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

par le symbole

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (Toulouse 31) 143 avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 23.09.2021 N° Client 35005793

> > NF-EN 16174; NF EN 13657

RAPPORT D'ANALYSES 1081373 - 690038

sont identifiées par le symbole " *) ". 1081373 BC21-5341 -CESISO212405 -ELEMENTS St FELIU n° Cde

16.09.2021

N° échant. 690038 Solide / Eluat Projet 86140 ELEMENTS St Feliu

Prélèvement 15.09.2021 20:18

Prélèvement par: Client Spécification des échantillons F3 (1,4-2,5)

Unité Résultat Quant. Résultat % Méthode Prétraitement des échantillons

Prétraitement de l'échantillon

Date de validation

les activités non accréditées

Conforme à NEN-EN 16179 Matière sèche 79,3 0,01 +/- 1 NEN-EN15934; EN12880

Limite

Incert.

Prétraitement pour analyses des métaux Minéralisation à l'eau régale

Iviliteralisation a read regale					(déchets)
Métaux					
Arsenic (As)	mg/kg Ms	20	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,4	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	20	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	110	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	22	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	63	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	130	1	+/- 22	Conforme à EN-ISO 11885, EN

					(decnets)
Métaux					
Arsenic (As)	mg/kg Ms	20	1	+/- 15	Conforme à EN-ISO 11885, 16174
Cadmium (Cd)	mg/kg Ms	0,4	0,1	+/- 21	Conforme à EN-ISO 11885, 16174
Chrome (Cr)	mg/kg Ms	20	0,2	+/- 12	Conforme à EN-ISO 11885, 16174
Cuivre (Cu)	mg/kg Ms	110	0,2	+/- 20	Conforme à EN-ISO 11885, 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et E 16174
Nickel (Ni)	mg/kg Ms	22	0,5	+/- 11	Conforme à EN-ISO 11885, 16174
Plomb (Pb)	mg/kg Ms	63	0,5	+/- 11	Conforme à EN-ISO 11885, 16174
Zinc (Zn)	mg/kg Ms	130	1	+/- 22	Conforme à EN-ISO 11885, 16174
Hydrocarbures Aromatiqu	ies Polycycliques (IS	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Phénanthrène	mg/kg Ms	0,067	0,05	+/- 20	équivalent à NF EN 161
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Fluoranthène	mg/kg Ms	0,19	0,05	+/- 17	équivalent à NF EN 161
Pyrène	mg/kg Ms	0,19	0,05	+/- 19	équivalent à NF EN 161
Benzo(a)anthracène	mg/kg Ms	0,084	0,05	+/- 14	équivalent à NF EN 161
Chrysène	mg/kg Ms	0,084	0,05	+/- 14	équivalent à NF EN 161
Benzo(b)fluoranthène	mg/kg Ms	0,14	0,05	+/- 12	équivalent à NF EN 161
- 414					éguivalent à NF EN 161
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		equivalent a INF EIN 101
Benzo(k)fluoranthène Benzo(a)pyrène	mg/kg Ms mg/kg Ms	<0,050 <0,050	0,05		équivalent à NF EN 161

RvA L 005

page 1 de 3

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 23.09.2021 N° Client 35005793

RAPPORT D'ANALYSES 1081373 - 690038

Spécification des échantillons F3 (1,4-2,5)

