

Cartographie et inventaire des habitats marins du chemin du Treiz

Version	Date	Remarques
1.0	27/06/24	Transmission à la Ville
1.1	1/07/24	Transmission à la Ville

Observations sur l'utilisation du rapport

Ce rapport, ainsi que les cartes ou documents, et toutes autres pièces annexées constituent un ensemble indissociable : en conséquence, l'utilisation qui pourrait être faite d'une communication ou reproduction partielle de ce rapport et annexes ainsi que toute interprétation au-delà des indications et énonciations de **Gaïa – Terre bleue** ne saurait engager la responsabilité de celle-ci.

<u>Crédit photographique :</u> Gaïa – Terre bleue (sauf mention particulière)

Auteurs

Didier Grosdemange, Océanologue Fanch Quénot, écologue Mathieu le Duigou, benthologue

Gaïa - Terre bleue
Bureau n°6 – Criée Ouest
29900 Concarneau - France
06 08 21 05 67
dgrosdemange@gaia-terrebleue.fr
www.gaia-terrebleue.fr

Sommaire

<u>1</u>	LE CONTEXTE	6
<u>2</u>	MATERIEL ET METHODE	6
2.1	Realisation d'une orthophotographie par drone	6
2.2	Inventaire de l'estran meuble et caracterisation des habitats marins	9
2.3	INVENTAIRE DE L'ESTRAN ROCHEUX ET CARTOGRAPHIE DES HABITATS MARINS	13
2.4	QUALITE GEOCHIMIQUES DES SEDIMENTS	20
<u>3</u>	RESULTATS SUR LE SITE DU TREIZ	25
3.1	Date de la campagne	25
3.2	RESULTATS POUR LA QUALITE DES SEDIMENTS	25
3.3	RESULTATS DE L'INVENTAIRE DE LA MACROFAUNE BENTHIQUE DE L'ESTRAN MEUBLE	28
3.4	Resultats de l'inventaire des MacroAlgues Intertidales de l'Estran Rocheux	31
3.5	CARTOGRAPHIE DES HABITATS MARINS DE L'ESTRAN ROCHEUX ET MEUBLE DU SITE DU TREIZ	32
<u>4</u>	DISCUSSION ET CONCLUSION SUR LES NIVEAUX D'ENJEU	37
4.1	Rappel de la Definition de l'Enjeu	37
4.2	DEFINITION DE L'ENJEU HABITATS MARINS DU TREIZ	37
_	ANNEYES	20
<u>5</u>	ANNEXES	39
5.1	Annexe 1: Modele de fiche terrain pour les Inventaires Estran Rocheux	39
5.2	Annexe 2 : Bordereau d'analyses EUROFINS	45

Tables des illustrations

Tableau 1 : effort d'échantillonnage	
Tableau 2 : Définition des cinq groupes de polluosensibilité, d'après Glémarec et Hily (1981)	
Tableau 3 : Nombre d'échantillons moyens à analyser pour une zone à échange libre (source circulaire 2000-62)	
Tableau 4 : Nombre d'échantillons moyens à analyser pour les ports de plaisance (source circulaire 2000-62)	
Tableau 5 : Prescription du mode de prélèvement (source circulaire 2000-62)	
Tableau 6 : Classification générale granulométrique	
Tableau 7 : Niveaux relatifs aux métaux lourds	
Tableau 8 : Niveaux relatifs aux PCB (modifié le 17 juillet 2014)	
Tableau 9 : Niveaux relatifs aux HAP	
Tableau 10 : Niveaux relatifs aux TBT	
Tableau 11 : Paramètres physiques sur la plage du Treiz	
Tableau 12 : Résultats sur les propriétés organiques et structurantes pour la plage du Treiz	
Tableau 13 : Résultats sur les propriétés organiques et structurantes pour la plage du Treiz	
Tableau 14 : Résultats pour les PCB pour la plage du Treiz	
Tableau 15 : Résultats pour les HAP pour la plage du Treiz	
Tableau 16 : Résultats pour les TBT pour la plage du Treiz	
Tableau 17 : Valeurs des principaux descripteurs écologiques et statut attribué à chaque station selon l'indice BE	
Tableau 18 : Aperçu de quelques invertébrés benthiques collectés dans les sédiments	
Tableau 19 : Densités par sous-station des 35 espèces répertoriées en février 2024	
Tableau 20 : Résultats de la note CCO pour le transect Sud	
Tableau 21 : Résultats de la note CCO pour le transect Milieu	
Tableau 22 : Résultats de la note CCO pour le transect Nord	31
Tableau 21 : Niveaux d'enjeu des habitats sur le site	37
Figure 1 : Zone à lever par drone (source Balao)	6
Figure 2 : Décollage du drone et cible géoréférencée (source Balao)	
Figure 3 : Rendu de la photographie finale (source Balao)	8
Figure 4 : Période optimale en fonction de la masse d'eau (source Garcia, 2014)	
Figure 5 : Localisation des stations pour l'étude du benthos de l'estran meuble	10
Figure 6 : Coordonnées des stations de prélèvements (en WGS 83)	10
Figure 7: Mise en place du grand quadrat et matériel pour le fabriquer (source Ar Gall, 2004)	13
Figure 8 : Schéma de la zonation des ceintures en fonctions de l'exposition (d'après Lewis, 1964)	14
Figure 9 : Représentation schématique de l'étagement des algues brunes (source Ar Gall, 2004)	14
Figure 10 : Évolution du pourcentage de temps d'exposition à l'air et du taux de recouvrement de la macrofaui	ne, en
fonction des ceintures algales (A, B, C et D) d'après Gruet, 1983	15
Figure 11 : Indice de recouvrement (d'après Lacoset & Salanon, 1969)	16
Figure 12 : Stratégie d'échantillonnage sur l'estran rocheux	
Figure 13 : Tableaux indiciels pour la couverture végétale globale en fonction de la surface et donc du rang de c	haque
ceinture (source Ar Gall, 2007)	
Figure 14 : Tableau des espèces caractéristiques de l'estran par ceinture (les ceintures Pc et Fspi sont ici regrou	pées).
Le nombre d'espèces caractéristiques figure en bas de chaque colonne (source Ar Gall, 2007)	18
Figure 15 : Présentation des outils de prélèvements	21
Figure 16 : Granulométrie laser pour la station Treiz 1	25
Figure 17 : Granulométrie laser pour la station Treiz 2	25
Figure 18 : Granulométrie laser pour la station Treiz 3	
Figure 19 : Roches ou blocs du médiolittoral supérieur à <i>Pelvetia canaliculata (A1-2.1.2.1)</i> et <i>Fucus spiralis (A1-2.1.2.1)</i>	,
Figure 20 : Roches ou blocs du médiolittoral moyen à couverture discontinue d'Ascophyllum nodosum, de spon	
et d'ascidies	
Figure 21 : Fucus serratus (en mélange avec Fucus vesiculosus)	
Figure 22 : Blocs à Entéromophes	
Figure 23 : Champ de blos	
Figure 24 : On note la présence de nombreuses coques	36

Cartographie et inventaire des habitats marins au niveau du chemin du Treiz – 27 juin 2024

Figure 26 : Détermination des niveaux d'enjeux (source DSF/OFB)	37
Figure 25: Carte des habitats marins du site du Treiz	38

1 LE CONTEXTE

Le réaménagement du chemin du Treiz est une démarche plus large de liaison multimodale reliant le port Rhu au port de Tréboul. La mise en œuvre de ce parcours continu est un projet global qui vise à la fois à offrir une meilleure liaison et accessibilité au cœur de la commune, mais aussi une relation plus forte à toute une part du paysage et de la géographie littorale qui fonde l'identité de Douarnenez.

Pour ce faire, il est nécessaire de connaître les habitats marins présents et également la qualité du milieu sédimentaire.

Ce présent rapport décrit les inventaires qui ont été réalisés le 12 et 13 février 2024.

2 MATERIEL ET METHODE

2.1 REALISATION D'UNE ORTHOPHOTOGRAPHIE PAR DRONE

La mission a consisté en un relevé aérophotogrammétrique, de la zone d'étude avec deux sens de profils (horizontaux et verticaux). Il a été ainsi couvert une zone de 31 721 m2, avec un linéaire de vol de 6 ;46 Km, avec 376 photos prises et une résolution au sol de l'ordre de 2,01 cm/pixel.

Figure 1 : Zone à lever par drone (source Balao)

Pour ce faire, il a été utilisé :

- 2 Drones PHANTOM 4 PRO : Capteur CMOS 1 pouce Proportion image : 3:2 5472 x 3648 pixels. Résolution 20 MégaPixels. Système de positionnement GPS/Glonass
- GNSS Leica en RTK (Orphéon)
- Cibles de photogrammétrie Mise en place des points de contrôles au sol (GCP) cibles 50X50cm noires et blanches
- Application de programmation de mission photogrammétrie : MAP Pilot
- Logiciel **de traitement photogrammétrique** : Agisoft PhotoScan Pro

Le taux de recouvrement d'une photo à l'autre est de 80% permettant de réaliser une mosaïque complète et un recouvrement total de la zone. Le post-traitement via Agisoft PhotoScan Pro permet la génération automatique de nuages de points denses, de modèles polygonaux texturés (modèles 3D), d'orthomosaïques géoréférencées, de modèles numériques de terrain (MNT) (ou DTM pour Digital Terrain Model, en anglais) et modèles numériques de surface (MNS).

La méthodologie proposée est la suivante :

- Placement des cibles le long de la partie côte, et géoréférencement de celles-ci à l'aide du GNSS RTK. Les cibles sont référencées en WGS84.
- 2. Lorsque les cibles sont positionnées, le drone effectue le survol de la zone en question afin d'acquérir les photographies aériennes. À la fin du survol, contrôle de la qualité des données acquises.
- 3. Il est procédé ensuite à la phase de traitement des données acquises. Les photographies obtenues sont vérifiées. A cet instant, les photographies sont référencées par le gps interne au drone. Système géodésique WGS84 Sexadécimales DMS. Lors de leur assemblage avec la suite logiciel AGISOFT PHOTOSCAN PRO, grâce aux cibles présentes sur les photos, il est procédé au géoréférencement de la mosaïque.
- 4. Au final, il est généré une orthophoto géoréférencée, en fichier qualité TIFF.
- 5. Le fichier est mis sous SIG (Qgis) et les zones sont détourées pour tracer les grands ensembles biosédimentaires (habitats). Avec la vérité terrain (inventaire au sol), alors, la carte est corrigée et permet ainsi une classification supervisée.

Figure 2 : Décollage du drone et cible géoréférencée (source Balao)

La figure suivante présente le survol qui a été réalisé.

Figure 3 : Rendu de la photographie finale (source Balao)

2.2 INVENTAIRE DE L'ESTRAN MEUBLE ET CARACTERISATION DES HABITATS MARINS

2.2.1 Référence du protocole

Il a été utilisé le protocole suivant :

- Protocole de suivi stationnel des macro-invertébrés benthiques de substrats meubles subtidaux et intertidaux dans le cadre de la DCE façades manche et atlantique. Rapport AQUAREF. Aurélie Garcia, Nicolas Desroy, Patrick Le Mao, Laurence Miossec, 2014
- Suivi stationnel des biocénoses des sables fins et hétérogènes envasés intertidaux Rebent Jacques Grall et Christian Hily, 2004.

2.2.2 Période d'étude

En raison du cycle de vie des organismes benthiques, la saison d'échantillonnage a une forte influence sur les résultats de richesse spécifique et d'abondance. Il est important de toujours effectuer les suivis à la même période. Le protocole Garcia, 2014 préconise pour :

- Les masses d'eau côtière (MEC) au début du printemps (de mi-février à fin avril), au moment où les peuplements sont à l'état le plus stable
- Les masses d'eau de transition (MET : estuaire) à la fin de l'été (septembre-octobre), lors de la période d'étiage des fleuves et des rivières côtières.

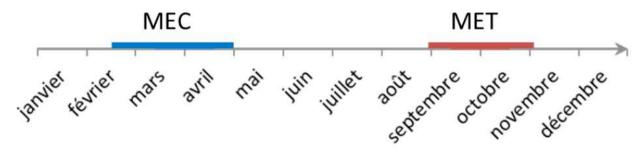
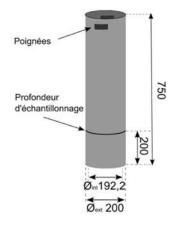


Figure 4 : Période optimale en fonction de la masse d'eau (source Garcia, 2014)


Pour la Masse d'eau Côtière (MEC), il est toujours possible d'échantillonner plus tard dans l'année (été), mais avec le risque de retrouver dans les échantillons, des larves d'organismes benthiques (qui ne sont pas de cette zone) qui auraient commencé leur développement sur le substrat du site (les larves du benthos ont une vie pélagique, avant de tomber sur le fond et de s'y sédentariser si le substrat est compatible avec leur écologie). Une grosse partie de ces larves vont donc périr durant l'été. Seules celles pouvant se développer dans la gamme du substrat du site pourront éventuellement survivre. Cependant, il faut aussi relativiser cette « contamination » de l'échantillon, car souvent ces larves à cette période n'ont pas atteint une taille supérieure à 1 mm et donc ne vont pas être conservées lors de la phase de tamisage.

2.2.3 Moyens matériels

Les prélèvements seront effectués à l'aide d'un carottier à main en PVC de diamètre interne 192,2 mm (diamètre extérieur : 200 mm ; épaisseur : 3,9 mm) ce qui équivaut à une surface unitaire égale à 0,029 m² (Cf. figure ci-contre). Le carottier est enfoncé jusqu'à 20 cm de profondeur. Il faut veiller à ce que les prélèvements soient réalisés dans un secteur non perturbé par le passage des opérateurs.

Pour chaque station, il est prélevé 9 carottes. Cela équivaut à prélever une surface de 0,26 m². Chaque carotte est tamisée sur un tamis de maille carrée de 1 mm. Le refus est mis en pot et alcoolisé à 70°.

Une dixième carotte est réalisée pour permettre une analyse granulométrique et de matière organique (perte au feu).

2.2.4 Stratégie d'échantillonnage

Sur un estran donné comme étant un site cohérent (même cellule hydrosédimentaire), il sera réalisé les prélèvements sur 3 stations à raison de 9 prélèvements (carottes) par station.

Substrat meuble	Stations	Carottes / station	Total carottes
1 profil Intertidal sableux	3	9	27

Tableau 1 : effort d'échantillonnage

Sur l'estran du Treiz, il a été placé les 3 stations le long de l'estran.

Figure 5 : Localisation des stations pour l'étude du benthos de l'estran meuble

Stations	Latiitude	Longitude
Treiz 1	48° 5.679'N	4° 20.193'O
Treiz 2	48° 5.733'N	4° 20.228'O
Treiz 3	48° 5.759'N	4° 20.235'O

Figure 6 : Coordonnées des stations de prélèvements (en WGS 83)

2.2.5 Traitement des échantillons au laboratoire

2.2.5.1 Tri en laboratoire

Au laboratoire, les refus de tamis sont rincés à l'eau douce à l'aide d'un tamis (maille carrée de 800µm) pour éviter les pertes de matériel lors du tamisage fin. Toute la faune présente ensuite est récupérée sous la loupe binoculaire, c'est l'étape dite de « tri », qui consiste à séparer la faune benthique des sédiments et qui a été réalisée sous loupe binoculaire, afin d'assurer la bonne quantification des petits spécimens (jeunes bivalves et microgastéropodes notamment). Les invertébrés benthiques récoltés à l'issue de cette phase de tri ont été préservés dans de l'éthanol à 70°, puis identifiés et dénombrés au niveau spécifique, à l'exception des némertes et des oligochètes.

2.2.5.2 Identification

Les déterminations ont été réalisées à l'aide d'une binoculaire à fort grossissement (OLYMPUS SZX10) et d'un microscope (GXM 2800 avec caméra PARALUX). Les nomenclatures spécifiques ont toutes été contrôlées et actualisées à partir des référentiels WORMS (registre mondial des espèces marines) et TaxRef V16 (INPN).

2.2.5.3 Traitement des données

Le traitement des données stationnelles sera réalisé selon les préconisations d'interprétation des données issues du REBENT.

