

METROPOLE EUROPEENNE DE LILLE

PROJET CONCORDE - BOULEVARD DE METZ - LILLE (59)

CARACTERISATION DE MATERIAUX

RAPPORT

Emetteur Phase / cat Réf Type Indice Statut
AFR DIA 10001 RPT A01

Emetteur Arcadis

Agence de Dunkerque

240 Rue de L'Albeck – CS 64204 59378 Dunkerque Cedex 1 Tél. : +33 (0)3 28 25 15 06 Fax : +33 (0)3 28 60 74 07

Réf affaire Emetteur 16-000536 NTW 9338608

Chef de Projet Arnaud GALLEZOT

Chargé de projet Raphaëlle MARCHAL

Nombre total de pages 30 + 10 annexes (114 pages)

Indice	Date	Objet de l'édition/révision	Etabli par	Vérifié par	Approuvé par
A01	28/07/2016	Première diffusion	Hélène HENNUYER	Raphaëlle MARCHAL	Arnaud GALLEZOT
			Sums	VI.	9

Il est de la responsabilité du destinataire de ce document de détruire l'édition périmée ou de l'annoter « Edition périmée ».

Document protégé, propriété exclusive d'Arcadis ESG.

Ne peut être utilisé ou communiqué à des tiers à des fins autres que l'objet de l'étude commandée.

TABLE DES MATIERES

1	INT	RODUCTION	9
	1.1	Général	9
	1.2	Objet et contexte de la mission	9
	1.3	Cadre normatif et méthodologique général	11
	1.4	Limites et exclusions	11
2	PR	ESTATIONS REALISEES	13
	2.1	Implantation et nivellement	13
	2.2	Sondages d'échantillonnage de sols	13
	2.3	Mesures, prélèvements et analyses des échantillons de sols	14
	2.4	Suivi des investigations	16
	2.5	Programme des analyses	16
3	RE	SULTATS	17
	3.1	Avant-propos	17
	3.2	Caractéristiques géologiques des terrains	17
	3.3	Caractérisation des sols suivant tests agronomiques	18
	3.4	Caractérisation de la pollution des sols	19
	3.4	.1 Observations organoleptiques et mesures des volatils	19
	3.4	.2 Analyses des échantillons de sols	19
4	SYI	NTHESE ET CONCLUSIONS	23
	4.1	Rappels : objectif de l'étude et consistance de la mission	23
	4.2	Caractéristiques géologiques des terrains	24
	4.3	Etat de pollution des sols	26
	4.3	.1 Observations organoleptiques	26
	4.3	.2 Comparaison des résultats par rapport aux seuils d'acceptation ISDI	26
	4.4	Commentaires et recommandations	28
	4.5	Risques transitoires	29

TABLE DES ANNEXES

Annexe 1	Plan de localisation (source : carte IGN de Lille – Roubaix - Tourcoing)	31
Annexe 2	Photographies aériennes (source : photothèque IGN Saint-Mandé et Google Earth)	33
Annexe 3	Photographies du site dans son état actuel	39
Annexe 4	Schéma d'implantation des sondages Arcadis	43
Annexe 5	Coordonnées des sondages (source : SARL DEBAY)	45
Annexe 6	Coupes lithologiques	47
Annexe 7	Tableaux de synthèse des observations organoleptiques	81
Annexe 8	Tableaux de synthèse des résultats des analyses en laboratoire sur échantillons de sols	88
Annexe 9	Bordereaux des résultats des analyses en laboratoire	93
Annexe 10	Bordereaux des résultats des analyses agronomiques en laboratoire	137

GLOSSAIRE

Pression

Dose de Référence

Ethyl Tertio Butyl Ether

DR:

ETBE:

AEP: Alimentation en Eau Potable MTBE: Méthyl Tertio Butyl Ether

ARR: Analyse des Risques Résiduels Arsenic (As), Cadmium (Cd), Chrome (Cr), Métaux : AEI: Alimentation en Eau Industrielle Cuivre (Cu), Mercure (Hg), Nickel (Ni),

ASPITET: Apports d'une Stratification Pédologique Plomb (Pb), Zinc (Zn)

pour l'Interprétation des Teneurs en **OEHHA** Office of Environmental Health Hazard

Eléments Traces Assessment (agence américaine)

QD:

TEF:

VTR:

Facteur d'équivalence toxicologique

Valeur Toxicologique de Référence

ATSDR: Agency for Toxic Substances and Disease OMS: Organisation Mondiale de la Santé