* 		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
=	Benzo(g,h,i)pérylène	mg/kg Ms	0,076	0,05	+/- 14	équivalent à NF EN 16181
g	Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,11	0,05	+/- 17	équivalent à NF EN 16181
Σ	HAP (6 Borneff) - somme	mg/kg Ms	0,516 ^{x)}	0,00	., .,	équivalent à NF EN 16181
e S	Somme HAP (VROM)	mg/kg Ms	0,611 ^{x)}			équivalent à NF EN 16181
par le symbole	HAP (EPA) - somme	mg/kg Ms	0,941 ^{x)}			équivalent à NF EN 16181
		199	0,0			
sont accréditées selon EN ISO/IEC 17025:2017. Seules les activités non accréditées sont identifiées	Composés aromatiques		0.00	0.05	. / 40	100 00455
ntif	Benzène	mg/kg Ms	0,32	0,05	+/- 18	ISO 22155
ide	Toluène	mg/kg Ms	0,33	0,05	+/- 23	ISO 22155
'n	Ethylbenzène	mg/kg Ms	<0,10 ^{ak)}	0,1		ISO 22155
SS	m,p-Xylène	mg/kg Ms	<0,20 ^{ak)}	0,2		ISO 22155
ées	o-Xylène	mg/kg Ms	<0,10 ^{ak)}	0,1		ISO 22155
ij	Somme Xylènes	mg/kg Ms	n.d.			ISO 22155
cré	COHV					
ä	Chlorure de Vinyle	mg/kg Ms	<0,04 ^{ak)}	0,04		ISO 22155
υQL	Dichlorométhane	mg/kg Ms	<0,10 ^{ak)}	0,1		ISO 22155
ŝ	Trichlorométhane	mg/kg Ms	<0,10 ^{ak)}	0,1		ISO 22155
<u>¥</u>	Tétrachlorométhane	mg/kg Ms	<0,10 ^{ak)}	0,1		ISO 22155
acti	Trichloroéthylène	mg/kg Ms	<0,10 ^{ak)}	0,1		ISO 22155
Se	Tétrachloroéthylène	mg/kg Ms	<0,10 ^{ak)}	0,1		ISO 22155
Se	1,1,1-Trichloroéthane	mg/kg Ms	<0,10 ^{ak)}	0,1		ISO 22155
e ne	1,1,2-Trichloroéthane	mg/kg Ms	<0,10 ^{ak)}	0,1		ISO 22155
S	1,1-Dichloroéthane	mg/kg Ms	<0,20 ^{ak)}	0,2		ISO 22155
17.	1,2-Dichloroéthane	mg/kg Ms	<0,10 ^{ak)}	0,1		ISO 22155
20	cis-1,2-Dichloroéthène	mg/kg Ms	<0,050 ^{ak)}	0,05		ISO 22155
25:	1,1-Dichloroéthylène	mg/kg Ms	<0,20 ^{ak)}	0,2		ISO 22155
2	Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,050 ^{ak)}	0,05		ISO 22155
$^{\circ}$	Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	0,00		ISO 22155
#		19.1.9	i i i di			100 22 100
SC	Hydrocarbures totaux (ISO)		0.57		/ 05	conforme à NEN-EN-ISO 16558-1
Z	Fraction aliphatique C5-C6	mg/kg Ms	0,57	0,2	+/- 25	conforme à NEN-EN-ISO 16558-1
n E	Fraction aliphatique >C6-C8	mg/kg Ms	<0,40 ^{ak)}	0,4		
elo	Fraction aliphatique >C8-C10	mg/kg Ms	<0,40 ^{ak)}	0,4	/ 45	conforme à NEN-EN-ISO 16558-1
S	Fraction aromatique >C6-C8	mg/kg Ms	0,88	0,2	+/- 15	conforme à NEN-EN-ISO 16558-1
tée	Fraction aromatique >C8-C10	mg/kg Ms	0,92	0,2	+/- 35	conforme à NEN-EN-ISO 16558-1
édi	Fraction C5-C10	mg/kg Ms	2,4	11	+/- 35	conforme à NEN-EN-ISO 16558-1
SC	Fraction >C6-C8	mg/kg Ms	0,88 ^{x)}	0,4	+/- 25	conforme à NEN-EN-ISO 16558-1
Ħ,	Fraction >C8-C10	mg/kg Ms	0,92 ^{x)}	0,4	+/- 35	conforme à NEN-EN-ISO 16558-1
sor	Hydrocarbures totaux C10-C40	mg/kg Ms	41,6	20	+/- 21	ISO 16703
Ţ	Fraction C10-C12	mg/ng mo	<4,0	4		ISO 16703
me	Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
docume	Fraction C16-C20	,g,g	6,7	2	+/- 21	ISO 16703
ð		mg/kg Ms	6,8	2	+/- 21	ISO 16703
S CE	Fraction C24-C28		9,0	2	+/- 21	ISO 16703
aus		mg/kg Ms	8,2	2	+/- 21	ISO 16703
sd		mg/kg Ms	3,8	2	+/- 21	ISO 16703
tée	Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703
Les activités rapportées dans ce						page 2 de 3