Ces analyses viseront à évaluer :

- Les paramètres de richesse spécifique
- L'abondance par espèce
- L'identification des espèces structurantes des biocénoses
- L'indice de diversité de Shannon, qui explique la diversité au sein d'un échantillon en fonction du nombre d'espèces récoltées et des abondances spécifiques.
- L'indice d'équitabilité de Piélou, qui rend compte de la répartition des individus entre les différentes espèces et permet d'affiner l'interprétation de l'indice de Shannon.
- L'indice de qualité AMBI, qui repose sur la classification des espèces benthiques en 5 groupes de polluosensibilités.
- L'indice BEQI-FR, retenu dans le cadre de la DCE/DCSMM afin d'évaluer le statut écologique de l'élément « macroinvertébrés benthiques » au sein des masses d'eau de transition.
- Enfin, l'identification de la typologie des habitats, selon les préconisations de Patrinat (MNMN/OFB) avec l'emploi de la la typologie des habitats marins benthiques de la Manche, de la Mer du Nord et de l'Atlantique (Michez et al., 20195), dite NatHab-Atl et sa correspondance en EUNIS

L'exploitation des données benthiques s'appuiera au final sur :

- La caractérisation des peuplements (indices, incidence trophique...)
- La caractérisation de l'état général de ces peuplements et de leur sensibilité dans le temps (espèces indicatrices)
- La comparaison avec les données biologiques et bibliographiques disponibles sur les zones marines proches et les résultats des campagnes précédentes.

À titre informatif, les modes de calcul de l'indice de diversité de Shannon, de l'indice d'équitabilité de Piélou, de l'indice AMBI et du BEQI-FR sont développés ci-après.

→ Calcul de l'indice de diversité de Shannon

L'indice synthétique de diversité de Shannon explique la diversité spécifique au sein d'un échantillon en fonction du nombre d'espèces récoltées et du nombre d'individus appartenant à chaque espèce, tel que :

$$H' = -\sum_{i=1}^{S} p_i Log_2 p_i$$

avec p_i l'abondance relative de l'espèce i au sein de l'échantillon de richesse spécifique S (nombre total d'espèces identifiées).

Cet indice est nul si l'échantillon considéré ne comporte qu'une espèce et prend des valeurs minimales si chaque espèce ne présente qu'un seul individu, à l'exception d'une ou deux espèces aux abondances très importantes. Il affiche en revanche des valeurs maximales lorsque l'échantillon comporte de nombreuses espèces, dont les effectifs sont répartis en proportions équivalentes ($H'_{max} = Log_2S$). L'indice de Shannon dépend étroitement de la surface et du type d'habitat échantillonnés.

→ Calcul de l'indice d'équitabilité de Piélou

La lecture de l'indice de Shannon s'accompagne couramment de celle de l'indice d'équitabilité de Piélou, encore appelé indice d'équirépartition, qui rend compte de la distribution des individus entre les différentes espèces. Il correspond au rapport de la valeur H' observée à l'indice maximal théorique dans le peuplement ($H'_{max} = Log_2S$), et s'écrit tel que :

$$J' = \frac{H'}{Log_2 S}$$

Contrairement à l'indice de Shannon, l'indice d'équitabilité est insensible aux variations de richesse spécifique ; il facilite de fait la comparaison de plusieurs peuplements ou de différentes dates d'échantillonnages. Sa valeur varie de 0 (dominance d'une espèce) à 1 (équirépartition des individus entre les espèces). Les peuplements perturbés se caractérisent généralement par de faibles valeurs des indices de Shannon (H') et de Piélou (J'). Les états transitoires, observés suite à une perturbation récente des peuplements, se traduisent quant à eux par des valeurs H' moyennes, conjuguées à de fortes valeurs J'. Les peuplements à l'équilibre enregistrent des valeurs élevées pour ces deux indices.

→ Calcul de l'indice AMBI

L'indice AMBI a initialement été conçu afin d'évaluer le statut de qualité écologique des masses d'eau côtières européennes. Il s'appuie sur la réponse des communautés benthiques de substrat meuble aux changements naturels et/ou anthropiques de qualité environnementale. Le développement de cet indice repose sur la classification des espèces benthiques en cinq groupes de polluo-sensibilités (groupe I : espèces sensibles ; groupe II : espèces indifférentes ; groupe III : espèces tolérantes ; groupe IV : espèces opportunistes de second ordre ; groupe V : espèces opportunistes de premier ordre).

Groupe	Type d'espèces	Caractéristiques	Groupes trophiques
• 1	Sensibles	 largement dominantes en conditions normales disparaissent les premières lors de l'enrichissement du milieu dernières à se réinstaller 	- suspensivores, carnivores sélectifs, quelques déposivores tubicoles de subsurface
• 11	Indifférentes	- espèces peu influencées par une augmentation de la quantité en matières organiques	- carnivores et nécrophages peu sélectifs
• III	Tolérantes	- naturellement présentes dans les vases, mais dont la prolifération est stimulée par l'enrichissement du milieu, elles sont le signe d'un déséquilibre du système	- déposivores de surface profitant du film superficiel chargé de matière organique
• IV	Opportunistes 2 nd ordre	- cycle de vie court (souvent < 1 an), proliférant dans les sédiments réduits	- déposivores de subsurface
• V	Opportunistes de 1 ^{er} ordre	- prolifèrent dans les sédiments réduits sur l'ensemble de leur épaisseur jusqu'à leur surface	- déposivores

Tableau 2 : Définition des cinq groupes de polluosensibilité, d'après Glémarec et Hily (1981).

La formule de l'AMBI se base sur les proportions des différents groupes de polluo-sensibilité au sein des échantillons, tel que :

$$AMBI = \frac{(0*\%GI) + (1.5 - \%GII) + (3*\%GIII) + (4.5*\%GIV) + (6 - \%GV)}{100}$$

Cette équation permet d'obtenir des valeurs comprises entre 0 et 6, les fortes valeurs étant indicatrices d'habitats dégradés. Dans cette étude, les valeurs AMBI ont été calculées par l'intermédiaire d'une routine R (http://www.r-project.org/), à partir de la classification AZTI mise à jour en mai 2022 (https://ambi.azti.es).

→ Calcul de l'indice BEQI-FR

Le BEQI est un indice multimétrique reposant sur le couplage de l'AMBI, de la richesse spécifique (S) et de l'indice de Shannon (H'), selon l'équation suivante :

$$BEQI - FR = \frac{\frac{S_{obs}}{S_{ref}} + \frac{H'_{obs}}{H'_{ref}} + \frac{(AMBI_{obs} - 7)}{(AMBI_{ref} - 7)}}{3}$$

Avec S_{ref}, H'_{ref} et AMBI_{ref} les valeurs de référence pour l'habitat considéré.

La valeur obtenue définit l'EQR (Ecological Quality Ratio), déterminant la classe de qualité écologique de la station.

2.3 INVENTAIRE DE L'ESTRAN ROCHEUX ET CARTOGRAPHIE DES HABITATS MARINS

2.3.1 Références du Protocole

- ▶ Christian Hily et Jacques Grall, REBENT, 2003. Suivi stationnel des estrans
- ▷ Erwan Ar Gall et Solène Connan, REBENT 2004. Échantillonnage des macroalgues Intertidal substrats durs.
- Ar Gall et Le Duff, 2007. Protocole d'observation in situ et proposition de calcul d'un indice de qualité pour le suivi des macroalgues sur les estrans intertidaux rocheux dans le cadre de la DCE. LEBHAM-IUEM- UBO, Brest. 14p.

2.3.2 Période d'étude

La période d'étude de la couverture algale doit se faire <u>de mars à juillet</u>. Il est choisi des marées avec un coefficient au moins supérieur à **95** (mais 90 toléré). La période d'investigations se focalise entre PM-3 et PM+3. L'équipe est composée de 2 personnes au moins par site.

2.3.3 Moyens matériels

Il est utilisé:

- Un GPS à main pour localiser les stations
- Un appareil photo étanche pour photographier les quadrats
- Un grand quadrat léger, pliable et mobile de 1,65 m x 1,65m, découpé en 25 quadrats de 0,1 m² de surface

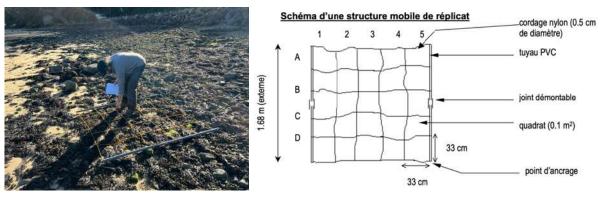


Figure 7: Mise en place du grand quadrat et matériel pour le fabriquer (source Ar Gall, 2004)

2.3.4 Objectifs des inventaires

Il s'agit de décrire les ceintures algales qui sont liées à leur position sur l'estran (bathymétrie) et à leur mode d'exposition. En Manche-Atlantique, la typologie des habitats est celle retenue par le REBENT pour les estrans sur substrats durs, et s'inspire de travaux antérieurs (Floc'h, 1964). Ainsi, il y a 6 ceintures de macroalgues qui sont suivies sur l'intertidal et dans la partie haute de l'infralittoral, en mode abrité à semi-battu, là donc où elles sont présentes et où elles constituent des habitats bien définis (du haut estran en allant vers le bas) :

- Pelvetia canaliculata (Pc)
- Fucus spiralis (Fspi)
- > Ascophyllum nodosum (An) / Fucus vesiculosus (Fves)
- Himanthalia elongata (He) / Bifurcaria bifurcata (Bb) / Rhodophycées Laminariales

Pour chaque site étudié, il est réparti 3 stations sur chacune des 6 ceintures (s'ils sont toutes présentes). Il y a donc 18 stations par site d'étude au maximum, entre le plus haut et bas niveau de marnage.

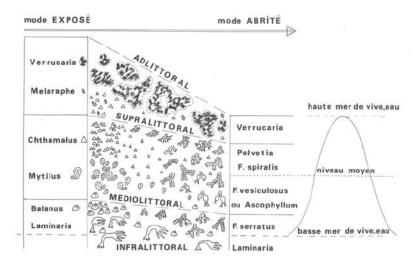


Figure 8 : Schéma de la zonation des ceintures en fonctions de l'exposition (d'après Lewis, 1964)

SUPRALITTORAL

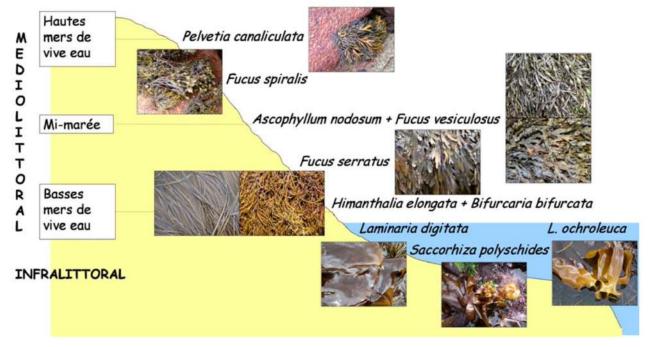


Figure 9 : Représentation schématique de l'étagement des algues brunes (source Ar Gall, 2004)

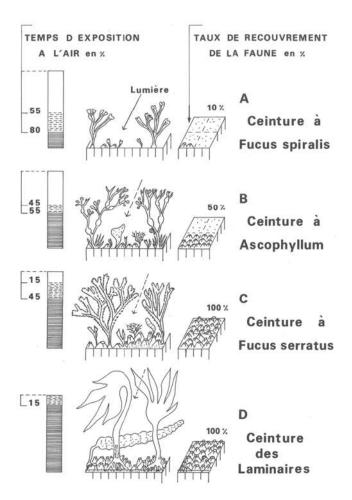


Figure 10 : Évolution du pourcentage de temps d'exposition à l'air et du taux de recouvrement de la macrofaune, en fonction des ceintures algales (A, B, C et D) d'après Gruet, 1983

Les surfaces de recouvrement par ceinture en m² et par site étudié sont déterminées par le passage de l'écologue à partir de l'orthophotodrone qui permet ainsi de détourer directement les surfaces.

Ensuite, au niveau de chaque ceinture, l'inventaire spécifique en appliquant le protocole va ainsi permettre de dénombrer les espèces caractéristiques par ceinture, ainsi que leur recouvrement dans les quadrats.

L'ensemble des résultats va permettre de donner un indice de qualité.

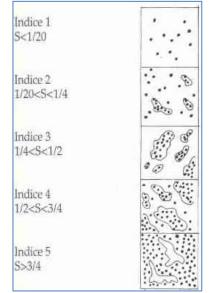
2.3.5 Effort d'échantillonnage et Inventaire

Sur le site, il va donc être placé par ceinture présente, 3 stations fixes qui permettront le déploiement du grand quadrat pliable. Celui-ci est donc placé au même endroit pour chaque campagne. Il sera donc repéré à la fois par le GPS, mais également par des photos d'ensemble et par un schéma.

Le grand quadrat est placé sur une surface plane et rocheuse en évitant les petits blocs, les surplombs, ou tombants avec trop de fissurations.

Le grand quadrat une fois déployé, il est sélectionné trois petits quadrats (de 0,1 m²) en son sein, aléatoirement. Chaque petit quadrat fait alors l'objet d'une photographie. Ensuite, il est compté et inventorié toutes les espèces de la flore du quadrat. Il est attaché une grande importance à la présence des espèces caractéristiques par ceinture et également des opportunistes.

Il a été annexé les fiches de terrain pour ce protocole Macroalgues.



Toutes les espèces (ou les taxons d'ordre supérieur dans les cas où l'identification des espèces est impossible) présentes dans les quadrats échantillonnés sous forme encroûtante (surface minimale de l'ordre de 1 cm2) ou érigée (individus d'une taille supérieure ou égale à 5 mm) seront notées dans la fiche terrain sous leur dénomination latine. La richesse spécifique représente le paramètre 1.

Le classement des espèces se fera par strate :

- Strate I: 0 à 0,5 cm: individus encroûtants: Lithothamniées, petits épiphytes...)
- Strate II : 0,5 à 30 cm : algues vertes et rouges, petites Fucales
- > Strate III: 30 à 100 cm: Fucales taille moyenne
- Strate IV : > 100 cm : grandes Fucales, Laminaires

Le paramètre 2 représente la densité par quadrat de l'espèce concernée (dans sa strate) ou le % recouvrement pour les espèces encroûtantes.

Le pourcentage de recouvrement est le suivant :

Recouvrement de l'espèce	Coefficient d'abondance
Supérieur à 75%	5
Compris entre 50% et 75%	4
Compris entre 25% et 50%	3
Compris entre 5% et 25%	2
Inférieur à 5%	1
Très peu abondant	+
Espèce très rare	r
Espèce représentée par un individu unique	1

Figure 11 : Indice de recouvrement (d'après Lacoset & Salanon, 1969)

Sut un site dédié, il peut donc y avoir au plus 54 petits quadrats inventoriés dans la même marée.

Substrat	Stations	Petits quadrat / station	Total petits quadrats (au plus)
Rocheux Intertidal	3 stations par ceinture, soit 18 stations si présence des 6 ceintures	3 réplicats / station	54

Figure 12 : Stratégie d'échantillonnage sur l'estran rocheux

2.3.6 Traitement des Données produites

2.3.6.1 Diversité spécifique

- Listes de présence des taxons, si possible par espèce
- Comparaison statistique des valeurs obtenues aux niveaux spatial et temporel (en cas de série) et graphiques correspondants

2.3.6.2 Recouvrement et stratification

- > Tableaux des pourcentages et indices de recouvrement par ceinture

2.3.6.3 Calcul de l'indice de qualité (CCO)

L'indice a été baptisé CCO pour "Cover – Characteristic species – Opportunistic species" pour le protocole DCE.