Registry (Agence américaine) PCB: PolyChloroBiphényls

BTEXN: Benzène, Toluène, Ethylbenzène, Xylènes, PEHD: PolyEthylène Haute Densité

Pz/PZ: Piézomètre Naphtalène

CNTP: PzR / PZR : Piézair Conditions Normales de Température et de

Quotient de Danger RDC:

Composés Organo-Halogénés Volatils COHV: Rez-de-chaussée

(solvants chlorés) RIVM: Rijksinstituut voor Volksgezondheit en

DJE: Dose Journalière d'Exposition Milieu (agence hollandaise)

EQRS: Evaluation Quantitative des Risques UPDS: Union des Professionnels de la Dépollution

Sanitaires des Sols

ERI: Excès de Risque Individuel US EPA: United States Environmental Protection

ERU: Excès de Risque Unitaire Agency

HAP: ZNIEFF: Zone Naturel d'intérêt Ecologique,

Hydrocarbures Aromatiques Polycycliques

HC: Composés constitués d'atomes de carbone Faunistique et Floristique

et d'hydrogène uniquement. Ce terme est donc utilisé pour désigner les hydrocarbures

dits « pétroliers », autrement dit les

hydrocarbures aromatiques et aliphatiques.

HCSP: Haut Conseil de la Santé Publique

INERIS: Institut National de l'EnviRonnement

Industriel et des riSques

ISD: Installation de Stockage des Déchets

(I: Inertes, ND: Non dangereux,

D: Dangereux)

LQ: Limite de Quantification

N°Archivage: 7825

RESUME NON TECHNIQUE

La METROPOLE EUROPEENNE DE LILLE (MEL) a confié à Arcadis la réalisation d'une campagne de prélèvements et d'analyses d'échantillons de sols au droit du quartier d'habitation localisé Faubourg de Béthune et bordé par le boulevard de Metz, l'avenue Beethoven et l'autoroute A25, sur la commune de Lille (59).

La zone d'étude est un quartier abritant des immeubles d'habitation collective, des espaces verts et équipements annexes ainsi qu'une imposante butte de matériaux localisée en bordure sud.

Selon la **MEL**, ce quartier pourrait faire l'objet d'un projet d'aménagement dont la teneur n'est à ce jour pas connue.

Dans ce contexte et préalablement à tout aménagement de ce site, la **MEL** a souhaité faire réaliser une campagne d'investigations dans le but de caractériser la qualité chimique des remblais sur l'ensemble du quartier, ainsi que des matériaux constitutifs de la butte présente en bordure sud des terrains. La **MEL** a également souhaité une caractérisation d'un point de vue agronomique des cinquante premiers centimètres de sol au droit de la butte présente en bordure sud.

Cette mission confiée à Arcadis a été menée en juin 2016.

1. Campagne d'investigations de terrain de juin 2016

La caractérisation de la qualité des sols a comporté la réalisation de sondages répartis suivant un maillage systématique de façon à couvrir les terrains dans leur intégralité :

- vingt-et-un sondages (notés SC1 à SC21) d'une profondeur de 2 m répartis au droit des zones
 « basses » du quartier suivant un maillage systématique d'un sondage pour environ 8 000 m²;
- quatre sondages (notés T1 à T4) d'une profondeur de 5 m répartis au droit de la plate-forme surélevée en partie est / sud-est du quartier suivant un maillage systématique d'un sondage pour environ 1 800 m²;
- huit sondages (notés S1 à S8) d'une profondeur de 10 m répartis au droit de la partie sommitale de la butte en bordure sud selon un maillage systématique d'un sondage par section de longueur unitaire d'environ 80 ml

Les observations réalisées lors des investigations mettent en évidence la lithologie suivante :

- au droit du quartier d'habitation (sondages SC1 à SC21) :
 - sous une couche de terre végétale limoneuse ou plus rarement de schiste rouge tout-venant, de remblais rencontrés sur des épaisseurs variables : faibles à moyennes en SC1, SC4, SC5, SC7, SC9 à SC11, SC16, SC19 et SC21 (de 0.6 à 1.3 m de profondeur) à élevées (plus de 2 m d'épaisseur au droit des autres sondages). Ces remblais sont représentés :
 - généralement, par un limon / limon sableux de teinte variable (beige, brunâtre, grisâtre ou noirâtre) plus ou moins chargé en cailloutis, petits débris de briques, morceaux de craie, rares scories / mâchefers et déchets (petits débris de verre [SC8], de porcelaine [SC13] et de plastique [SC19]);
 - s'intercalant entre les horizons de limons et sur de faibles épaisseurs, des couches de craie altérée et de limon crayeux grisâtre;
 - puis le terrain naturel, rencontré uniquement sur dix des vingt-et-un sondages réalisés. Il est représenté par un limon beige, surplombant une craie altérée blanchâtre en SC10, et dont les bases respectives n'ont pas été atteintes vers 2 m de profondeur (profondeur maximale de foration des sondages SC1 à SC21);