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 23.09.2021 N° Client 35005793

RAPPORT D'ANALYSES 1081373 - 690038

Spécification des échantillons

F3 (1,4-2,5)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification. ak) En raison de la présence de charbon actif, le résultat est donné à titre indicatif.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l'incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 16.09.2021 Fin des analyses: 22.09.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

par

identifiées

sont identifiées par le symbole " *) ".

document sont accréditées selon EN ISO/IEC 17025:2017. Seules les activités non accréditées

Date de validation

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (Toulouse 31) 143 avenue de Verdun 92130 ISSY-LES-MOULINEAUX FRANCE

> Date 23.09.2021 N° Client 35005793

RAPPORT D'ANALYSES 1081373 - 690039

n° Cde 1081373 BC21-5341 -CESISO212405 -ELEMENTS St FELIU

16.09.2021

N° échant.690039 Solide / EluatProjet86140 ELEMENTS St Feliu

Prélèvement 15.09.2021 20:18

Prélèvement par: Client
Spécification des échantillons F2 (1,6-2,5)

				Limite	Incert.	
	Unité		Résultat	Quant.	Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)	%	0	<0,1	0,1		Selon norme lixiviation
Lixiviation (EN 12457-2)		•				NF EN 12457-2
Masse brute Mh pour lixiviation	*) g	•	110	1		Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extraction	*) ml		900	1		Selon norme lixiviation
Prétraitement des échantillon	S					
Masse échantillon total inférieure à 2 kg	kg	•	0,63	0		
Prétraitement de l'échantillon		•				Conforme à NEN-EN 16179
Matière sèche	%	0	86,4	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions solubles						
Antimoine cumulé (var. L/S)	*) mg/kg Ms		0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms		0,07	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms		0,15	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms		35	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms		55	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms		0,12	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms		6,0	1		Selon norme lixiviation
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms		1400	1000		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation

Analyses	Physico-chimiques	
Anaivses	Physico-chimiones	

Mercure cumulé (var. L/S)

Molybdène cumulé (var. L/S)

Nickel cumulé (var. L/S)

Plomb cumulé (var. L/S)

Sélénium cumulé (var. L/S)

Sulfates cumulé (var. L/S)

Zinc cumulé (var. L/S)

$^{\circ}$						
ă	D U U V		•	8.4 0.1	+/- 10	Cf. NEN-ISO 10390 (sol
ᢐ				-, -	., .	uniquement)
ŝ	COT Carbone Organique Total	mg/kg Ms		7200 1000	+/- 16	conforme ISO 10694 (2008)

0 - 0,0003

0,08

150

0 - 0,05

0 - 0.05

0 - 0.05

0 - 0,02

0,0003

0,05

0,05

0,05

0,05

50

0,02

Hydrocarbures Aromatiques Polycycliques (ISO)

*) mg/kg Ms

Naphtalène mg/kg Ms <0,050 0,05 équivalent à NF EN 16181

Selon norme lixiviation

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 23.09.2021 N° Client 35005793

RAPPORT D'ANALYSES 1081373 - 690039

Spécification des échantillons F2 (1,6-2,5)