Couverture végétale globale (Métrique 1)

Tous les niveaux du médio-littoral sont concernés, et la couverture de chaque ceinture est convertie en points. Seules les ceintures présentes sont prises en compte. Les points obtenus pour chaque ceinture sont cumulés pour donner une valeur globale pour l'estran. Si une ceinture est absente, il faut appliquer une règle de trois pour atteindre un maximum de 40. Pour tenir compte de l'importance relative du couvert végétal de chaque ceinture, tout en permettant un calcul simple du sous-indice, avec des nombres entiers et un total ne dépassant pas 40, chaque ceinture sera classée en fonction de la surface qu'elle représente. On utilise alors 5 tableaux indiciels différents, l'évaluation des deux ceintures les moins étendues passant par l'utilisation du même tableau. Si une ou deux ceintures sont absentes du site, on applique une règle de trois à partir de la somme obtenue avec les ceintures existantes, afin d'évaluer le sous-indice sur une échelle de 40 points.

Rank 1	
value	percentage
9	75 – 100 %
7	50 – 75 %
6	25 - 50 %
5	10 – 25 %
4	5 - 10 %
2	2.5 – 5 %
0	0-2.5 %

Rank 2	
value	percentage
8	75 – 100 %
7	50 – 75 %
6	25 - 50 %
5	10 – 25 %
3	5 - 10 %
2	2.5 – 5 %
0	0-2.5 %

Rank 3	
value	percentage
7	75 – 100 %
6	50 – 75 %
5	25 - 50 %
3	10 – 25 %
2	5 - 10 %
1	2.5 – 5 %
0	0-2.5 %

Rank 4		
value	percentage	
6	75 – 100 %	
5	50 – 75 %	
4	25 - 50 %	
3	10 – 25 %	
2	5 - 10 %	
1	2.5 – 5 %	
0	0 – 2.5 %	

Ranks 5 & 6		
value	percentage	
5	75 – 100 %	
4	50 – 75 %	
3	25 - 50 %	
3	10 – 25 %	
2	5 - 10 %	
1	2.5 - 5 %	
0	0-2.5 %	

Figure 13 : Tableaux indiciels pour la couverture végétale globale en fonction de la surface et donc du rang de chaque ceinture (source Ar Gall, 2007)

Nombre d'espèces caractéristiques présentes sur l'estran (Métrique 2)

Les espèces prises en compte sur le terrain pour le calcul d'indice sont celles qui figurent dans les listes ci-après et dont la couverture moyenne par ceinture est supérieure à 2.5%. Pour Pc et Fspi, les espèces prises en compte sont celles dont le recouvrement atteint au moins 2.5% dans l'une ou l'autre ceinture. Quand une espèce présente un cycle de vie hétéromorphe, les surfaces couvertes par les générations visibles seront additionnées (exemple : *Mastocarpus stellatus / Petrocelis cruenta*).

Le calcul sera fait a posteriori et non sur le terrain (cf. fiches de terrain).

Valeur du sous-indice = somme des valeurs obtenues par ceinture (ou groupement) / 5, lorsque 5 ceintures (ou au moins une des deux dans le cas de Pc + Fspi) sont présentes

ou valeur d'indice = somme des valeurs obtenues pour chaque ceinture / n X 5, lorsque n ceintures (ou Pc / Fspi) sont présentes

Pc + Fspi	An + Fves	Fser	He + Bb	Ld
Ascophyllum nodosum	Ascophyllum nodosum	Chondrus crispus	Asparagopsis armata/Falkenbergia	Calliblepharis jubata
Catenella repens	Cladophora rupestris	Cladophora rupestris	Bifurcaria bifurcata	Chondracanthus acicularis
Fucus spiralis	Corallina spp.	Corallina spp.	Calliblepharis jubata	Chondrus crispus
Hildenbrandia rubra	Fucus serratus	Cryptopleura ramosa	Chondracanthus acicularis	Corallina spp.
Lichina pygmaea	Fucus vesiculosus	Fucus serratus	Chondrus crispus	Cryptopleura ramosa
Pelvetia canaliculata	Gelidium spinosum (pulchellum/latifolium)	Gelidium spinosum (pulchellum/latifolium)	Cladophora rupestris	Cystoclonium purpureum
Verrucaria maura	Gelidium pusillum	Gelidium pusillum	Corallina spp.	Himanthalia elongata
	Lithophyllum incrustans	Lithophyllum incrustans	Cryptopleura ramosa	Laminaria digitata
	Lithothamnion lenormandii	Lithothamnion lenormandii	Cystoclonium purpureum	Laminaria saccharina
	Lomentaria articulata	Lomentaria articulata	Gelidium spinosum (pulchellum/latifolium)	Laurencia obtusa/L. hybrida
	Mastocarpus stellatus	Mastocarpus stellatus	Himanthalia elongata	Lithophyllum incrustans
	Plumaria plumosa	Osmundea pinnatifida	Laurencia obtusa / L. hybrida	Lomentaria articulata
	Rhodothamniella floridula	Palmaria palmata	Lithophyllum incrustans	Mastocarpus stellatus
	100	Plumaria plumosa	Lomentaria articulata	Osmundea pinnatifida
		Rhodothamniella floridula	Mastocarpus stellatus	Palmaria palmata
			Osmundea pinnatifida	Plocamium cartilagineum
			Palmaria palmata	Saccorhiza polyschides
			Plocamium cartilagineum	8.8
			Rhodothamniella floridula	
7 espèces	13 espèces	15 espèces	19 espèces	17 espèces

Figure 14 : Tableau des espèces caractéristiques de l'estran par ceinture (les ceintures Pc et Fspi sont ici regroupées). Le nombre d'espèces caractéristiques figure en bas de chaque colonne (source Ar Gall, 2007)

Il y a donc 33 genres ou espèces caractéristiques d'un estran rocheux (hors micro-habitats) sur la façade Nord Gascogne à Manche-Est :

Ascophyllum nodosum

Asparagopsis armata / Falkenbergia rufolanosa

Bifurcaria bifurcata

Calliblepharis jubata

Catenella repens

Chondracanthus acicularis

Chondrus crispus

Cladophora rupestris

Corallina spp. pour C. elongata + C. officinalis + Haliptilon squamatum Cryptopleura ramosa

Cystoclonium purpureum

Fucus serratus

Fucus spiralis

Fucus vesiculosus

Gelidium spinosum = G. pulchellum = G. latifolium

Gelidium pusillum

Hildenbrandia rubra = H. prototypus

Himanthalia elongata

Laminaria digitata

Laminaria saccharina

Laurencia obtusa ou L. hybrida

Lichina pygmaea

Lithophyllum incrustans

Lithothamnion lenormandii

Lomentaria articulata

Mastocarpus stellatus / Petrocelis cruenta

Osmundea pinnatifida = Laurencia pinnatifida

Palmaria palmata

Pelvetia canaliculata

Plumaria plumosa

Rhodothamniella floridula

Saccorhiza polyschides

Verrucaria maura

Les indices sont ainsi les suivant :

character	istical species
value	Pc - Fspi
30	≥ 4
20	3
10	2
5	1
0	0

characteristical species		
value	Fser	
30	≥ 8	
20	6 - 7	
10	4 - 5	
5	1 - 3	
0	0	

character	istical species
value	An - Fves
30	≥7
20	5 - 6
10	3 - 4
5	1 - 2
0	0

value	He - Bb	
30	≥ 10	
20	7 - 9	
10	4 - 6	
5	1 - 3	
0	0	

characteris	stical species
value Ld	
30	≥ 9
20	7 - 8
10	4 - 6
5	1 - 3
0	0

Nombre d'espèces opportunistes (Métrique 3)

L'indice tient compte du couvert des espèces ou groupes d'espèces opportunistes ci-après dans chacune des ceintures :

Phaeophyceae	Ectocarpales (Ectocarpaceae : Ectocarpus spp., Pylaiella spp., Hincksia spp.)	
Chlorophyceae	Enteromorpha compressa Enteromorpha ramulosa	
	Ulva spp.	
	Ceramium spp.	
Rhodophyceae	Polysiphonia spp. (hormis P. lanosa et P. elongata)	
	Boergeseniella spp.	
Microalgues coloniales	Diatomées (épiphytes ou épilithes)	

Les valeurs obtenues par ceinture sont sommées pour atteindre un maximum de 30, lorsque les recouvrements par les opportunistes sont < 5 % partout. Lorsqu'une ceinture est absente, le total se fait en sommant les valeurs des ceintures présentes et en appliquant une règle de trois. Pour le calcul, chaque ceinture, ou regroupement de ceintures dans le cas de Pc et Fspi, a le même poids. Les calculs de moyennes de recouvrement se font après coup et non sur le terrain (Cf. fiches de terrain).

Opportunistic	species per belt	
value	cover	
6	< 5 %	
4	5 – 25 %	
2	25 – 50 %	
1	50 – 75 %	
0	75 – 100 %	

Dans le cas du regroupement Pc + Fspi, les recouvrements d'un taxon donné dans les deux ceintures sont moyennés (Pc + Fspi / 2).

2.3.6.4 Détermination de l'état qualitatif (indice de qualité)

L'état qualitatif d'un site « macroalgues intertidales » est obtenu en comparant l'indice calculé avec les CFR boundaries définies au préalable au niveau européen. L'indice global est calculé en sommant les sous-indices obtenus pour le recouvrement global (0 - 40), le nombre d'espèces caractéristiques de l'ensemble des ceintures présentes (0 - 30) et le recouvrement des espèces opportunistes (0 - 30).

CFR boundaries	status	
83 - 100	High	
62 – 82	Good	
41 – 61	Moderate	
20 – 40	Poor	
0 - 19	Bad	

2.3.1 Traitement des données appliqué au site

Les données traitées permettront de définir une cartographie des habitats marins (typologie NatHab-Atl et correspondance Eunis), ainsi que la qualité de ces habitats (état de conservation).

2.4 QUALITE GEOCHIMIQUES DES SEDIMENTS

Le site allant faire l'objet de travaux qui pourrait remettre en suspension ou excaver des sédiment, il est important de connaître l'état de contamination des sédiments en place, étant en pleine zone urbaine/portuaire.

2.4.1 Références du Protocole

Le protocole technique relatif à la qualité géochimique des sédimens est défini par un cadre réglementaire (circulaire n°2000-62 et instructions techniques jointes à l'arrêté du 14 juin 2000, modifié par l'arrêté du 1er avril 2008). La circulaire explicite les conditions d'utilisation des référentiels de qualité fixés par arrêtés interministériels et décrit les modalités d'échantillonnage et d'analyse des sédiments marins ou estuariens en milieu naturel ou portuaire.

2.4.2 Nombre de stations

Les instructions techniques fixent un maillage des prélèvements à effectuer en faisant la distinction entre les zones à échanges libres, les zones confinées et les ports de plaisance.

Elle distingue ainsi:

- les **zones à échanges libres** caractérisées par des échanges importants de masse d'eau dus à de forts courants et/ou à une agitation importante du plan d'eau (houle...);
- les **zones confinées** caractérisées par un faible renouvellement des masses d'eaux. Entrent souvent dans cette catégorie les bassins portuaires fermés soumis à des apports (industriels, urbains, ...);
- les **ports de plaisance**, en considérant soit le volume à draguer défini pour les zones confinées, soit la capacité d'accueil (nombre de navires de plaisance).

Le nombre d'échantillons à analyser correspond au critère <u>le plus contraignant</u> entre capacité d'accueil et volume à extraire.

Volumes dragués en place (m³)	Nombre de stations à prélever	Nombre d'échantillons à analyser (pour matériaux hétérogènes)	Nombre d'échantillons à analyser (pour matériaux homogènes)
<25.000 m3	3	3	1
$25.000 \le < 100.000 m^3$	4-6	4-6	2-3
$100.000 \le < 500.000 m^3$	7 - 15	7-15	3-5
$500.000 \le < 2000.000 m^3$	16 - 30	16-30	6-10
$\geq 2.000.000 \ m^3$	10 de plus par million de m³ supplémentaire	10 de plus par million de m³ supplémentaire	4 de plus par million de m ³ supplémentaire

Tableau 3 : Nombre d'échantillons moyens à analyser pour une zone à échange libre (source circulaire 2000-62)

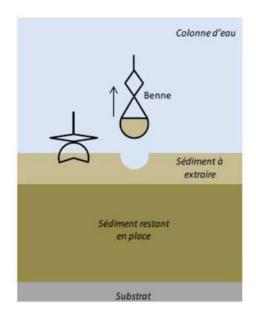
Capacité d'accueil	Nombre d'échantillons à analyser
$<100 \text{ bateaux}$ $100 \le <500 \text{ bateaux}$ $500 \le <1.000 \text{ bateaux}$ $500 \le <1.000 \text{ bateaux}$ $≥1.000 \text{ bateaux}$	1 2 3 4 5

Tableau 4: Nombre d'échantillons moyens à analyser pour les ports de plaisance (source circulaire 2000-62)

2.4.3 Choix du mode de prélèvement

3/ Méthodes de prélèvement

Il s'avère nécessaire d'opérer une distinction entre :


Travaux neufs:

Les analyses sont effectuées sur chaque grand faciès de carottes prélevées pour l'étude géotechnique (à l'exception des faciès graveleux).

Dragages d'entretien :

Le prélèvement est effectué avant le début des travaux de façon à évaluer les risques potentiellement induits par les sédiments. Il sera réalisé in situ à l'aide d'une benne à main, par un plongeur, Toutefois, les techniques de carottage peuvent être utilisées en tant que de besoin.

Tableau 5 : Prescription du mode de prélèvement (source circulaire 2000-62)

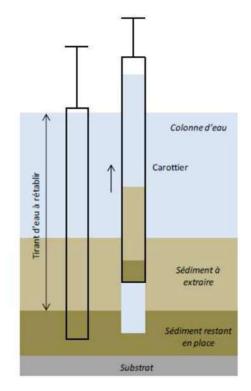


Figure 15 : Présentation des outils de prélèvements

Les sédiments ont été prélevés à partir de la réalisation d'une carotte de 20 cm de profondeur, réalisé lors des prélèvements pour le benthos de l'estran meuble.

Les échantillons moyens sont élaborés à terre (ou sur le navire s'il y a suffisamment de place sur le pont). Les mélanges sont faits à volume identique, dans un récipient neutre. L'ensemble est homogénéisé à l'aide d'une spatule en acier inoxydable. Le mélange a été placé dans un nouveau flacon et renommé à l'aide du nom de la station, suivi de l'extension –MOY (pour échantillon moyen), puis placé en glacière. Le récipient est alors abondamment rincé et séché entre deux manipulations. L'ensemble des manipulations effectuées est consigné dans un cahier précisant le nom des échantillons élémentaires mélangés, un rappel de la texture, le nom de l'échantillon moyen obtenu, et la mention reportée sur le flacon concernant le type d'analyse demandé. Une photographie de chaque échantillon sera prise au moment du dépotage de la carotte.

Les échantillons de sédiment sont déposés au laboratoire d'analyses au plus tard 24 heures après le prélèvement. Pour le transport, les échantillons sont placés en glacière prévue pour le transport, immobilisés à l'aide de mousse ou de papier à bulle, et intercalés avec des pains de glace congelés.

2.4.4 Choix du laboratoire

Les laboratoires susceptibles de réaliser les analyses physico-chimiques de prélèvements sédimentaires, doivent être agréés par le Ministère de la Transition Écologique et Solidaire (MTES) Cet agrément est nécessaire pour se conformer à la réglementation sur les opérations de dragage (Arrêté du 14 juin et circulaires accompagnatrices) et pour avoir une acceptation du dossier réglementaire par la MISE, administrations en charge de l'instruction pour la Préfecture. Les modalités de l'agrément sont définies dans l'arrêté du ministre de l'Environnement du 29 novembre 2006, abrogé par l'arrêté du 27 octobre 2011, portant sur les analyses dans le domaine de l'eau et des sédiments, qui fixe les procédures devant être suivies par les laboratoires d'analyses souhaitant être agréés, et qui fixe également les méthodes analytiques devant être suivies. Les laboratoires sont désormais agréés par typologie d'analyse et de matrice (eaux, sédiments...). L'ensemble des agréments des tous les laboratoires est disponible sur le site WEB suivant :

www.labeau.ecologie.gouv.fr

Le laboratoire choisi a été EUROFINS (Saverne) l'ensemble des analyses prévues.