AFR-DIA-10001-RPT-A01 du 28/07/2016 Réf Aff. Arcadis : 16-000536 16-000536-DIA-10001-RPT-A01

- au droit de la plate-forme surélevée au sud-est (sondages T1 à T4) :
 - sous une couche de terre végétale limoneuse ou de schiste rouge tout-venant, de remblais rencontrés sur des épaisseurs supérieures à 5 m. Ces remblais sont représentés :
 - en tête, par un limon / limon sableux de teinte variable (brunâtre, verdâtre, grisâtre ou noirâtre)
 plus ou moins chargé en cailloutis, morceaux de craie, petits débris de briques, schistes noirs et silex et rares déchets (verre en T1);
 - plus en profondeur (dès 0.2 m de profondeur en T1 et 0.8 m en T2, T3 et T4), des couches de limon beige accompagné de morceaux de craie alternant avec des horizons de craie altérée;
 - le terrain naturel n'a pas été atteint vers 5 m de profondeur (profondeur maximale de foration des sondages T1 à T4);
- au droit de la butte en bordure sud (sondages S1 à S8) :
 - de remblais rencontrés sur des épaisseurs très importantes (de 6.7 m à plus de 10 m en S6, S7 et S8). Ces remblais sont représentés :
 - en tête, par un limon brunâtre végétalisé plus ou moins chargé en débris de schistes noirs et plus rarement en débris de verre puis en S8 par une fine épaisseur de grave ternaire grisâtre ;
 - puis jusqu'à des profondeurs variables (faibles aux extrémités de la butte : 0.3 m en S7 et environ 1 m en S1, S2 et S6 ; plus importantes en partie centrale : environ 2 m en S3, S4 et S5) par un limon beige accompagné de morceaux de craie et rares scories / mâchefers ;
 - plus en profondeur, par des couches de limon de teinte variable (beige, brunâtre, grisâtre, verdâtre et noirâtre), plus ou moins chargé en morceaux de craie, débris de briques, cailloutis et scories / mâchefers, alternant ponctuellement avec des horizons de craie altérée et comportant localement des éléments divers : verre (S1, S2, S4 et S6), tissus (S2), porcelaine (S8) et ferraille (S8);
 - puis le terrain naturel, rencontré uniquement au droit des sondages S1 à S4 (moitié ouest de la butte). Il est représenté par une craie altérée blanchâtre atteinte vers 8.0 / 8.5 m de profondeur, pouvant être recouverte par une couche de limon beige (rencontré à 6.7 et 7.8 m en S3 et S4), et dont la base n'a pas été atteinte vers 10 m de profondeur (profondeur maximale de foration).

Lors de notre intervention, aucune venue d'eau n'a été constatée au droit de l'ensemble des sondages.

Quarante-et-un échantillons composites de sols (MOY S1-A à MOY S8-A, MOY S1-B à MOY S8-B, MOY T1 à MOY T4, MOY SC1 à MOY SC21) ont été constitués et envoyés en laboratoire extérieur pour analyses suivant tests d'acceptation des matériaux en installation de stockage de déchets inertes (conforme à l'arrêté du 12 décembre 2014 relatif aux installations de stockage de déchets inertes). Ces échantillons sont représentatifs globalement des tranches de remblais :

- 0 1 à 2 m de profondeur sur les sondages SC1 à SC21 réalisés dans les zones « basses » ;
- 0 5 m de profondeur sur les sondages T1 à T4 réalisés sur la plate-forme surélevée est ;
- 0 5 m puis 5-10 m de profondeur maximum sur les sondages réalisés au droit de la butte sud.

Quatre échantillons moyens de sols (MOY S1, MOY S3, MOY S5 et MOY S7), représentatifs de la tranche de sol 0.0 – 0.5 m au droit des sondages S1, S3, S5 et S7, ont également été constitués et envoyés en laboratoire pour analyses suivant tests agronomiques.