	Unité	Résultat	Quant.	Résultat %	Méthode
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Phénanthrène	mg/kg Ms	0,17	0,05	+/- 20	équivalent à NF EN 161
Anthracène	mg/kg Ms	<0,050	0,05	.,	équivalent à NF EN 161
Fluoranthène	mg/kg Ms	0,58	0,05	+/- 17	équivalent à NF EN 161
Pyrène	mg/kg Ms	0,41	0,05	+/- 19	équivalent à NF EN 161
Benzo(a)anthracène	mg/kg Ms	0,29	0,05	+/- 14	équivalent à NF EN 161
Chrysène	mg/kg Ms	0,25	0,05	+/- 14	équivalent à NF EN 161
Benzo(b)fluoranthène	mg/kg Ms	0,25	0,05	+/- 12	équivalent à NF EN 161
Benzo(k)fluoranthène	mg/kg Ms	0,16	0,05	+/- 14	équivalent à NF EN 161
Benzo(a)pyrène	mg/kg Ms	0,32	0,05	+/- 14	équivalent à NF EN 161
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Benzo(g,h,i)pérylène	mg/kg Ms	0,31	0,05	+/- 14	équivalent à NF EN 161
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,29	0,05	+/- 17	équivalent à NF EN 161
HAP (6 Borneff) - somme	mg/kg Ms	1,91	0,00	7/- 17	équivalent à NF EN 161
Somme HAP (VROM)	mg/kg Ms	2,37 ×)			équivalent à NF EN 161
HAP (EPA) - somme	mg/kg Ms	3,03 ×)			équivalent à NF EN 161
	ilig/kg ivis	3,03			equivalent a Ni Liv 101
Composés aromatiques Benzène	ma/ka Ma	-0.050	0.05		100 22455
	mg/kg Ms	<0,050	0,05		ISO 22155
Toluène	mg/kg Ms	<0,050	0,05		ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05		ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1		ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05		ISO 22155
Somme Xylènes	mg/kg Ms	n.d.			ISO 22155
BTEX total	*) mg/kg Ms	n.d.			ISO 22155
Hydrocarbures totaux (ISO)					
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 168
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 165
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 165
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 165
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 165
Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme à NEN-EN-ISO 165
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 165
Fraction >C8-C10	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 165
Hydrocarbures totaux C10-C40	mg/kg Ms	34,5	20	+/- 21	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	*) mg/kg Ms	3,4	2	+/- 21	ISO 16703
Fraction C20-C24	*) mg/kg Ms	5,4	2	+/- 21	ISO 16703
Fraction C24-C28	*) mg/kg Ms	8,4	2	+/- 21	ISO 16703
Fraction C28-C32	*) mg/kg Ms	8,8	2	+/- 21	ISO 16703
Fraction C32-C36	*) mg/kg Ms	4,4	2	+/- 21	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2		ISO 16703
Polychlorobiphényles					
Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
					11-11-11-10-10/

Limite

Incert.

RvA L 005

page 2 de 4

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 23.09.2021 N° Client 35005793

RAPPORT D'ANALYSES 1081373 - 690039

Spécification des échantillons F2 (1,6-2,5)