2.4.5 Analyses réalisées sur Chaque Échantillon moyen

L'arrêté relatif aux conditions d'utilisation du référentiel de qualité des sédiments marins ou estuariens présents en milieu naturel ou portuaire du 1^{er} avril 2008 définit les modalités de la mise en œuvre du référentiel de qualité, et en particulier elle liste les analyses à réaliser :

- Propriétés physiques : granulométrie et sédimentométrie, % de matières sèches, densité, teneur en Aluminium, Carbone Organique Total (COT).
- Propriétés chimiques : Métaux lourds (As, Cr, Hg, Pb, Cd, Cu, Ni, Zn), Σ PCB (28, 52, 101, 118, 138, 153 et 180), Σ 16 HAP (Hydrocarbures aromatiques polycycliques), Σ TBT (TBT, DBT, MBT)
- Nutriments : Azote de Kjedahl (NTK), Phosphore total (Pt)
- ▶ Bactériologie (E. coli)

2.4.6 Interprétation des résultats et niveaux de références

2.4.6.1 Données granulométriques

Classe	Diamètre des grains
Colloïdes	< 0,12 μm
Précolloïdes	0,12 – 4 μm
Silts	4 – 63 μm
Sables très fins	63 – 125 μm
Sables fins	125 – 250 μm
Sables moyens	250 – 500 μm

Sables grossiers	500 – 1 000 μm
Sables très grossiers	1 – 2 mm
Graviers	2 – 20 mm
Galets	20 – 200 mm
Blocs	> 200 mm

Tableau 6 : Classification générale granulométrique

Les résultats granulométriques permettent de classer les sédiments selon le tableau ci-dessus.

2.4.6.2 Contaminants et seuils de qualité

Pour chaque substance, sélectionnée en fonction des connaissances et de sa représentativité en matière de potentiel d'impact sur le milieu naturel dans le cas de sédiments dragués destinés à être immergés, des seuils ont été définis, correspondants à des niveaux potentiels d'impact croissant sur un même milieu.

Les niveaux de référence

L'arrêté du 9 août 2006 (complété par ceux du 23 décembre 2009, du 8 février 2013 et du 17 juillet 2014), relatif aux niveaux à prendre en compte lors d'une analyse de rejets dans les eaux de surface ou de sédiments marins, estuariens ou extraits de cours d'eau ou canaux relevant respectivement des rubriques 2.2.3.0, 4.1.3.0 et 3.2.1.0 de la nomenclature annexée au décret n°93-742 du 29 mars 1993 (mentionné également à l'arrêté du 14 juin 2000 relatif aux niveaux de référence à prendre en compte lors d'une analyse de sédiments marins ou estuariens présents en milieu naturel ou portuaire) précise par son article 1 : « Lorsque, pour apprécier l'incidence de l'opération sur le milieu aquatique (ou par apprécier l'incidence sur le milieu aquatique d'une action déterminée), une analyse est requise en application du décret nomenclature : La qualité des sédiments marins ou estuariens est appréciée au regard des seuils de la rubrique 4.1.3.0 de la nomenclature dont les niveaux de référence N1 et N2 sont précisés dans les tableaux suivants » :

Éléments traces	U	Niveau N1	Niveau N2
Arsenic (As)	mg/kg	25	50
Cadmium (Cd)	mg/kg	1,2	2,4
Chrome (Cr)	mg/kg	90	180
Cuivre (Cu)	mg/kg	45	90
Mercure (Hg)	mg/kg	0,4	0,8
Nickel (Ni)	mg/kg	37	74
Plomb (Pb)	mg/kg	100	200
Zinc (Zn)	mg/kg	276	552

Tableau 7: Niveaux relatifs aux métaux lourds

Polluants organiques	U	Niveau N1	Niveau N2
PCB totaux	mg/kg	0,5	1
PCB 28	mg/kg	0,005	0,01
PCB 52	mg/kg	0,005	0,01
PCB 101	mg/kg	0,01	0,02
PCB 118	mg/kg	0,01	0,02
PCB 138	mg/kg	0,02	0,04
PCB 153	mg/kg	0,02	0,04
PCB 180	mg/kg	0,01	0,02

Tableau 8 : Niveaux relatifs aux PCB (modifié le 17 juillet 2014)

НАР	Unité	Niveau N1	Niveau N2
Naphtalène	μg/kg	160	1 130
Acénaphtène	μg/kg	15	260
Acénaphtylène	μg/kg	40	340
Fluorène	μg/kg	20	280

Anthracène	μg/kg	85	590
Phénanthrène	μg/kg	240	870
Fluoranthène	μg/kg	600	2 850
Pyrène	μg/kg	500	1 500
Benzo [a] anthracène	μg/kg	260	930
Chrysène	μg/kg	380	1 590
Benzo [b] fluoranthène	μg/kg	400	900
Benzo [k] fluoranthène	μg/kg	200	400
Benzo [a] pyrène	μg/kg	430	1 015
Di-benzo [a,h] anthracène	μg/kg	60	160
Benzo [g,h,i] pérylène	μg/kg	1 700	5 650
Indéno [1,2,3-cd] pyrène	μg/kg	1 700	5 650

Tableau 9: Niveaux relatifs aux HAP

TBT	U	Niveau N1	Niveau N2
TBT	μg/kg	100	400

Tableau 10: Niveaux relatifs aux TBT

Les conditions d'utilisation

La circulaire (jointe à l'arrêté du 14 juin 2000) définit, par son point 3, les conditions d'utilisation des seuils et stipule que :

- Au-dessous du niveau N1, l'impact potentiel est en principe jugé d'emblée neutre ou négligeable, les teneurs étant « normales » ou comparables au bruit de fond environnemental. Toutefois, dans certains cas exceptionnels, un approfondissement de certaines données peut s'avérer utile
- Entre le niveau N1 et le niveau N2, une investigation complémentaire peut s'avérer nécessaire en fonction du projet considéré et du degré de dépassement du niveau N1. Ainsi, une mesure dépassant légèrement le niveau N1 sur seulement un ou quelques échantillons analysés, ne nécessite pas de complément sauf raison particulière (par exemple toxicité de l'élément considéré : Cd, Hg,...) ; de façon générale, l'investigation complémentaire doit être proportionnée à l'importance de l'opération envisagée. Elle peut porter, pour les substances concernées, sur des mesures complémentaires et/ou des estimations de sensibilité du milieu. Toutefois, le coût et les délais en résultant doivent rester proportionnés au coût du projet et le maître d'ouvrage doit intégrer les délais de réalisation des analyses dans son propre calendrier
- Au-delà du niveau N2, une investigation complémentaire est généralement nécessaire, car des indices notables laissent présager un impact potentiel négatif de l'opération. Il faut alors mener une étude spécifique portant sur la sensibilité du milieu aux substances concernées, avec au moins un test d'écotoxicité globale du sédiment, une évaluation de l'impact prévisible sur le milieu et, le cas échéant, affiner le maillage des prélèvements sur la zone concernée (afin, par exemple, de délimiter le secteur plus particulièrement concerné). En fonction des résultats, le maître d'ouvrage pourra étudier des solutions alternatives pour réaliser le dragage, ou des phasages de réalisation (ex. : réduire le dragage en période de reproduction ou d'alevinage de certaines espèces rares très sensibles).

2.4.7 Effort d'échantillonnage choisi

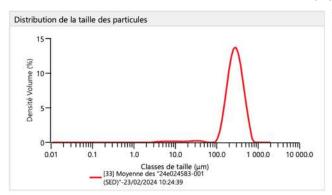
Sur les 3 échantillons élémentaires, il a été réalisé les analyses suivantes :

- ▶ Teneur en eau
- > Fraction pondérale supérieure à 2 mm
- Densité
- Perte au feu
- COT, Azote total, Phosphore total
- Teneur en Aluminium

Sur l'échantillon moyen, il a été recherché les contaminants métalliques et organiques. Il n'a pas été recherche les bactéries d'origine fécale (E. coli).

3 RESULTATS SUR LE SITE DU TREIZ

3.1 DATE DE LA CAMPAGNE


La campagne sur le terrain pour la partie habitat marin a eu lieu le mardi 12 février 2024.

3.2 RESULTATS POUR LA QUALITE DES SEDIMENTS

3.2.1 Analyses granulométriques

Propriétés	Treiz 1	Treiz 2	Treiz 3	Treiz Moy
Teneur en eau	78,2	80,5	83	76,3
Fraction > 2 mm (pondéral)	5,3	20	17,4	14,6
Densité	1,68	2,24	1,69	2,11
Médiane (en μm)	274,13	80,36	346	

Tableau 11 : Paramètres physiques sur la plage du Treiz

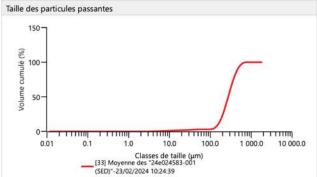
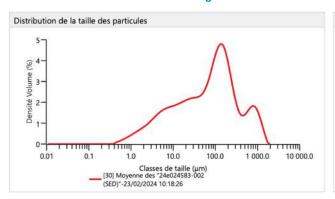



Figure 16: Granulométrie laser pour la station Treiz 1

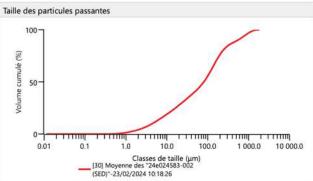
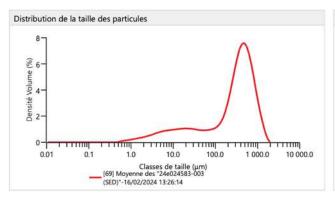



Figure 17 : Granulométrie laser pour la station Treiz 2

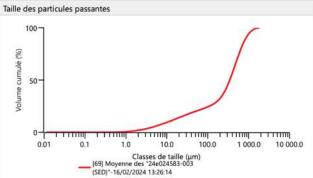


Figure 18 : Granulométrie laser pour la station Treiz 3

Treiz 1 représente un sable moyen bien trié (il n'y a qu'un seul pic. Comme la station est proche du port Rhu et du seuil, il s'effectue une chasse des sédiments à la marée descendante.

Treiz 2 comprend 3 pics : un premier assez fin qui correspond à de la vase, puis un autre vers les 130 μ m qui correspond à du sable fin et enfin un dernier vers les 1 mm qui correspond à du sable grossier.

Treiz 3 est un sable moyen, mais contenant qu'en même des sédiments fins (vase).

3.2.2 Concentration en matière organique et éléments structurants

Propriétés	Treiz 1	Treiz 2	Treiz 3	Treiz Moy
рН				8,9
Perte au feu (Matière Organique) % de la MS	0,428	1,52	0,82	1,28
COT en g/kg (MS)	1 540	6 900	3 940	3 110
Azote Kjedahl (g/Kg MS)				< 0,5
Phosphore total (g/Kg MS)				0,499
Aluminium (en g/Kg MS)	4 070	8 330	6 720	5 590

Tableau 12 : Résultats sur les propriétés organiques et structurantes pour la plage du Treiz

Treiz 1 est assez pauvre en matière organique 1,5%, tandis que Treiz 2 est au-dessus de la moyenne 6,9 % (génialement en dessous de 5% pour des sédiments marins). Il faut noter que Treiz 2 et 3 contiennent des petites coques en très grandes abondances.

3.2.3 Concentrations en contaminants

3.2.3.1 Concentration en Éléments Traces – Contaminants Métalliques

Métaux lourds	U	А	N1	N2
Arsenic (As)		4,22	25	50
Cadmium (Cd)	En mg/Kg de MS	<0,10	1,2	2,4
Chrome (Cr)		9,37	90	180
Cuivre (Cu)		6,89	45	90
Mercure (Hg)		0,17	0,4	0,8
Nickel (Ni)		6,08	37	74

Plomb (Pb)	9,22	100	200
Zinc (Zn)	36,5	276	552

Tableau 13 : Résultats sur les propriétés organiques et structurantes pour la plage du Treiz

Les sédiments du site ne présentent aucune trace de contamination métallique.

3.2.3.2 Concentrations en contaminants organiques

РСВ	U	Α	N1	N2
PCB totaux		0,004	0,5	1
PCB 28		<0.001	0,005	0,01
PCB 52		<0.001	0,005	0,01
PCB 101	En mg/Kg de MS	<0.001	0,01	0,02
PCB 118		<0.001	0,01	0,02
PCB 138		<0.001	0,02	0,04
PCB 153		<0.001	0,02	0,04
PCB 180		<0.001	0,01	0,02

Tableau 14 : Résultats pour les PCB pour la plage du Treiz

HAP (16)	U	Treiz Moy	N1	N2
Naphtalène		<0.002	0,16	1,13
Fluorène		<0.002	0,02	0,28
Phénanthrène		0,003	0,24	0,870
Pyrène		0,0073	0,5	1,5
Benzo-(a)-anthracène		0,0097	0,26	0,93
Chrysène		0,013	0,38	1,59
Indeno (1,2,3-cd) Pyrène		0,0083	1,7	5,65
Dibenzo(a,h)anthracène	En	0,003	0,06	0,16
Acénaphthylène	mg/Kg de MS	<0.0023	0,040	0,34
Acénaphtène	ue ivis	<0.002	0,015	0,026
Anthracène		<0.002	0,085	0,59
Fluoranthène		0,011	0,6	2,85
Benzo(b)fluoranthène		0,017	0,4	0,9
Benzo(k)fluoranthène		0,005	0,2	0,4
Benzo(a)pyrène		0,011	0,43	1,015
Benzo(ghi)Pérylène		0,01	1,7	5,65
Somme des HAP		0,098		

Tableau 15 : Résultats pour les HAP pour la plage du Treiz

TBT (3)	U	Treiz Moy	N1	N2
MBT		<2		
DBT	En μg/Kg de MS	<2		
ТВТ	de Mis	<2	100	400

Tableau 16 : Résultats pour les TBT pour la plage du Treiz

Les sédiments du site ne présentent aucune trace de contamination organique.

3.2.4 Conclusions sur la qualité des sédiments pour Port Olona

Les sédiments du Treiz sont considérés dans le bruit de fond géochimique, cela veut dire qu'ils sont exempts de toutes traces de contamination. En cas de libération de fines durant les travaux, la turbidité ne présente aucun risque chimique pour la biodiversité.

3.3 RESULTATS DE L'INVENTAIRE DE LA MACROFAUNE BENTHIQUE DE L'ESTRAN MEUBLE

3.3.1 Principaux descripteurs écologiques

		Treiz 1			Treiz 2			Treiz 3	3
Descripteur	T1.1	T1.2	T1.3	T2.1	T2.2	T2.3	T3.1	T3.2	T3.3
Richesse totale	5	5	8	17	12	15	17	15	17
Densité	494	230	552	2011	1712	3504	2424	2264	2034
Indice de Shannon	0,85	1,58	2,03	2,7	2,24	2,1	3,08	2,67	3,09
Indice de Piélou	0,37	0,68	0,68	0,66	0,63	0,54	0,75	0,68	0,76
Indice AMBI	0,26	0,8	1,69	3,12	3,27	3,2	2,85	2,7	2,81
BEQI-FR	0,58	0,67	0,77	0,69	0,58	0,61	0,74	0,69	0,75
Statut écologique (BEQI-FR moy.)	•]	Bon (0.	67)	•]	Bon (0.6	63)	•	Bon (0	.73)

Tableau 17 : Valeurs des principaux descripteurs écologiques et statut attribué à chaque station selon l'indice BEQI-FR.

La qualité écologique donnée par l'indice BEQI-FR moy est **Bon** pour les 3 stations.

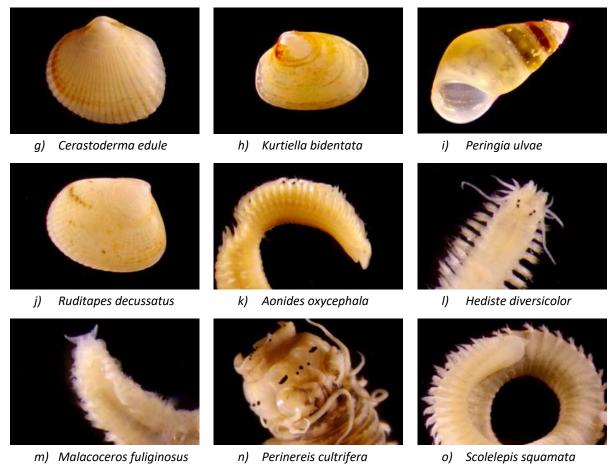


Tableau 18 : Aperçu de quelques invertébrés benthiques collectés dans les sédiments

En page suivante le tableau des espèces observées et de la densité.