2. Résultats sur les sols - Comparaison par rapport aux seuils d'acceptation ISDI

<u>Un seul sondage (sondage S5) sur les trente-trois réalisés</u> a mis en évidence des odeurs d'hydrocarbures entre 5.8 et 6.5 m de profondeur (odeurs toutefois faiblement corroborées par les mesures de volatils n'atteignant qu'au maximum 2 ppm).

Les tests d'acceptation en ISDI réalisés ont mis en évidence que les remblais présents dans les secteurs suivants devront faire l'objet d'une évacuation en filière spécifique du fait des dépassements des critères d'acceptation de l'arrêté ministériel du 12/12/14:

au droit de la butte :

- 7 échantillons sur 16 analysés principalement du fait de la présence d'antimoine et de plomb sur lixiviat;
- dont notamment l'échantillon MOY S5-B, représentatif de la tranche 5.0 6.5 m de profondeur en S5, du fait de la présence d'hydrocarbures [C10-C40] sur brut;
- au droit des parties « basses » : 5 échantillons sur 25 analysés principalement du fait de la présence sur lixiviat de plomb, fluorures, sulfates et fraction soluble.

En conséquence, les tests d'acceptation en ISDI (Installation de Stockage de Déchets Inertes), réalisés suivant l'Arrêté du 12 décembre 2014 sur quarante-et-un échantillons composites représentatifs globalement des tranches de sols 0.0 - 1 à 2 m de profondeur pour les sondages SC1 à SC21, 0.0 - 5 m pour T1 à T4 et S1 à S8, et également 5– 10 m maximum pour les sondages S1 à S8 ont montré que si ces matériaux devaient être évacués hors site, ils pourraient être éliminés dans plusieurs filières extérieures détaillées dans le tableau joint en page 27.

3. Conclusion et recommandations

La présence d'un bruit de fond significatif en métaux lourds a été relevée dans les sols au droit de la quasi-totalité de la zone d'étude et très ponctuellement d'hydrocarbures [C10-C40] en profondeur au droit du sondage S5 (butte).

Selon la **MEL**, notre zone d'étude pourrait faire l'objet d'un projet d'aménagement dont la teneur n'est à ce jour pas connu.

En cas de terrassement, les filières d'élimination envisageables sont précisées en page 27.

En conséquence et en cas d'usage sensible (habitat, jardin potagers...), et pour assurer une parfaite gestion des contraintes afférentes aux futurs projets de réaménagement du site conformément à la circulaire du 08 février 2007, nous recommandons d'engager sur la base d'un projet avancé, des études complémentaires au droit des terrains.

Ainsi, dans un premier temps, des **sondages complémentaires** de caractérisation de la qualité des sols pourront être réalisés sur la base des schémas conceptuels associés aux aménagements respectifs de la zone d'étude.

Au regard des résultats, il pourra ensuite être envisagé de réaliser un ou plusieurs Plans de Gestion du site en phase avec les contraintes des projets à mener (aménagements possibles, mesures de dépollution envisageables, choix et adaptation des usages selon les coûts et les avantages...).

1 INTRODUCTION

1.1 Général

La METROPOLE EUROPEENNE DE LILLE (MEL) a confié à Arcadis la réalisation d'une campagne de prélèvements et d'analyses d'échantillons de sols au droit du quartier d'habitation localisé Faubourg de Béthune et bordé par le boulevard de Metz, l'avenue Beethoven et l'autoroute A25, sur la commune de Lille (59).

Le présent rapport rend compte et synthétise les données recueillies au cours de la campagne d'investigations de terrain par sondages, prélèvements d'échantillons de sols et analyses.

1.2 Objet et contexte de la mission

Les terrains objet de l'étude sont repérés sur la Commune de Lille (59) entre le boulevard de Metz, l'avenue Beethoven et l'autoroute A25 (cf. extrait de carte IGN joint en annexe 1).

La majeure partie de notre zone d'étude abrite un quartier d'habitation constitué d'immeubles collectifs des années 1950, d'espaces verts et d'aménagements annexes de type voirie, groupe scolaire et commerces (des photographies de la zone d'étude sont jointes en annexe 3).

La bordure sud du site a quant à elle été réaménagée dans les années 1970 ; elle se compose d'une butte imposante de matériaux d'une hauteur d'environ 7/8 m et d'une longueur de 700 m. Selon l'examen d'anciennes photographies aériennes (jointes en annexe 2), cette butte pourrait résulter du stockage de sous-produits du chantier de création de l'autoroute A25.

Selon la **MEL**, notre zone d'étude pourrait faire l'objet d'un projet d'aménagement dont la teneur n'est à ce jour pas connue.