-					
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
PCB (118)	ma/ka Ms	<0.001	0.001		NEN-EN 16167
	+ • •				NEN-EN 16167
					NEN-EN 16167
					NEN-EN 16167
		10,001	0,001		NEIV EN TOTO
		10.0	0.1		Selon norme lixiviation
				+/- 10	Selon norme lixiviation
	μο/οπ				Selon norme lixiviation
<u></u>	°C			., 0	Selon norme lixiviation
		10,0			
		140	100	+/- 22	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,6	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
Chlorures (CI)	mg/l	3,5	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	15	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	5,5	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/l	5,4	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	µg/l	6,9	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	µg/l	15	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	µg/I	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	µg/I	12	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
Molybdène (Mo)	μg/l	8,0	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
	L/S cumulé Conductivité électrique pH Température Analyses Physico-chimiques s Résidu à sec Fluorures (F) Indice phénol Chlorures (CI) Sulfates (SO4) COT Métaux sur éluat Antimoine (Sb) Arsenic (As) Baryum (Ba) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Mercure (Hg) Molybdène (Mo) Nickel (Ni) Plomb (Pb) Sélénium (Se)	PCB (118)	PCB (118) mg/kg Ms <0,001 PCB (138) mg/kg Ms <0,001 PCB (153) mg/kg Ms <0,001 PCB (180) mg/kg Ms <0,001 PCB (180) mg/kg Ms <0,001 Analyses sur éluat après lixiviation L/S cumulé ml/g 10,0 Conductivité électrique μS/cm 160 pH 8,3 Température °C 19,6 Analyses Physico-chimiques sur éluat Résidu à sec mg/l 140 Fluorures (F) mg/l 0,6 Indice phénol mg/l <0,010 Chlorures (CI) mg/l 3,5 Sulfates (SO4) mg/l 15 COT mg/l 5,5 Métaux sur éluat Antimoine (Sb) μg/l 5,4 Arsenic (As) μg/l 5,4 Arsenic (As) μg/l 5,4 Cadmium (Cd) μg/l (0,1 Chrome (Cr) μg/l (0,1 Chrome (Cr) μg/l (0,1 Mercure (Hg) μg/l (0,03 Molybdène (Mo) μg/l (5,0 Plomb (Pb) μg/l (5,0 Sélénium (Se) μg/l (5,0	Unité Résultat Quant.	Unité Résultat Quant. Résultat %

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEL FICC, ISO, UICPA, UIPPA et OIMI, 2008) et Nordtest Report (Manuel pour le calcul de

Le calcul de l'incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expressio de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 16.09.2021 Fin des analyses: 23.09.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

dans ce

rapportées

es activités

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 23.09.2021 N° Client 35005793

RAPPORT D'ANALYSES 1081373 - 690039

Spécification des échantillons

Chargée relation clientèle

F2 (1,6-2,5)

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (Toulouse 31) 143 avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 23.09.2021 N° Client 35005793

RAPPORT D'ANALYSES 1081373 - 690040

sont identifiées par le symbole " *) ". 1081373 BC21-5341 -CESISO212405 -ELEMENTS St FELIU n° Cde

N° échant. 690040 Solide / Eluat Projet 86140 ELEMENTS St Feliu Date de validation 16.09.2021

Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
Matière sèche	%		5,7 0,01	+/- 1	NEN-EN15934; EN12880

William and a regard					(déchets)
Métaux					
Arsenic (As)	mg/kg Ms	14	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,2	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	13	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	20	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	12	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	12	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	78	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Date de validation Prélèvement		.09.2021 .09.2021 2	00.40			
			20.10			
Prélèvement par:		ent				
Spécification des échantillons	F4	(0-0,5)				
				Limite	Incert.	
	Unité		Résultat	Quant.	Résultat %	Méthode
Prétraitement des échantillor	ıs					
Prétraitement de l'échantillon		•				Conforme à NEN-EN 16
Matière sèche	%	0	95,7	0,01	+/- 1	NEN-EN15934; EN12
Prétraitement pour analyses	des métaux					
Minéralisation à l'eau régale		0				NF-EN 16174; NF EN 136 (déchets)
Métaux						
Arsenic (As)	mg/kg Ms		14	1	+/- 15	Conforme à EN-ISO 11885,
Cadmium (Cd)	ma/ka Ma		0.0	0.4	. / 04	16174 Conforme à EN-ISO 11885,
Cadmium (Cd)	mg/kg Ms		0,2	0,1	+/- 21	16174
Chrome (Cr)	mg/kg Ms		13	0,2	+/- 12	Conforme à EN-ISO 11885,
Cuivre (Cu)	mg/kg Ms		20	0,2	+/- 20	16174 Conforme à EN-ISO 11885, 16174
Mercure (Hg)	mg/kg Ms		<0,05	0,05		Conforme à ISO 16772 et
Nickel (Ni)	mg/kg Ms		12	0,5	+/- 11	16174 Conforme à EN-ISO 11885, 16174
Plomb (Pb)	mg/kg Ms		12	0,5	+/- 11	Conforme à EN-ISO 11885, 16174
Zinc (Zn)	mg/kg Ms		78	1	+/- 22	Conforme à EN-ISO 11885, 16174
Hydrocarbures Aromatiques	Polycycliau	es (ISO)	'		1	
Naphtalène	mg/kg Ms	(100)	<0,050	0,05		équivalent à NF EN 161
Acénaphtylène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 161
Acénaphtène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 161
Fluorène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 161
Phénanthrène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 161
Anthracène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 161
Fluoranthène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 161
Pyrène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 161
Benzo(a)anthracène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 161
Chrysène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 161
Benzo(b)fluoranthène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 161
Benzo(k)fluoranthène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 161
Benzo(a)pyrène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 161
Dibenzo(a,h)anthracène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 161