Il est à noter la forte abondance de coques et du petit gastéropode l'hydrobie Peringia ulvae.

3.3.2 Habitats identifiés

Les habitats indetifiés sont donc :

- la station **Treiz 1** s'apparente à l'habitat **NatHab-Atl A5-2 « Sables médiolittoraux mobiles »** (équivalence EUNIS 2012 : A2.2 « Sables et sables vaseux intertidaux » équivalence EUNIS 2022 : MA5-2 « Sables du supraet du médiolittoral en Atlantique »), plus précisément au sous-habitat **NatHab-Atl A5-2.1 « Sables médiolittoraux mobiles propres »**. Au-delà des données granulométriques (pélites < 5%), on relève la présence de plusieurs espèces caractéristiques: l'amphipode *Bathyporeia pilosa*, l'annélide *Scolelepis squamata*, les oligochètes Enchytraeidae et l'isopode *Eurydice affinis*. Néanmoins, sans doute en raison de la situation originale de ces sables (milieu à salinité variable), l'assemblage reste relativement pauvre, notamment vis-àvis des amphipodes qui sont habituellement plus diversifiés dans cet habitat.
- Les stations Treiz 2 et Treiz 3 se rattachent quant à elles à l'habitat NatHab-Atl A5-5 « Sables médiolittoraux en milieu à salinité variable » (mêmes équivalences EUNIS que l'habitat précédent). On a là tout un cortège d'espèces classiquement associées à cet habitat : notamment les mollusques Peringia ulvae, Cerastoderma edule, Scrobicularia plana et Ruditapes decussatus, les annélides Pygospio elegans et Hediste diversicolor, les oligochètes Tubificoides spp. et l'isopode Cyathura carinata.

Taxon		Treiz 1			Treiz 2	2		Treiz 3	3
Taxon	T1.1	T1.2	T1.3	T2.1	T2.2	T2.3	T3.1	T3.2	T3.3
Annélides [11 taxons]									
CLITELLATA • Enchytraeidae spp. • Tubificoides spp. POLYCHAETA	11	23	138	184	253	414	34 103		11 23
 Aonides oxycephala Capitella minima Eunice vittata 				57 34 11	11	11	92	11	11
 Hediste diversicolor Malacoceros fuliginosus 				57 11	11	46	23	11	11
 Owenia fusiformis Perinereis cultrifera Pygospio elegans Scolelepis squamata 	23	11	34	92	46 11	23 23	11 23 80	11 11 46	23 23 184
Arthropodes [9 taxons]									
HEXAPODA • Dolichopodidae (larvae)	23	34	11						
Malacostraca • Apseudopsis latreillii • Bathyporeia pilosa • Carcinus maenas	425	149 11	287	11			34	11	11
Cyathura carinataEurydice affinisLekanesphaera levii	11		34	57	46	57	218 11	368	218
 Pseudocuma longicorne Sphaeroma serratum						11	11		11
Cnidaires [1 taxon]									
Anthozoa • Edwardsia claparedii				11					
Mollusques [11 taxons]									
BIVALVIA • Abra alba • Abra tenuis				11	11			11	
Cerastoderma eduleKurtiella bidentataMacomangulus tenuis			23	724 11	609 11	816 34	839 23	931 23 11	563 11
 Modiolus modiolus Musculus subpictus				4.4		11 11			
Ruditapes decussatusScrobicularia planaVenerupis corrugata				11 57	34	46 23		46	57
Gastropoda Peringia ulvae			11	609	620	1838	322	299	391
Nématodes [1 taxon] Nematoda ind.			11	57	46	190	333	218	241
Némertes [1 taxon]			11	37	40	138	<u> </u>	218	241
• Nemertea ind.							80	115	149
Sipunculiens [1 taxon]									
• Golfingia sp.							184	149	92

Tableau 19 : Densités par sous-station des 35 espèces répertoriées en février 2024.

Groupes de polluosensibilité : espèces sensibles •, indifférentes •, tolérantes •, opportunistes de 2nd ordre •, opportunistes de 1er ordre •, espèces non assignées •

3.4 RESULTATS DE L'INVENTAIRE DES MACROALGUES INTERTIDALES DE L'ESTRAN ROCHEUX

Le protocole Ar Gall a été mis en œuvre sur 3 transects (les résultats bruts sont dans un fichier Excel de données), les résultats sont les suivants :

3.4.1 Transect « Sud », présentant seulement 2 ceintures (Fspi et An).

Note globale: CCO

Métrique	Points	
M1	30	
M2	10]
M3	15] :
Total	55	

Moyen

Score global	Statut
83-100	Très bon
62-82	Bon
41-61	Moyen
20-40	Pauvre
0-19	Mauvais

Tableau 20 : Résultats de la note CCO pour le transect Sud

3.4.2 Transect « Milieu », présentant 4 ceintures (Pc, Fspi, An, Fser)

Note globale: CCO

Métrique	Points	
M1	29,33	*
M2	13,2	*
M3	23,34	*
Total	65,87	Bon

Score global	Status
83-100	Très bon
62-82	Bon
41-61	Moyen
20-40	Pauvre
0-19	Mauvais

Tableau 21 : Résultats de la note CCO pour le transect Milieu

3.4.3 Transect « Nord », présentant 3 ceintures (Pc, Fspi, An)

Note globale: CCO

Métrique	Points	
M1	30	*
M2	17,5	*
M3	30	*
Total	77,5	Bon

Score global	Status
83-100	Très bon
62-82	Bon
41-61	Moyen
20-40	Pauvre
0-19	Mauvais

Tableau 22 : Résultats de la note CCO pour le transect Nord

^{*} corrigés des ceintures manquantes

^{*} corrigés des ceintures manquantes

^{*}corrigés des ceintures manquantes

Marqués l'absence de plusieurs ceintures sur chaque transect, les résultats corrigés sont « **Moyen** » pour un transect et « **Bons** » pour 2 transects. De fait, les résultats s'améliorent lorsqu'on s'éloigne de la passerelle Jean Marin en direction du nord, vers l'entrée du port de plaisance de Tréboul.

3.5 CARTOGRAPHIE DES HABITATS MARINS DE L'ESTRAN ROCHEUX ET MEUBLE DU SITE DU TREIZ

3.5.1 Synthèse des habitats observés

10 habitats principaux ont été identifiés avec un total de 16 sous-habitats.

Il s'agit des habitats de l'estran rocheux :

- ▶ A1-1 Roches ou blocs à Lichens (surpalittoral)
- ▶ A1-2 Roches médiolittorales à dominance algale
 - o A1-2.1.2.1 Roches à *Pelvetia* (couverture discontinue)
 - o A1-2.1.2.2 Roches à *Fucus spiralis* (discontinu)
 - o A1-2.2.2 Fucales des roches du médiolitt. moy. (disc.)
 - o A1-2.2.2.1 Roches à Ascophyllum (disc.)
 - o A1-2.2.2.2 Roches à Fucus vesiculosus (disc.)
 - A1-2.3.2.3 Roches à Fucus serratus (disc.)
 - A1-2.5 Roches avec algues opportunistes
- ▶ A1-4 Roches ou blocs médiolittoraux à très faible couverture macrobenthique
- ▶ B1-1.1.2 Roches de la frange infralitt. à *Mastocarpus*
- ▶ B1-1.1.3 Roches à Fucus serratus et Mastocarpus

Et des habitats de l'estran meubles :

- ▶ A3-1 Galets et cailloutis supralittoraux
- > A3-2.2 Graviers et sables grossiers médiolittoraux
- > A4-1 Sédiments hétérogènes envasés médiolittoraux
- ▶ A4-2 Sédiments hétérogènes envasés (salinité variable)
- ▶ A5-2 Sables médiolittoraux mobiles

3.5.2 Détail des habitats observés

3.5.2.1 A1-1 Roches ou blocs supralittoraux

(Correspondance EUNIS 2022 : MA1-21 Lichens ou petites algues vertes sur roche du supralittoral et de la frange supralittorale en Atlantique)

Cet habitat occupe une bande quasi-continue sur les hauts d'estran de la plage du Treiz. Directement au contact inférieur des premières végétations terrestres, l'habitat A1-1 est essentiellement colonisé par des lichens. Sur les parties supérieures, les lichens jaunes et gris sont dominants (*Ramalina, Xanthoria, Ochrolechia*) alors que les parties inférieures sont caractérisées par les lichens noirs du genre *Hydropunctaria*. Cet habitat peut également se développer sur les substrats artificiels de l'habitat JA (enrochements).

Un habitat décliné (A1-1.2) est présent sur le site du Treiz sur les parties basses des microfalaises, en contexte ombragée et/ou avec suintements phréatiques, caractérisé par la présence d'algues vertes ou rouges opportunistes

3.5.2.2 A1-2.1.2.1 Roches ou blocs du médiolittoral supérieur à couverture discontinue de *Pelvetia* canaliculata et cirripèdes

(Correspondance EUNIS 2022 : MA1-23B Pelvetia canaliculata sur roche abritée de la frange littorale)

Cet habitat est le premier colonisé par les algues. Caractéristique du médiolittoral supérieur, il peut présenter une couverture plus ou moins continue en fonction de l'hydrodynamisme et du type de substrat rocheux. De fait, l'habitat est absent des portions d'estran présentant des substrats de type galets ou cailloutis. Sur la plage du Treiz, le A1-2.1.2.1 ne présente que de rares patches très peu étendus.

3.5.2.3 A1-2.1.2.2 Roches ou blocs du médiolittoral supérieur à couverture discontinue de *Fucus spiralis* (correspondance EUNIS 2022 : MA1-23C Fucus spiralis sur roche abritée du médiolittoral supérieur)

Situé juste en dessous du A1-2.1.2.1, cet habitat est caractérisé par la présence marquée de *Fucus spiralis*. Sans être abondant, cet habitat est toutefois assez bien représenté sur le Treiz.

Figure 19 : Roches ou blocs du médiolittoral supérieur à Pelvetia canaliculata (A1-2.1.2.1) et Fucus spiralis (A1-2.1.2.2)

3.5.2.4 A1-2.2.2 Fucales des roches ou blocs du médiolittoral moyen à couverture discontinue

3.5.2.5 A1-2.2.2.1 Roches ou blocs du médiolittoral moyen à couverture discontinue d'Ascophyllum nodosum, de spongiaires et d'ascidies

(correspondance EUNIS 2022 : MA1-23E Ascophyllum nodosum sur roche très abritée du médiolittoral moyen) En mode abrité, Ascophyllum nodosum peut former de vastes à-plats très homogènes, à fort taux de recouvrement et présentant une biomasse très importante. En fonction de l'hydrodynamisme, Fucus vesiculosus peut y constituer une algue compagne. Peu favorisé par les types de substrats constituant l'estran du Treiz, cet habitat dominé par l'ascophylle y occupe des surfaces très limités.

Figure 20 : Roches ou blocs du médiolittoral moyen à couverture discontinue d'Ascophyllum nodosum, de spongiaires et d'ascidies

3.5.2.6 A1-2.2.2.2 Roches ou blocs du médiolittoral moyen à couverture discontinue de *Fucus vesiculosus* et de cirripèdes

(correspondance EUNIS 2022 : MA1-23D *Fucus vesiculosus* sur roche abritée à modérément exposée du médiolittoral moyen)

En mode moyennement battu, *Fucus vesiculosus* remplace *Ascophyllum nodosum* pour former un habitat à recouvrement modéré, laissant visible les cirripèdes. Sans être abondant sur le site d'étude, le A1-2.2.2.2 est l'habitat à fucales le mieux représenté.

3.5.2.7 A1-2.3.2.3 Roches ou blocs du médiolittoral inférieur à couverture discontinue de *Fucus serratus* (correspondance EUNIS 2022 : MA1-23F *Fucus serratus* sur roche abritée du médiolittoral inférieur)

En mode abrité à moyennement battu, *Fucus serratus* peut former une ceinture homogène à recouvrement plus ou moins fort, au contact inférieur des ceintures à *Ascophyllum nodosum* (A1-2.2.1.2) ou à *Fucus vesiculosus* (A1-2.2.2.2). Dans le cas du Treiz, la rareté des substrats durs à l'étage médiolittoral inférieur implique la rareté de l'habitat et de son algue caractéristique.

Figure 21: Fucus serratus (en mélange avec Fucus vesiculosus)

3.5.2.8 A1-2.5 Roches ou blocs médiolittoraux avec algues opportunistes

(correspondance EUNIS 2022 : MA1-23H *Porphyra purpurea* ou *Ulva* (anciennement *Enteromorpha*) spp. sur roche abrasée par le sable du médiolittoral moyen ou inférieur)

Cet habitat peut se développer à mi-estran, en situation assez variable, favorisé par différents facteurs : retournement des blocs ou décapage liés à une forte houle, écoulements phréatiques. Les algues vertes *Ulva* spp. ou *Enteromorpha* spp. sont les plus souvent rencontrées sur cet habitat. A noter que le A1-2.5 peut aussi être plus visible en fin d'été, dans des conditions d'eaux plus chaudes et moins brassées. L'algue rouge Porphyra sp. est également présente localement.

Figure 22 : Blocs à Entéromophes

3.5.2.9 A1-4 Roches ou blocs médiolittoraux à très faible couverture macrobiotique Cet habitat se rencontre en mode battu, à mi-estran, au niveau de la zone de déferlement.

Figure 23 : Champ de blos

3.5.2.10 A3-1 Galets et cailloutis supralittoraux

Cet habitat est ici bien représenté sur les hauts d'estran.

3.5.2.11 A3-2.2 Graviers et sables grossiers médiolittoraux

Dans le contexte de la plage du Treiz, ces sédiments grossiers peuvent se rencontrer sur plusieurs zones soumises à un hydrodynamisme modéré.

3.5.2.12 A4-1 Sédiments hétérogènes envasés médiolittoraux marins

Cet habitat est bien présent sur la partie nord du site d'étude, au bord du chenal.

Figure 24 : On note la présence de nombreuses coques

3.5.2.13 A4-2 Sédiments hétérogènes envasés médiolittoraux en milieu à salinité variable

Assez fréquent sur l'estran du Treiz, cet habitat de plage est caractérisé par une proportion importante de vase au sein du substrat et une influence marquée des apports d'eau douce.

3.5.2.14 A5-4 Sables fins médiolittoraux mobile

Le A5-3 est surtout présent sur la partie sud de la zone d'étude.

4 DISCUSSION ET CONCLUSION SUR LES NIVEAUX D'ENJEU

4.1 RAPPEL DE LA DEFINITION DE L'ENJEU

Le dernier guide du Ministère de la Transition Écologique publié et reprenant les définitions sur les études d'impacts est le guide d'application de l'autorisation environnementale pour les projets EMR (Énergies marines Renouvelables) à « caractéristiques variables » (publié en avril 2022). Il est défini **l'enjeu**, comme suit :

« L'enjeu représente pour la portion de la zone considérée comme zone projet, compte tenu de son état initial ou prévisible, une valeur au regard de préoccupations écologiques, patrimoniales, paysagères, ou de santé. Les enjeux sont appréciés par rapport à des critères tels que la qualité, la rareté, l'originalité, la diversité, la richesse, le statut de protection... L'appréciation de l'enjeu est indépendante du projet. »

De plus au regard des objectifs de la France, notamment dans les Documents Stratégiques de Façade (DSF) pour l'Hexagone ou dans les Document Stratégique de Bassin (DSB, comme celui Antillais) et également au travers de la Stratégie Nationale pour la Biodiversité (SNB3), les enjeux écologiques sont considérés comme des éléments des écosystèmes marins ou de leur fonctionnement dont on doit **établir ou maintenir le bon état**. Les enjeux prioritaires sont ceux pour lesquels l'atteinte ou le maintien du bon état est prioritaire, en l'état des connaissances actuelles et au regard de la représentativité de la zone pour cet enjeu, de sa sensibilité et de son importance fonctionnelle. Il est donc possible ensuite de qualifier le niveau d'enjeu. Aux termes de l'analyse de l'état de référence, une synthèse sera présentée et un niveau d'enjeu sera attribué pour chaque composante selon le classement suivant :

Enjeu Majeur
Enjeu Fort
Enjeu modéré
Enjeu faible
Enjeu Nul ou Négligeable (N) ou Non Déterminé (ND)

Figure 25 : Détermination des niveaux d'enjeux (source DSF/OFB)

4.2 DEFINITION DE L'ENJEU HABITATS MARINS DU TREIZ

Les habitats observés sont des habitats communs des espaces naturels du littoral. Ils ne présentent pas de remarquabilité particulière. Cependant, il faut les analyser séparément en fonction de la nature de leur substrat.