Dans ce contexte et préalablement à tout aménagement de ce site, la **MEL** a souhaité faire réaliser une campagne d'investigations visant à caractériser la qualité chimique des remblais présents sur l'ensemble du quartier, ainsi que des matériaux constitutifs de la butte présente en bordure sud des terrains. La **MEL** a également souhaité une caractérisation d'un point de vue agronomique des cinquante premiers centimètres de sol au droit de la butte en bordure sud.

Au regard de l'absence de données connues afférentes à des antériorités industrielles, aucune étude historique et environnementale n'a été demandée par la **MEL** qui a souhaité une caractérisation des sols suivant un maillage systématique. La présente étude a donc été menée pour déterminer la nature et la qualité chimique des matériaux au droit du périmètre d'étude. Cette étude ne constitue donc pas un diagnostic environnemental au sens de la circulaire du 08 février 2007 du Ministère de l'Environnement (aujourd'hui MEDDE).

Le programme des investigations de terrain demandé est le suivant :

- réalisation de trente-trois sondages implantés de la manière suivante :
 - vingt-et-un sondages (notés SC1 à SC21) d'une profondeur de 2 m répartis au droit des zones « basses » du quartier suivant un maillage systématique d'un sondage pour environ 8 000 m²;
 - quatre sondages (notés T1 à T4) d'une profondeur de 5 m répartis au droit de la plateforme surélevée en partie est / sud-est du quartier suivant un maillage systématique d'un sondage pour environ 1 800 m²;
 - huit sondages (notés S1 à S8) d'une profondeur de 10 m répartis au droit de la partie sommitale de la butte en bordure sud selon un maillage systématique d'un sondage par section de longueur unitaire d'environ 80 ml;
- prélèvements ponctuels d'échantillons de sols au droit de ces trente-trois sondages ;
- constitution d'échantillons composites (moyens) par quartage à partir des échantillons unitaires prélevés, à raison globalement par sondage :
 - d'un échantillon moyen pour les sondages SC1 à SC21 (tranche de remblais 0-1 à 2 m) et T1 à T4 (tranche de remblais 0-5 m);
 - de deux échantillons moyens pour les sondages S1 à S8 (tranches de remblais 0-5 m et 5-10 m maximum);
- caractérisation chimique en laboratoire des quarante-et-un échantillons moyens ainsi constitués (un à deux par sondage), suivant tests d'acceptation des matériaux en installation de stockage de déchets industriels inertes (conforme à l'arrêté du 12 décembre 2014 relatif aux installations de stockage de déchets inertes) avec dosage :
 - sur brut : matières sèches, COT, HAP, BTEX, PCB, hydrocarbures [C10-C40];
 - en sus sur brut : métaux lourds (As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, Zn) et
 COHV ;
 - essai de lixiviation normalisé X30402-2 (24 heures);
 - sur éluât : pH, conductivité, métaux lourds (As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, Zn), fluorures, chlorures, sulfates, indice phénols, COT, fraction soluble;
- constitution de quatre échantillons composites (moyen) par quartage à partir des échantillons de remblais unitaires prélevés dans la tranche de sol 0.0 – 0.5 m au droit de la butte (sondages S1, S3, S5 et S7) pour envoi en laboratoire et caractérisation suivant des tests agronomiques, avec dosage des paramètres suivants :
 - pH (eau);
 - carbone organique;
 - matières organiques ;
 - rapport C/N;
 - phosphore;
 - sodium échangeable, calcium échangeable, magnésium échangeable, potassium échangeable et aluminium échangeable;
 - argile, limons fins, limons grossiers, sables fins et sables grossiers;
 - calcaire total ;
 - azote Dumas,
 - CEC (Capacité d'Echange Cationique);
 - manganèse extractible EDTA;
 - fer extractible EDTA.