page 1 de 3

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 23.09.2021 N° Client 35005793

RAPPORT D'ANALYSES 1081373 - 690040

Spécification des échantillons F4 (0-0,5)

rkg Ms	<0,050 <0,050 n.d. n.d. n.d. <0,05 <0,05 <0,05 <0,10	0,05 0,05 0,05 0,05 0,05 0,05	équivalent à NF EN 1618 ISO 22155 ISO 22155
kg Ms	n.d. n.d. n.d. <0,05 <0,05 <0,05	0,05 0,05	équivalent à NF EN 1618 équivalent à NF EN 1618 équivalent à NF EN 1618
kg Ms	n.d. n.d. <0,05 <0,05 <0,05	0,05	équivalent à NF EN 1618 équivalent à NF EN 1618 ISO 22155
kg Ms kg Ms kg Ms kg Ms kg Ms kg Ms	<0,05 <0,05 <0,05 <0,05	0,05	équivalent à NF EN 1618
kg Ms kg Ms kg Ms kg Ms	<0,05 <0,05 <0,05	0,05	ISO 22155
kg Ms kg Ms kg Ms	<0,05 <0,05	0,05	
kg Ms kg Ms kg Ms	<0,05 <0,05	0,05	
kg Ms kg Ms	<0,05		ISO 22155
kg Ms		0.05	
	ا ۱۸ مر	0,00	ISO 22155
kg Ms	~U, IU	0,1	ISO 22155
	<0,050	0,05	ISO 22155
kg Ms	n.d.		ISO 22155
kg Ms	<0.02	0,02	ISO 22155
kg Ms			ISO 22155
kg Ms			ISO 22155
kg Ms			ISO 22155
′kg Ms			ISO 22155
′kg Ms			ISO 22155
kg Ms			ISO 22155
kg Ms			ISO 22155
′kg Ms			ISO 22155
′kg Ms			ISO 22155
′kg Ms			ISO 22155
kg Ms			ISO 22155
			ISO 22155
kg Ms	n.d.		ISO 22155
kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 1659
′kg Ms			conforme à NEN-EN-ISO 1655
kg Ms			conforme à NEN-EN-ISO 1655
kg Ms			conforme à NEN-EN-ISO 1659
′kg Ms			conforme à NEN-EN-ISO 165
		1	conforme à NEN-EN-ISO 165
kg Ms	<0,40 ×)	0,4	conforme à NEN-EN-ISO 1655
′kg Ms	<0,40 ×)	-	conforme à NEN-EN-ISO 165
kg Ms			ISO 16703
kg Ms		4	ISO 16703
kg Ms	<4,0	4	ISO 16703
kg Ms	<2,0	2	ISO 16703
kg Ms	<2,0	2	ISO 16703
kg Ms	<2,0	2	ISO 16703
kg Ms	<2,0	2	ISO 16703
	<2,0 <2,0	2 2 2	ISO 16703 ISO 16703
	kg Ms	kg Ms <0,05	kg Ms <0,05 0,05 kg Ms <0,005 0,05 kg Ms <0,005 0,025 kg Ms <0,025 0,025 kg Ms <0,025 0,025 kg Ms <0,025 0,025 kg Ms <0,20 0,2 kg Ms <0,40 0,4 kg Ms <0,40 0,4 kg Ms <0,40 4 kg Ms <4,0 4 kg Ms <2,0 </td