Les habitats présents de **l'estran meuble** sont en **bon état écologique** et présentent des quantités très importantes de coques et d'hydrobie. Il est donc possible de considérer que même si ces habitats sont communs, leur bon état les classe ainsi de facto en **enjeu fort**. Les travaux devront tenter de préserver au mieux ces habitats, sachant que l'impact sera estimé au regard des sensibilités de ces habitats aux pressions du chantier et à l'intensité de ces pressions après l'application des mesures d'évitement et de réduction.

Concernant les habitats de **l'estran rocheux** du Treiz, il s'apparente à un platier émergent, c'est à dire une roche affleurante, qui se situe en haut d'estran, de taille modeste (25 m de large environ) et enfin presque tout le long. C'est essentiellement aussi sur cette zone que le chantier du Treiz va avoir une emprise directe. Les inventaires les placent dans un statut de qualité plus moyen que la qualité de l'estran meuble. Le niveau d'enjeu à ce stade a donc été de les qualifier comme un **enjeu modéré.**

Estran (tous les habitats confondus)	Niveau d'Enjeu
Estran meuble	Fort
Estran rocheux	Modéré

Tableau 23 : Niveaux d'enjeu des habitats sur le site

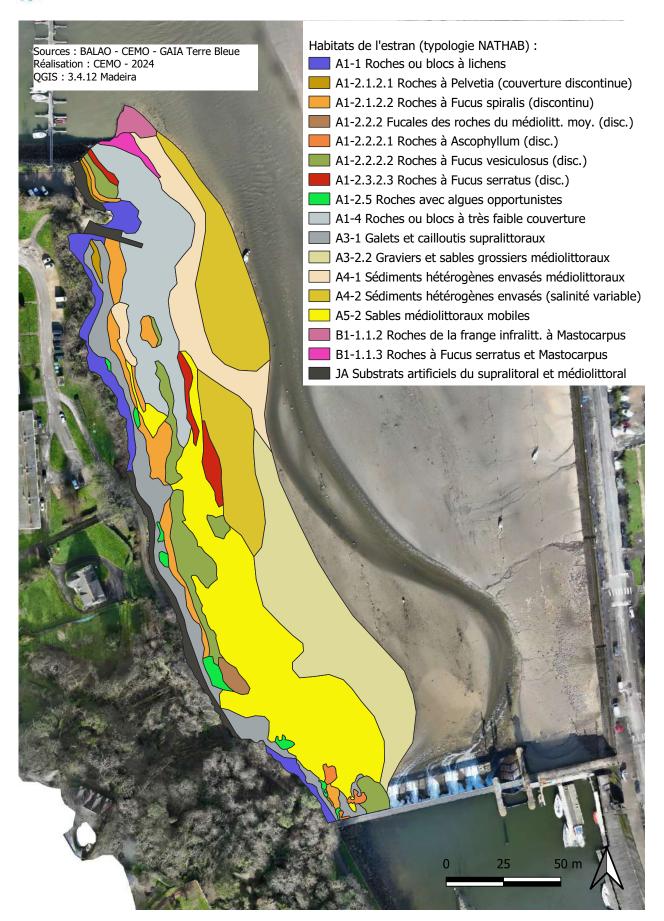


Figure 26: Carte des habitats marins du site du Treiz

5 ANNEXES

5.1 Annexe 1: Modele de fiche terrain pour les Inventaires Estran Rocheux

Fiche terrain DCE Macroalgues Intertidales

Site: Date:	
Opérateurs :	
1. Couverture végétale globale des ceintures (pourcentages de recouvrement, à 1 % près) Pelvetia canaliculata (Pc)	!
Fucus spiralis (Fspi)	
Ascophyllum nodosum (An) / Fucus vesiculosus (Fves)	
Fucus serratus (Fser) / Rhodophyceae	:
Himanthalia elongata (He) / Bifurcaria bifurcata (Bb) / Rhodophyceae	
Laminaria digitata / Laminariales (Ld)	:
2. Surface de couvert végétal de chaque ceinture (en m²)	
Pelvetia canaliculata (Pc)	
Fucus spiralis (Fspi)	
Ascophyllum nodosum (An) / Fucus vesiculosus (Fves)	
Fucus serratus (Fser) / Rhodophyceae	:
Himanthalia elongata (He) / Bifurcaria bifurcata (Bb) / Rhodophyceae	:
Laminaria digitata (Ld)	
3. Observations dans les quadrats	
Recouvrement dans chaque quadrat de chacune des espèces caractéristiques et opportunis	st

Recouvrement dans chaque quadrat de chacune des espèces caractéristiques et opportunistes. Pourcentages de recouvrement à noter par ceinture et par quadrat :

0 - 5 %, > 5 -25 %, > 25% - 50%, > 50 % - 75 %, > 75 % - 100 %

Rappel: trois quadrats de 33 cm X 33 cm par point, pris au hasard à chaque sortie, en trois points fixes de 1.65 m X 1.65 m par ceinture, soit 9 quadrats par ceinture.

Ceinture à Pelvetia canaliculata

Espèces caractéristiques	Pc1, 1	Pc1, 2	Pc1, 3	Pc2, 1	Pc2, 2	Pc2, 3	Pc3, 1	Pc3, 2	Pc3, 3
Catenella repens									Ú.
Fucus spiralis									
Hildenbrandia rubra									
Lichina pygmaea									
Pelvetia canaliculata									
Verrucaria maura									
Espèces opportunistes									
Ectocarpales									
Enteromorpha compressa									
Enteromorpha ramulosa									
Ulva spp.									
Ceramium spp.		J-21							
Polysiphonia spp. (sauf lanosa / elongata)									
Boergeseniella spp.									
Diatomées coloniales	4:		7-17						

Ceinture à Fucus spiralis

Espèces caractéristiques	Fspi1, 1	Fspi1, 2	Fspi1, 3	Fspi2, 1	Fspi2, 2	Fspi2, 3	Fspi3, 1	Fspi3, 2	Fspi3, 3
Ascophyllum nodosum									
Catenella repens									
Fucus spiralis									
Hildenbrandia rubra									
Pelvetia canaliculata									
Verrucaria maura									
Espèces opportunistes									
Ectocarpales									
Enteromorpha compressa									
Enteromorpha ramulosa									
Ulva spp.									
Ceramium spp.									
Polysiphonia spp. (sauf lanosa / elongata)									
Boergeseniella spp.									
Diatomées coloniales									

Ceinture à Ascophyllum nodosum - Fucus vesiculosus

Espèces caractéristiques	An1, 1	An1, 2	An1, 3	An2, 1	An2, 2	An2, 3	An3, 1	An3, 2	An3, 3
Ascophyllum nodosum	12								
Cladophora rupestris	i.								
Corallina elongata			:						
Fucus serratus									
Fucus vesiculosus									
Gelidium spinosum (pulchellum/latifolium)									
Gelidium pusillum	1/2								
Lithophyllum incrustans									
Lithothamnion lenormandii									
Lomentaria articulata	0.5								
Mastocarpus stellatus (dont Petrocelis)				54					
Plumaria plumosa									
Rhodothamniella floridula								,	
Espèces opportunistes									
Ectocarpales									
Enteromorpha compressa									
Enteromorpha ramulosa									
Ulva spp.									
Ceramium spp.									
Polysiphonia spp. (sauf lanosa / elongata)									
Boergeseniella spp.	Ú.								
Diatomées coloniales									

Ceinture à Fucus serratus (- Rhodophyceae)

Espèces caractéristiques	Fser1, 1	Fser1, 2	Fser1, 3	Fser2, 1	Fser2, 2	Fser2, 3	Fser3, 1	Fser3, 2	Fser3, 3
Chondrus crispus									
Cladophora rupestris									
Corallina elongata									
Cryptopleura ramosa									
Fucus serratus									
Gelidium spinosum (pulchellum/latifolium)		<i>y</i>							
Gelidium pusillum									
Lithophyllum incrustans									
Lithothamnion lenormandii									
Lomentaria articulata									
Mastocarpus stellatus (dont Petrocelis)									
Osmundea pinnatifida									
Palmaria palmata									
Plumaria plumosa									
Rhodothamniella floridula									
Espèces opportunistes									
Ectocarpales									
Enteromorpha compressa									
Enteromorpha ramulosa									
Ulva spp.									
Ceramium spp.									
Polysiphonia spp. (sauf lanosa / elongata)									
Boergeseniella spp.									
Diatomées coloniales									

Ceinture à Himanthalia elongata - Bifurcaria bifurcata (- Rhodophyceae)

Espèces caractéristiques	He1, 1	He1, 2	He1, 3	He2, 1	He2, 2	He2, 3	He3, 1	He3, 2	He3, 3
Asparagopsis armata / Falkenbergia									
Bifurcaria bifurcata									
Calliblepharis jubata									
Chondracanthus acicularis									
Chondrus crispus								10	
Cladophora rupestris									
Corallina elongata									
Cryptopleura ramosa									
Cystoclonium purpureum									
Gelidium spinosum (pulchellum/latifolium)									
Himanthalia elongata									
Laurencia obtusa / L. hybrida									
Lithophyllum incrustans									
Lomentaria articulata									
Mastocarpus stellatus (dont Petrocelis)									
Osmundea pinnatifida									
Palmaria palmata									
Plocamium cartilagineum									
Rhodothamniella floridula									
Espèces opportunistes									
Ectocarpales									
Enteromorpha compressa									
Enteromorpha ramulosa									
Ulva spp.								10	
Ceramium spp.			1						
Polysiphonia spp.									
(sauf lanosa / elongata)									
Boergeseniella spp.			50 15						
Diatomées coloniales									

Ceinture à Laminaria digitata (ou Laminariales)

Espèces caractéristiques	Ld1, 1	Ld1, 2	Ld1, 3	Ld2, 1	Ld2, 2	Ld2, 3	Ld3, 1	Ld3, 2	Ld3, 3
Calliblepharis jubata									
Chondracanthus acicularis									
Chondrus crispus									
Corallina elongata									
Cryptopleura ramosa									
Cystoclonium purpureum									
Himanthalia elongata					1				
Laminaria digitata									
Laminaria saccharina					1				
Laurencia obtusa/L. hybrida									
Lithophyllum incrustans									
Lomentaria articulata									
Mastocarpus stellatus (dont Petrocelis)									
Osmundea pinnatifida									
Palmaria palmata									
Plocamium cartilagineum									-
Saccorhiza polyschides									
Espèces opportunistes									
Ectocarpales									
Enteromorpha compressa									
Enteromorpha ramulosa									
Ulva spp.									
Ceramium spp.									
Polysiphonia spp. (sauf lanosa / elongata)									
Boergeseniella spp.									
Diatomées coloniales							1		

5.2 ANNEXE 2 : BORDEREAU D'ANALYSES EUROFINS

Rapport d'analyse AR-24-LK-044120-01 du 2 mars 2024.

GAIA - TERRE BLEUE Monsieur Didier GROSDEMANGE 16, rue des Fougères 29900 CONCARNEAU

RAPPORT D'ANALYSE

Dossier N°: 24E024583 Version du: 02/03/2024

N° de rapport d'analyse : AR-24-LK-044120-01 Date de réception technique : 13/02/2024

Première date de réception physique : 13/02/2024

Référence Dossier : N° Projet : TREIZ

Nom Projet : Inventaire écologique de l'estran

Nom Commande: TREIZ

Référence Commande : rtyztbvzeerc ezrwxz

Coordinateur de Projets Clients : Marie Diebolt / MarieDiebolt@eurofins.com / +33 3 88 91 19 11

N° Ech	Matrice		Référence échantillon
001	Sédiments	(SED)	TREIZ 1
002	Sédiments	(SED)	TREIZ 2
003	Sédiments	(SED)	TREIZ 3
004	Sédiments	(SED)	TREIZ MOY

RAPPORT D'ANALYSE

Dossier N°: 24E024583

Version du : 02/03/2024

N° de rapport d'analyse : AR-24-LK-044120-01

Date de réception technique : 13/02/2024

Première date de réception physique : 13/02/2024

Référence Dossier : N° Projet : TREIZ Nom Projet : Inventaire écologique de l"estran

Nom Commande: TREIZ

Référence Commande : rtyztbvzeerc ezrwxz

N° Echantillon			001		002		003	004	
Référence client :		-	TREIZ 1		TREIZ 2		TREIZ 3	TREIZ MOY	
Matrice:			SED		SED		SED	SED	
Date de prélèvement :		12	2/02/2024	1	12/02/2024	12	2/02/2024	12/02/2024	
Date de début d'analyse :			3/02/2024		13/02/2024		3/02/2024	20/02/2024	
Température de l'air de l'enceinte :			9.1°C		9.1°C		9.1°C	9.1°C	
remperature de l'air de l'enceinte .	_			L				3.1 0	
	F	rép	paration	Р	hysico-C	hii	mique		
XXS06 : Prétraitement et		*	Fait	*	Fait	*	Fait	* Fait	
séchage à 40°C LSA07 : Matière sèche	% P.B.	*	78.2	*	80.5	*	83.0	* 76.3	
XXS07 : Refus Pondéral à 2 mm	%	*	5.30	*	20.0	*	17.4	* 14.6	
AASO7 : Reius Folideral a 2 IIIIII	.,			н					
			Mesur	es.	s physiqu	ıes			
LS918 : Masse volumique sur	g/cm³		1.68		2.24		1.69	2.11	
échantillon brut	0/ 140				4.50			4.00	
S995 : Perte au feu à 550°C	% MS		0.428		1.52		0.820	1.28	
			Gra	ทเ	ulométrie	•			
LS4WH : Pourcentage cumulé	%	*	0.00	*	4.11	*	1.87	* 1.11	
0.02 à 2 μm									
LS4P2 : Pourcentage cumulé	%	*	1.71	*	27.72	*	14.00	* 9.03	
0.02 à 20 μm									
LSQK3 : Pourcentage cumulé	%	*	2.95	*	44.97	*	21.30	* 13.76	
0.02 à 63 μm	0/	_		L	70.05	_	22.42	* 00.00	
LS3PB : Pourcentage cumulé	%	•	23.92	Î	76.25	•	32.40	* 36.33	
0.02 à 200 µm	%	*	100.00	*	100.00	*	100.00	* 99.89	
LS9AT : Pourcentage cumulé 0.02 à 2000 µm	/0		100.00		100.00		100.00	33.03	
a 2000 μm LS9AS : Fraction 2 - 20 μm	%	*	1.71	*	23.62	*	12.12	* 7.92	
LSSKU : Fraction 20 - 63 µm	%	*	1.24	*	17.24	*	7.31	* 4.73	
LS9AV : Fraction 63 - 200 μm	%	*	20.97	*	31.29	*	11.10	* 22.57	
LS3PC : Fraction 200 - 2000 µm	%	*	76.08	*	23.75	*	67.60	* 63.56	
_55PG : F1 action 200 - 2000 μm	70							00.00	
			Analys	es	immédi	ate	S		
LSL4H: pH H2O								0.0	
pH extrait à l'eau	00							8.9	
Température	°C							20	