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 23.09.2021 N° Client 35005793

RAPPORT D'ANALYSES 1081373 - 690040

Spécification des échantillons

F4 (0-0,5) x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l'incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UĬCPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 16.09.2021 Fin des analyses: 21.09.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

par le symbole

Glossaire

AEA (Alimentation en Eau Agricole) : Eau utilisée pour l'irrigation des cultures

AEI (Alimentation en Eau Industrielle) : Eau utilisée dans les processus industriels

AEP (Alimentation en Eau Potable) : Eau utilisée pour la production d'eau potable

ARIA (Analyse, Recherche et Information sur les Accidents) : base de données répertorie les incidents ou accidents qui ont, ou auraient, pu porter atteinte à la santé ou la sécurité publiques ou à l'environnement.

ARR (Analyse des risques résiduels) : Il s'agit d'une estimation par le calcul (et donc théorique) du risque résiduel auquel sont exposées des cibles humaines à l'issue de la mise en œuvre de mesures de gestion d'un site. Cette évaluation correspond à une EQRS.

ARS (Agence régionale de santé): Les ARS ont été créées en 2009 afin d'assurer un pilotage unifié de la santé en région, de mieux répondre aux besoins de la population et d'accroître l'efficacité du système.

BASIAS (Base de données des Anciens Sites Industriels et Activités de Service) : Cette base de données gérée par le BRGM recense de manière systématique les sites industriels susceptibles d'engendrer une pollution de l'environnement.

BASOL: Base de données gérée par le Ministère de l'Ecologie, du Développement Durable et de l'Energie recensant les sites et sols pollués ou potentiellement pollués appelant une action des pouvoirs publics, à titre préventif ou curatif.

Biocentre : Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Elles prennent en charge les déchets en vue de leur traitement basé sur la biodégradation aérobie de polluants chimiques.

BTEX (Benzène, Toluène, Ethylbenzène, Xylènes): Les BTEX (Benzène, Toluène, Ethylbenzène et Xylènes) sont des composés organiques mono-aromatiques volatils qui ont des propriétés toxiques.

COHV (Composés organo-halogénés volatils): Solvants organiques chlorés aliphatiques volatils qui ont des propriétés toxiques et sont ou ont été couramment utilisés dans l'industrie.

DREAL (Directions régionales de l'environnement, de l'aménagement et du logement) : Cette structure régionale du ministère du Développement durable pilote les politiques de développement durable résultant notamment des engagements du Grenelle Environnement ainsi que celles du logement et de la ville.

DRIEE (Direction régionale et interdépartementale de l'environnement et de l'énergie) : Service déconcentré du Ministère en charge de l'environnement pour la région parisienne, la DRIEE met en œuvre sous l'autorité du Préfet de la Région les priorités d'actions de l'État en matière d'Environnement et d'Énergie et plus particulièrement celles issues du Grenelle de l'Environnement. Elle intervient dans l'ensemble des départements de la région grâce à ses unités territoriales (UT).

Eluat: voir lixiviation

EQRS (Evaluation quantitative des risques sanitaires) : Il s'agit d'une estimation par le calcul (et donc théorique) des risques sanitaires auxquels sont exposées des cibles humaines.

ERI (Excès de risque individuel) : correspond à la probabilité que la cible a de développer l'effet associé à une substance cancérogène pendant sa vie du fait de l'exposition considérée. Il s'exprime sous la forme mathématique suivante 10^{-n} . Par exemple, un excès de risque individuel de 10^{-5} représente la probabilité supplémentaire, par rapport à une personne non exposée, de développer un cancer pour 100 000 personnes exposées pendant une vie entière.

ERU (Excès de risque unitaire) : correspond à la probabilité supplémentaire, par rapport à un sujet non exposé, qu'un individu contracte un cancer s'il est exposé pendant sa vie entière à une unité de dose de la substance cancérigène.