RAPPORT D'ANALYSE

Dossier N°: 24E024583

Version du : 02/03/2024

N° de rapport d'analyse : AR-24-LK-044120-01

Date de réception technique : 13/02/2024

Première date de réception physique : 13/02/2024

Référence Dossier : N° Projet : TREIZ

Nom Projet : Inventaire écologique de l'estran

Nom Commande : TREIZ

Référence Commande : rtyztbvzeerc ezrwxz

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		001 TREIZ 1 SED 12/02/2024 13/02/2024 9.1°C	12	002 TREIZ 2 SED 2/02/2024 3/02/2024 9.1°C	12	003 TREIZ 3 SED 2/02/2024 3/02/2024 9.1°C	1	004 REIZ MOY SED 2/02/2024 20/02/2024 9.1°C		
	Indices de pollution									
ZS0HH: Carbone organique total (COT) par combustion sèche Carbone Organique Total par Combustion mg C/kg M Carbone Organique Total % C Coefficient de variation (CV) %	*	1540 0.15 11.9	*	6900 0.69	*	3940 0.39	*	3110 0.31		
LS916 : Azote Kjeldahl (NTK) g/kg M.S	S.		<i>-</i>				_	<0.5		
Métaux Métaux										
XXS01 : Minéralisation eau régale - Bloc chauffant LS862 : Aluminium (Al) mg/kg M LS865 : Arsenic (As) mg/kg M LS874 : Cuivre (Cu) mg/kg M LS881 : Nickel (Ni) mg/kg M LS882 : Phosphore (P) mg/kg M LS883 : Plomb (Pb) mg/kg M LS894 : Zinc (Zn) mg/kg M LS809 : Mercure (Hg) mg/kg M LS931 : Cadmium (Cd) mg/kg M	I.S. I.S. I.S. I.S. I.S.	Fait 4070	*	Fait 8230	*	Fait 6720	* * * * * * * * *	Fait 5590 4.22 6.89 6.08 218 9.22 36.5 0.17 <0.10		
LSA6B : Phosphore total (P2O5) mg/kg M	I.S. I.S.						*	9.37 499		
Hydrocai	rbur	es Aroma	tic	ques Pol	yc	ycliques	; (I	HAPs)		
LSRHU : Naphtalène mg/kg M LSRHI : Fluorène mg/kg M LSRHJ : Phénanthrène mg/kg M LSRHM : Pyrène mg/kg M LSRHN : Benzo-(a)-anthracène mg/kg M LSRHP : Chrysène mg/kg M	I.S. I.S. I.S.						* * * * *	<0.002 <0.002 0.003 0.0073 0.0097 0.013		

RAPPORT D'ANALYSE

Dossier N°: 24E024583

Version du : 02/03/2024

N° de rapport d'analyse : AR-24-LK-044120-01

Date de réception technique : 13/02/2024

Première date de réception physique : 13/02/2024

Référence Dossier : N° Projet : TREIZ

Nom Projet : Inventaire écologique de l'estran

Nom Commande: TREIZ

Référence Commande : rtyztbvzeerc ezrwxz

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		001 TREIZ 1 SED 12/02/2024 13/02/2024 9.1°C	002 TREIZ 2 SED 12/02/2024 13/02/2024 9.1°C	003 TREIZ 3 SED 12/02/2024 13/02/2024 9.1°C	004 TREIZ MOY SED 12/02/2024 20/02/2024 9.1°C	
H	Hydrocarbu	ires Aroma	itiques Pol	ycycliques	(HAPs)	
LSRHS: Indeno (1,2,3-cd) Pyrène LSRHT: Dibenzo(a,h)anthracène LSRHV: Acénaphthylène LSRHW: Acénaphtène LSRHK: Anthracène LSRHL: Fluoranthène LSRHQ: Benzo(b)fluoranthène LSRHR: Benzo(k)fluoranthène LSRHH: Benzo(a)pyrène LSRHX: Benzo(ghi)Pérylène LSFF9: Somme des HAP	mg/kg M.S.				* 0.0083 * 0.003 * <0.0023 * <0.002 * <0.002 * 0.011 * 0.017 * 0.005 * 0.011 * 0.01	
	F	Polychlorol	biphényles	(PCBs)		
LS3U7 : PCB 28 LS3U8 : PCB 52 LS3U8 : PCB 101 LS3U6 : PCB 118 LS3U9 : PCB 138 LS3UA : PCB 153 LS3UC : PCB 180 LSFEH : Somme PCB (7)	mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S.				* <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * <0.001	
		Org	janoétains			
LS2GK : Dibutylétain cation-Sn (DBT) LS2GL : Tributylétain cation-Sn (TBT) LS2IJ : Tétrabutylétain -Sn (TeBT)	µg Sn/kg M.S. µg Sn/kg M.S. µg Sn/kg M.S.				* <2.0 * <2.0 <10	

RAPPORT D'ANALYSE

Dossier N°: 24E024583

Version du : 02/03/2024

N° de rapport d'analyse : AR-24-LK-044120-01

Date de réception technique : 13/02/2024

Première date de réception physique : 13/02/2024

Référence Dossier : N° Projet : TREIZ

Nom Projet : Inventaire écologique de l'estran Nom Commande : TREIZ

Référence Commande : rtyztbyzeerc ezrwxz

001 002 003 004 N° Echantillon **TREIZ 2** TREIZ 3 TREIZ MOY TREIZ 1 Référence client : SED SED SED **SED** Matrice: Date de prélèvement : 12/02/2024 12/02/2024 12/02/2024 12/02/2024 13/02/2024 13/02/2024 13/02/2024 20/02/2024 Date de début d'analyse : Température de l'air de l'enceinte : 9.1°C 9.1°C 9.1°C 9.1°C

Tomporataro do Fair do Fortocinto T		U U	00		J C	
		Org	janoétains			
LS2IK : Monobutylétain cation-Sn (MBT)	μg Sn/kg M.S.				* <2.0	
LS2IL : Triphénylétain cation-Sn (TPhT)	μg Sn/kg M.S.				* <2.0	
LS2IM : MonoOctyletain cation-Sn (MOT)	μg Sn/kg M.S.				* <2.0	
LS2IN : DiOctyletain cation-Sn (DOT)	μg Sn/kg M.S.				* <2.0	
LS2IP : Tricyclohexyletain cation-Sn (TcHexT)	μg Sn/kg M.S.				* <2.0	

Observations	N° d'échantillon	Référence client
Du fait d'une LQ labo supérieure à la LQ règlementaire, la valeur retenue pour le calcul de la somme SOMME PCB (7) pour le(s) paramètre(s) PCB 28, PCB 52, PCB 101, PCB 118, PCB 138, PCB 153, PCB 180 est LQ labo/2	(004)	TREIZ MOY

Date de réception technique : 13/02/2024

Première date de réception physique : 13/02/2024

RAPPORT D'ANALYSE

Version du: 02/03/2024

Dossier N°: 24E024583

N° de rapport d'analyse : AR-24-LK-044120-01

Référence Dossier : N° Projet : TREIZ

Nom Projet : Inventaire écologique de l'estran Nom Commande : TREIZ

Référence Commande : rtyztbvzeerc ezrwxz

Justine Bailly
Coordinatrice Projets Clients

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 10 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Les résultats et conclusions éventuelles s'appliquent à l'échantillon tel qu'il a été reçu. Les données transmises par le client pouvant affecter la validité des résultats (la date de prélèvement, la matrice, la référence échantillon et autres informations identifiées comme provenant du client), ne sauraient engager la responsabilité du laboratoire. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Les résultats précédés du signe < correspondent aux limites de quantification, elles sont la responsabilité du laboratoire et fonction de la matrice.

Tous les éléments de traçabilité et incertitude (déterminée avec k = 2) sont disponibles sur demande.

Laboratoire agréé par le gouvernement du Grand-Duché de Luxembourg pour l'accomplissement de tâches techniques d'étude et de vérification dans le domaine de l'environnement – Détail disponible sur demande

Le résultat d'une somme de paramètres est soumis à une méthodologie spécifique développée par notre laboratoire. Celle-ci peut dépendre de la LQ règlementaire du ou des paramètres sommés. Pour plus d'informations, n'hésitez pas à contacter votre chargé d'affaires ou votre coordinateur de projet client.

Annexe technique

Dossier N° :24E024583N° de rapport d'analyse : AR-24-LK-044120-01

Emetteur: Mr Didier Grosdemange Commande EOL: 006-10514-1109989

Nom projet : N° Projet : TREIZ

Inventaire écologique de l'estran

Référence commande : rtyztbvzeerc ezrwxz

Nom Commande : TREIZ

Sédiments

Code	Analyse	Principe et référence de la méthode	LQI	Incertitude à la LQ	Unité	Prestation réalisée sur le site de :
LS2GK	Dibutylétain cation-Sn (DBT)	GC/MS/MS [Dérivation, extraction Solide/Liquide] - XP T 90-250	2	34%	μg Sn/kg M.S.	Eurofins Analyses pour l'Environnemen France
LS2GL	Tributylétain cation-Sn (TBT)		2	35%	μg Sn/kg M.S.	
LS2IJ	Tétrabutylétain -Sn (TeBT)		10	45%	μg Sn/kg M.S.	1
LS2IK	Monobutylétain cation-Sn (MBT)		2	35%	μg Sn/kg M.S.]
LS2IL	Triphénylétain cation-Sn (TPhT)		2	46%	μg Sn/kg M.S.	
LS2IM	MonoOctyletain cation-Sn (MOT)		2	40%	μg Sn/kg M.S.	
LS2IN	DiOctyletain cation-Sn (DOT)		2	36%	μg Sn/kg M.S.	1
LS2IP	Tricyclohexyletain cation-Sn (TcHexT)		2	35%	μg Sn/kg M.S.	1
LS3PB	Pourcentage cumulé 0.02 à 200 µm	Spectroscopie (Diffraction laser) - Méthode interne	0		%	1
LS3PC	Fraction 200 - 2000 µm		0		%	1
LS3U6	PCB 118	GC/MS/MS [ou GC/ECD - Extraction Hexane / Acétone] - NF EN 17322	0.001	34%	mg/kg M.S.	1
LS3U7	PCB 28	Tiexane / receiving 141 EIV 17022	0.001	30%	mg/kg M.S.	1
LS3U8	PCB 101	7	0.001	32%	mg/kg M.S.	1
LS3U9	PCB 138	7	0.001	34%	mg/kg M.S.	1
LS3UA	PCB 153		0.001	29%	mg/kg M.S.	1
LS3UB	PCB 52		0.001	32%	mg/kg M.S.	1
LS3UC	PCB 180		0.001	37%	mg/kg M.S.	1
LS4P2	Pourcentage cumulé 0.02 à 20 μm	Spectroscopie (Diffraction laser) - Méthode interne	0		%	1
LS4WH	Pourcentage cumulé 0.02 à 2 μm		0		%	1
LS862	Aluminium (AI)	ICP/AES [Minéralisation à l'eau régale] - NF EN ISO 11885 - Méthode interne	5	50%	mg/kg M.S.	
LS865	Arsenic (As)		1	40%	mg/kg M.S.	1
LS874	Cuivre (Cu)		5	50%	mg/kg M.S.	1
LS881	Nickel (Ni)		1	40%	mg/kg M.S.	1
LS882	Phosphore (P)		1	45%	mg/kg M.S.	1
LS883	Plomb (Pb)		5	30%	mg/kg M.S.	1
LS894	Zinc (Zn)		5	25%	mg/kg M.S.	1
LS916	Azote Kjeldahl (NTK)	Volumétrie [Minéralisation] - Méthode interne (Sols) - NF EN 13342 (autres matrices)	0.5	35%	g/kg M.S.	
LS918	Masse volumique sur échantillon brut	Gravimétrie - Méthode interne			g/cm³]

Annexe technique

Dossier N° :24E024583 N° de rapport d'analyse : AR-24-LK-044120-01

Emetteur : Mr Didier Grosdemange Commande EOL : 006-10514-1109989

Nom projet : N° Projet : TREIZ

Inventaire écologique de l"estran

Référence commande : rtyztbvzeerc ezrwxz

Nom Commande : TREIZ

Sédiments

Code	Analyse	Principe et référence de la	LQI	Incertitude	Unité	Prestation réalisée sur le
		méthode		à la LQ		site de :
LS931	Cadmium (Cd)	ICP/MS [Minéralisation à l'eau régale] - NF EN ISO 17294-2 - Méthode interne	0.1	28%	mg/kg M.S.	
LS934	Chrome (Cr)		0.1	30%	mg/kg M.S.	
LS995	Perte au feu à 550°C	Gravimétrie - NF EN 12879 (annulée)	0.1		% MS]
LS9AS	Fraction 2 - 20 μm	Spectroscopie (Diffraction laser) - Méthode interne	0		%	
LS9AT	Pourcentage cumulé 0.02 à 2000 μm		0		%	
LS9AV	Fraction 63 - 200 µm		0		%	
LSA07	Matière sèche	Gravimétrie - NF EN 12880	0.1	5%	% P.B.	
LSA09	Mercure (Hg)	SFA / vapeurs froides (CV-AAS) [Minéralisation à l'eau régale] - Méthode interne	0.1	20%	mg/kg M.S.	
LSA6B	Phosphore total (P2O5)	Calcul - Calcul			mg/kg M.S.	
LSFEH	Somme PCB (7)	1			mg/kg M.S.	1
LSFF9	Somme des HAP	1			mg/kg M.S.	1
LSL4H	pH H2O pH extrait à l'eau	Potentiométrie - NF EN ISO 10390			20	
	Température				°C	
LSQK3	Pourcentage cumulé 0.02 à 63 µm	Spectroscopie (Diffraction laser) - Méthode interne	0		%	
LSRHH	Benzo(a)pyrène	GC/MS/MS [Extraction Hexane / Acétone] - NF EN 17503 - NF ISO 18287 (Sols)	0.002	46%	mg/kg M.S.	
LSRHI	Fluorène		0.002	27%	mg/kg M.S.	
LSRHJ	Phénanthrène		0.002	39%	mg/kg M.S.	
LSRHK	Anthracène		0.002	34%	mg/kg M.S.	
LSRHL	Fluoranthène		0.002	41%	mg/kg M.S.	
LSRHM	Pyrène		0.002	36%	mg/kg M.S.	
LSRHN	Benzo-(a)-anthracène		0.002	34%	mg/kg M.S.	
LSRHP	Chrysène		0.002	36%	mg/kg M.S.	
LSRHQ	Benzo(b)fluoranthène		0.002	39%	mg/kg M.S.	
LSRHR	Benzo(k)fluoranthène	1	0.002	41%	mg/kg M.S.	1
LSRHS	Indeno (1,2,3-cd) Pyrène]	0.002	36%	mg/kg M.S.	
LSRHT	Dibenzo(a,h)anthracène	1	0.002	31%	mg/kg M.S.	1
LSRHU	Naphtalène	1	0.002	34%	mg/kg M.S.	1
LSRHV	Acénaphthylène	1	0.002	32%	mg/kg M.S.	1
LSRHW	Acénaphtène	1	0.002	31%	mg/kg M.S.	1
LSRHX	Benzo(ghi)Pérylène	1	0.002	34%	mg/kg M.S.	1
LSSKU	Fraction 20 - 63 µm	Spectroscopie (Diffraction laser) - Méthode interne	0		%	
		1	1	1		1

Annexe technique

Dossier N° :24E024583 N° de rapport d'analyse : AR-24-LK-044120-01

Emetteur: Mr Didier Grosdemange Commande EOL: 006-10514-1109989

Nom projet : N° Projet : TREIZ Référence commande : rtyztbvzeerc ezrwxz

Inventaire écologique de l'estran Nom Commande : TREIZ

Sédiments

Code	Analyse	Principe et référence de la méthode	LQI	Incertitude à la LQ	Unité	Prestation réalisée sur le site de :
XXS01	Minéralisation eau régale - Bloc chauffant	Digestion acide -				
XXS06	Prétraitement et séchage à 40°C	Séchage [Le laboratoire travaillera sur la fraction <2mm de l'échantillon sauf demande explicite du client] - NF ISO 11464				
XXS07	Refus Pondéral à 2 mm	Tamisage [Le laboratoire travaillera sur la fraction <à 2mm de l'échantillon sauf demande explicite du client] - NF ISO 11464	1		%	
ZS0HH	Carbone organique total (COT) par combustion sèche	Combustion [sèche] - NF EN 15936 - Méthode B				
	Carbone Organique Total par Combustion		1000	40%	mg C/kg M.S.	
	Carbone Organique Total		0.1	40%	% C	
	Coefficient de variation (CV)				%	

Annexe de traçabilité des échantillons

Cette traçabilité recense les flaconnages des échantillons scannés dans EOL sur le terrain avant envoi au laboratoire

Dossier N°: 24E024583 N° de rapport d'analyse : AR-24-LK-044120-01

Emetteur: Commande EOL: 006-10514-1109989

Nom projet : N° Projet : TREIZ Référence commande : rtyztbvzeerc ezrwxz

Inventaire écologique de l'estran Nom Commande : TREIZ

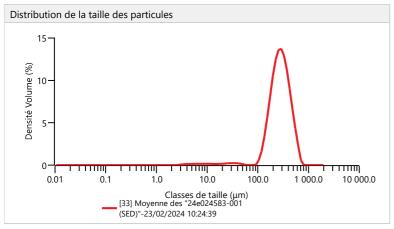
Sédiments

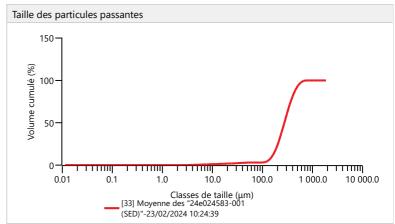
N° Ech	Référence Client	Date & Heure Prélèvement	Date de Réception Physique (1)	Date de Réception Technique (2)	Code-Barre	Nom Flacon
001	TREIZ 1	12/02/2024 13:00:00	13/02/2024	13/02/2024		
002	TREIZ 2	12/02/2024 13:00:00	13/02/2024	13/02/2024		
003	TREIZ 3	12/02/2024 13:00:00	13/02/2024	13/02/2024		
004	TREIZ MOY	12/02/2024 13:00:00	19/02/2024	19/02/2024		

Date à laquelle l'échantillon a été réceptionné au laboratoire.
 Lorsque l'information n'a pas pu être récupérée, cela est signalé par la mention N/A (non applicable).