HAP (Hydrocarbures Aromatiques Polycycliques) : Ces composés constitués d'hydrocarbures cycliques sont générés par la combustion de matières fossiles. Ils sont peu mobiles dans les sols.

HAM (Hydrocarbures aromatiques monocycliques): Ces hydrocarbures constitués d'un seul cycle aromatiques sont très volatils, les BTEX* sont intégrés à cette famille de polluants..

HCT (Hydrocarbures Totaux) : Il s'agit généralement de carburants pétroliers dont la volatilité et la mobilité dans le milieu souterrain dépendent de leur masse moléculaire (plus ils sont lourds, c'est-à-dire plus la chaine carbonée est longue, moins ils sont volatils et mobiles).

IEM (Interprétation de l'état des milieux): au sens des textes ministériels du 8 février 2007, l'IEM est une étude réalisée pour évaluer la compatibilité entre l'état des milieux (susceptibles d'être pollués) et les usages effectivement constatés, programmés ou potentiels à préserver. L'IEM peut faire appel dans certains cas à une grille de calcul d'EQRS spécifique.

ISDI (Installation de Stockage de Déchets Inertes): Ces installations sont classées pour la protection de l'environnement sous le régime de l'enregistrement. Ce type d'installation permet l'élimination de déchets industriels inertes par dépôt ou enfouissement sur ou dans la terre. Sont considérés comme déchets inertes ceux répondant aux critères de l'arrêté ministériel du 12 décembre 2014.

ISDND (Installation de Stockage de Déchets Non Dangereux) : Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Cette autorisation précise, entre autres, les capacités de stockage maximales et annuelles de l'installation, la durée de l'exploitation et les superficies de l'installation de la zone à exploiter et les prescriptions techniques requises.

ISDD (Installation de Stockage de Déchets Dangereux): Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Ce type d'installation permet l'élimination de déchets dangereux, qu'ils soient d'origine industrielle ou domestique, et les déchets issus des activités de soins.

Lixiviation: Opération consistant à soumettre une matrice (sol par exemple) à l'action d'un solvant (en général de l'eau). On appelle lixiviat la solution obtenue par lixiviation dans le milieu réel (ex : une décharge). La solution obtenue après lixiviation d'un matériau au laboratoire est appelée un éluat.

PCB (Polychlorobiphényles): L'utilisation des PCB est interdite en France depuis 1975 (mais leur usage en système clos est toléré). On les rencontre essentiellement dans les isolants diélectriques, dans les transformateurs et condensateurs individuels. Ces composés sont peu volatils, peu solubles et peu mobiles.

Plan de Gestion : démarche définie par les textes ministériels du 8 février 2007 visant à définir les modalités de réhabilitation et d'aménagement d'un site pollué.

QD (Quotient de danger) : Rapport entre l'estimation d'une exposition (exprimée par une dose ou une concentration pour une période de temps spécifiée) et la VTR* de l'agent dangereux pour la voie et la durée d'exposition correspondantes. Le QD (sans unité) n'est pas une probabilité et concerne uniquement les effets à seuil.

VTR (Valeur toxicologique de référence): Appellation générique regroupant tous les types d'indices toxicologiques qui permettent d'établir une relation entre une dose et un effet (toxique à seuil d'effet) ou entre une dose et une probabilité d'effet (toxique sans seuil d'effet). Les VTR sont établies par des instances internationales (l'OMS ou le CIPR, par exemple) ou des structures nationales (US-EPA et ATSDR aux Etats-Unis, RIVM aux Pays-Bas, Health Canada, ANSES en France, etc.).

VLEP (Valeur Limite d'Exposition Professionnelle): Valeur limite d'exposition correspondant à la valeur réglementaire de concentration dans l'air de l'atmosphère de travail à ne pas dépasser durant plus de 8 heures (VLEP 8H) ou 15 minutes (VLEP CT); la VLEP 8H peut être dépassée sur de courtes périodes à condition de ne pas dépasser la VLEP CT.