(2): Date à laquelle le laboratoire disposait de toutes les informations nécessaires pour finaliser l'enregistrement de l'échantillon.

Granulométrie laser à pas variable (prestation réalisée sur le site de SAVERNE).


NF EN ISO/IEC 17025:2005 COFRAC 1-1488 Méthode interne T-PS-WO22915


Réf. de l'echantillon: Opérateur Date Source Obscuration Moyenne des "24e024583-001 (SED)" FPEP 23/02/2024 10:24:39 Averaged 13.74

Données Statistiques							
Moyenne(µm) Médiane(µm)	Variance(µm²)	Ecart Type (µm)	Ratio: Moyenne/Médiane(µm)	Mode(µm)	Specific surface(m²/g)	
292.1	4 274.13	15935.53	126.24	1.06	277.84	39.62	

Pourcenta	ges relatif	s					
0.02-2µm	2-20 µm	20-50 μm	50-200 μm	200-2000 μm	20-63µm	63-200µm	
0.00	1.71	1.18	21.04	76.08	1.24	20.97	

*Pourcentag	es cumulés er	ı %			
0.02-2µm	0.02-20 μm	0.02-63 µm	0.02-200 μm	0.02-2000 μm	
0.00	1.71	2.95	23.92	100.00	

Pourcent	age relatif				
Taille (µm)	% Volume Dans	Taille (µm)	% Volume Dans	Taille (µm)	% Volume Dans
0.010	0.00	20.000	0.51	300.000	23.09
1.000	0.00	30.000	0.43	400.000	11.60
2.000	0.00	40.000	0.24	500.000	5.24
2.500	0.20	50.000	0.06	600.000	1.94
4.000	0.64	63.000	0.07	800.000	0.00
8.000	0.22	100.000	5.94	900.000	0.00
10.000	0.37	150.000	14.96	1000.000	0.00
15.000	0.06	200.000	17.85	1500.000	0.00
16.000	0.21	250.000	16.36	2000.000	

Taille (µm)	% Volume Passant	Taille (µm)	% Volume Passant	Taille (µm)	% Volume Passant
0.010	0.00	20.000	1.71	300.000	58.14
1.000	0.00	30.000	2.21	400.000	81.23
2.000	0.00	40.000	2.64	500.000	92.82
2.500	0.00	50.000	2.88	600.000	98.06
4.000	0.20	63.000	2.95	800.000	100.00
8.000	0.84	100.000	3.02	900.000	100.00
10.000	1.07	150.000	8.96	1000.000	100.00
15.000	1.44	200.000	23.92	1500.000	100.00
16.000	1.50	250.000	41.77	2000.000	100.00

Paramètres d'analyse

Type de l'Instrument Mastersizer3000

Nom du préparateur d'échantillons Hydro EV

Modèle de diffusion Mie

Vitesse d'agitateur atteinte 3500 rpm

Dispersant Eau 900 mL

Durée d'analyse : 2 x 30 secondes

L'alignement du laser est effectué avant chaque

La reproduction de ce document n'est autorisée que sous sa forme intégrale, en complément du rapport d'analyse auquel il est annexé. Il comporte 1 page. Le présent rapport ne concerne que les objets soumis à l'essai.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole * EUROFINS Analyses pour l'Environnement France - Site de Saverne

Created: 08/03/2023 Printed: 23/02/2024 10:25

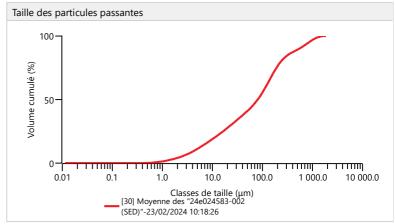
2302

Granulométrie laser à pas variable (prestation réalisée sur le site de SAVERNE).

NF EN ISO/IEC 17025:2005 COFRAC 1-1488 Méthode interne T-PS-WO22915

Réf. de l'echantillon: Opérateur Date Source Obscuration Moyenne des "24e024583-002 (SED)" FPEP 23/02/2024 10:18:26 Averaged 19.61


Données Statistiques


Moyenne(μm) Médiane(μm) Variance(μm²) Ecart Type (μm) Ratio: Moyenne/Médiane(μm) Mode(μm) Specific surface(m²/g)

178.51 80.36 73678.84 271.44 2.22 136.9 514.12

Pourcentages relatifs										
0.02-2µm	2-20 µm	20-50 μm	50-200 μm	200-2000 μm	20-63µm	63-200µm				
4.11	23.62	13.31	35.22	23.75	17.24	31.29				

*Pourcentages cumulés en %									
0.02-2µm	0.02-20 μm	0.02-63 µm	0.02-200 μm	0.02-2000 μm					
4.11	27.72	44.97	76.25	100.00					

Pourcent	age relatif				
Taille (µm)	% Volume Dans	Taille (µm)	% Volume Dans	Taille (µm)	% Volume Dans
0.010	1.30	20.000	5.73	300.000	3.15
1.000	2.81	30.000	4.19	400.000	1.97
2.000	1.30	40.000	3.39	500.000	1.78
2.500	3.58	50.000	3.93	600.000	3.31
4.000	7.29	63.000	10.60	800.000	1.40
8.000	2.61	100.000	12.38	900.000	1.17
10.000	5.02	150.000	8.31	1000.000	2.79
15.000	0.84	200.000	4.98	1500.000	0.24
16.000	2.99	250.000	2.95	2000.000	

「aille (μm)	% Volume Passant	Taille (µm)	% Volume Passant	Taille (µm)	% Volume Passant
0.010	0.00	20.000	27.72	300.000	84.19
1.000	1.30	30.000	33.45	400.000	87.34
2.000	4.11	40.000	37.64	500.000	89.31
2.500	5.40	50.000	41.03	600.000	91.09
4.000	8.98	63.000	44.97	800.000	94.40
8.000	16.27	100.000	55.57	900.000	95.79
10.000	18.88	150.000	67.94	1000.000	96.97
15.000	23.90	200.000	76.25	1500.000	99.76
16.000	24.74	250.000	81.24	2000.000	100.00

Paramètres d'analyse

Type de l'Instrument Mastersizer3000

Nom du préparateur d'échantillons Hydro EV

Modèle de diffusion Mie

Vitesse d'agitateur atteinte 3500 rpm

Dispersant Eau 900 mL

Durée d'analyse : 2 x 30 secondes

L'alignement du laser est effectué avant chaque

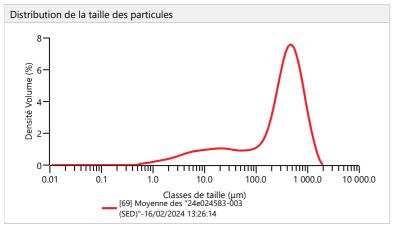
La reproduction de ce document n'est autorisée que sous sa forme intégrale, en complément du rapport d'analyse auquel il est annexé. Il comporte 1 page. Le présent rapport ne concerne que les objets soumis à l'essai.

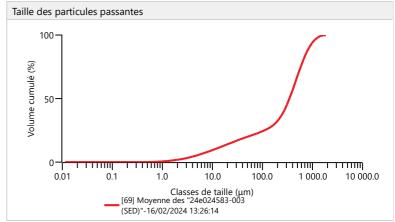
Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole * EUROFINS Analyses pour l'Environnement France - Site de Saverne

2302

Printed: 23/02/2024 10:20

Granulométrie laser à pas variable (prestation réalisée sur le site de SAVERNE)


NF EN ISO/IEC 17025:2005 COFRAC 1-1488 Méthode interne T-PS-WO22915


Réf. de l'echantillon: Opérateur Date Source Obscuration Moyenne des "24e024583-003 (SED)" FPEP 16/02/2024 13:26:14 Averaged 23:32

nées Sta	atistiques							
	Moyenne(µm)	Médiane(µm)	Variance(µm²)	Ecart Type (µm)	Ratio: Moyenne/Médiane(µm)	Mode(µm)	Specific surface(m²/g)	
	395	346	110781.16	332.84	1.14	468.83	246.02	

Pourcenta	Pourcentages relatifs									
0.02-2µm	2-20 µm	20-50 μm	50-200 μm	200-2000 μm	20-63µm	63-200µm				
1.87	12.12	5.92	12.48	67.60	7.31	11.10				

*Pourcentag	es cumulés er	ı %			
0.02-2µm	0.02-20 μm	0.02-63 µm	0.02-200 μm	0.02-2000 μm	
1.87	14.00	21.30	32.40	100.00	

aille (µm)	% Volume Dans	Taille (µm)	% Volume Dans	Taille (µm)	% Volume Dans
0.010	0.54	20.000	2.75	300.000	12.56
1.000	1.33	30.000	1.83	400.000	11.05
2.000	0.63	40.000	1.35	500.000	8.75
2.500	1.79	50.000	1.38	600.000	11.48
4.000	3.76	63.000	2.96	800.000	3.57
8.000	1.36	100.000	3.64	900.000	2.62
10.000	2.63	150.000	4.50	1000.000	5.25
15.000	0.43	200.000	5.54	1500.000	0.59
16.000	1.52	250.000	6.20	2000.000	

Taille (µm)	% Volume Passant	Taille (µm)	% Volume Passant	Taille (µm)	% Volume Passant
0.010	0.00	20.000	14.00	300.000	44.14
1.000	0.54	30.000	16.74	400.000	56.70
2.000	1.87	40.000	18.58	500.000	67.75
2.500	2.50	50.000	19.92	600.000	76.49
4.000	4.29	63.000	21.30	800.000	87.97
8.000	8.05	100.000	24.26	900.000	91.55
10.000	9.41	150.000	27.90	1000.000	94.17
15.000	12.04	200.000	32.40	1500.000	99.41
16.000	12.47	250.000	37.94	2000.000	100.00

Paramètres d'analyse

Donn

Type de l'Instrument Mastersizer3000

Nom du préparateur d'échantillons Hydro EV

Modèle de diffusion Mie

Vitesse d'agitateur atteinte 3500 rpm

Dispersant Eau 900 mL

Durée d'analyse : 2 x 30 secondes

L'alignement du laser est effectué avant chaque

La reproduction de ce document n'est autorisée que sous sa forme intégrale, en complément du rapport d'analyse auquel il est annexé. Il comporte 1 page. Le présent rapport ne concerne que les objets soumis à l'essai.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole * EUROFINS Analyses pour l'Environnement France - Site de Saverne

1602

Granulométrie laser à pas variable (prestation réalisée sur le site de SAVERNE).

NF EN ISO/IEC 17025:2005 COFRAC 1-1488 Méthode interne T-PS-WO22915

Réf. de l'echantillon: Opérateur Moyenne des "24e024583-004 (SED)" FPEP

Date Source Obscuration

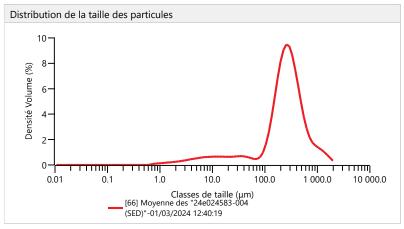
01/03/2024 12:40:19 Averaged 15.64

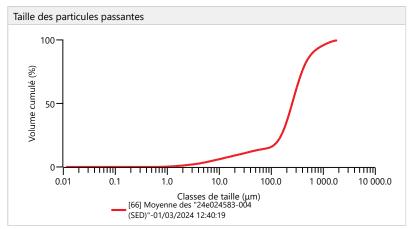
Données Statistiques

Moyenne(μm) Médiane(μm) Variance(μm²) Ecart Type (μm) Ratio: Moyenne/Médiane(μm) Mode(μm) Specific surface(m²/g)

319.77 252.55 86206.15 293.61 1.27 264.15 161.35

 Pourcentages relatifs


 0.02-2μm
 2-20 μm
 20-50 μm
 50-200 μm
 200-2000 μm
 20-63μm
 63-200μm


 1.11
 7.92
 3.95
 23.35
 63.56
 4.73
 22.57

*Pourcentages cumulés en %

0.02-2μm 0.02-20 μm 0.02-63 μm 0.02-200 μm

1.11 9.03 13.76 36.33 99.89

Taille (µm)	% Volume Dans	Taille (µm)	% Volume Dans	Taille (µm)	% Volume Dans
0.010	0.26	20.000	1.73	300.000	15.58
1.000	0.85	30.000	1.29	400.000	8.34
2.000	0.40	40.000	0.93	500.000	4.59
2.500	1.15	50.000	0.78	600.000	4.36
4.000	2.50	63.000	2.07	800.000	1.27
8.000	0.93	100.000	7.93	900.000	1.02
10.000	1.73	150.000	12.58	1000.000	3.02
15.000	0.27	200.000	13.04	1500.000	1.07
16.000	0.93	250.000	11.27	2000.000	

Pourcentage passant									
Taille (µm)	% Volume Passant	Taille (µm)	% Volume Passant	Taille (µm)	% Volume Passant				
0.010	0.00	20.000	9.03	300.000	60.64				
1.000	0.26	30.000	10.77	400.000	76.21				
2.000	1.11	40.000	12.05	500.000	84.56				
2.500	1.51	50.000	12.98	600.000	89.15				
4.000	2.66	63.000	13.76	800.000	93.51				
8.000	5.16	100.000	15.83	900.000	94.79				
10.000	6.09	150.000	23.75	1000.000	95.80				
15.000	7.83	200.000	36.33	1500.000	98.83				
16.000	8.10	250.000	49.37	2000.000	99.89				

Paramètres d'analyse

Type de l'Instrument Mastersizer3000

Nom du préparateur d'échantillons Hydro EV

Modèle de diffusion Mie

Vitesse d'agitateur atteinte 3500 rpm

Dispersant Eau 900 mL

Durée d'analyse : 2 x 30 secondes

L'alignement du laser est effectué avant chaque

mesure

0103_3000

La reproduction de ce document n'est autorisée que sous sa forme intégrale, en complément du rapport d'analyse auquel il est annexé. Il comporte 1 page. Le présent rapport ne concerne que les objets soumis à l'essai.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole * EUROFINS Analyses pour l'Environnement France - Site de Saverne

0103_3000