1.3 Cadre normatif et méthodologique général

Notre étude a été réalisée conformément aux prescriptions et méthodologies décrites dans :

- les circulaires du 8 février 2007 de la Ministre de l'Ecologie concernant les modalités de gestion et de réaménagement des sites pollués;
- le guide "Diagnostic de site" version 0 du 08/02/07 du Ministère de l'Ecologie, du Développement Durable et de l'Energie (actuellement MEDDE);
- la norme NF X 31-620-2 intitulée "Prestations de services relatives aux sites et sols pollués (études, ingénierie, réhabilitation de sites pollués et travaux de dépollution)", publiée par l'AFNOR en juin 2011. Les prestations à réaliser correspondent en tout ou partie à :
 - la prestation globale référencée CPIS (Conception de programmes d'investigations ou de surveillance – Réalisation du programme – Interprétation des résultats);
 - à la prestation élémentaire référencée A200 (Prélèvements, mesures, observations et/ou analyses sur les sols);
 - Rédaction d'un rapport d'audit environnemental;
- les normes suivantes relatives aux protocoles et techniques d'échantillonnage :
 - NF ISO 10381-1: Qualité du sol Échantillonnage Partie 1: Lignes directrices pour l'établissement des programmes d'échantillonnage;
 - NF ISO 10381-3: Qualité du sol Échantillonnage Partie 2: Techniques d'échantillonnage.

1.4 Limites et exclusions

Le périmètre de la présente étude concerne les pollutions chimiques des sols. Il ne traite pas des pollutions par des substances radioactives, par des agents pathogènes, par l'amiante ou par des engins pyrotechniques.

Il ne concerne également pas l'évaluation de la conformité réglementaire et Hygiène/Sécurité.

De plus, les prestations réalisées ne concernent notamment pas à ce stade :

- la réalisation d'un plan du site et de ses abords ;
- la réalisation d'un schéma conceptuel ;
- la réalisation d'investigation de terrain hors site ;
- la réalisation d'une étude de risque sanitaire (EQRS, Analyse des Risques Résiduels)
 et/ou d'un plan de gestion;
- l'estimation des volumes de matériaux pollués et des coûts de réhabilitation ;
- la recherche de filières de gestion ou la fourniture de certificats d'acceptation préalable des produits et matériaux, y compris les sols, diagnostiqués comme étant pollués.

Par ailleurs, précisons que des investigations de caractérisation environnementale sont conditionnées par de nombreux facteurs, et notamment :

- pertinence et fiabilité des données existantes ;
- accessibilité et configuration de certaines installations potentiellement polluantes à reconnaître (anciens réservoirs de stockage enterrés par exemple);
- occupation du sol ne permettant pas d'atteindre des installations ou des zones à investiguer situées, par exemple, sous des bâtiments ou à proximité de réseaux enterrés ou à proximité de voiries publiques;
- hétérogénéité naturelle et/ou anthropique du milieu souterrain ;
- représentativité des échantillonnages effectués, fonction dans certains cas des conditions météorologiques;
- représentativité des analyses effectuées en laboratoire (représentativité de la prise élémentaire pour analyse par rapport à l'échantillon prélevé).

En conséquence, un constat basé sur des prélèvements ponctuels (discrétisation) ne peut raisonnablement pas prétendre à une détermination exhaustive des caractéristiques du sous-sol et de son encombrement, et ne permet donc pas d'évaluer précisément d'éventuels volumes de sols contaminés.

De plus, un diagnostic environnemental ne permet pas, hors éventuelles pollutions concentrées et circonscrites à des zones limitées dont la priorité est la suppression, de statuer sur la nécessité d'entreprendre des actions de réhabilitation. En effet, il n'existe pas en France, de valeur limite définissant des seuils de pollution pour envisager une réhabilitation de site. Ceux-ci sont étudiés au cas par cas sur la base de calcul de risques sanitaires et/ou d'un plan de gestion (non prévue dans la présente étude).

Le diagnostic environnemental permet d'orienter les éventuelles actions à mettre en œuvre (diagnostic complémentaire, monitoring, plan de gestion, etc.) sur la base d'un schéma conceptuel et de l'analyse qualitative des enjeux sanitaires associée.

AFR-DIA-10001-RPT-A01 du 28/07/2016 Réf Aff. Arcadis : 16-000536 16-000536-DIA-10001-RPT-A01

2 PRESTATIONS REALISEES

2.1 Implantation et nivellement

En l'absence d'informations précises quant à la nature et à la localisation des différents matériaux stockés sur l'ensemble du site et au niveau de la butte en bordure sud, le choix du positionnement des sondages a été déterminé suivant un maillage systématique.

Au total, ont été réalisés :

- vingt-et-un sondages (notés SC1 à SC21) répartis au droit du quartier d'habitation (espaces verts) suivant un maillage systématique d'environ 8 000 m²;
- quatre sondages (notés T1 à T4) répartis au droit de la partie surélevée sud / sud-est suivant un maillage systématique d'environ 1 800 m²;
- huit sondages (notés S1 à S8) répartis sur la butte en bordure sud suivant un maillage systématique par section de 80 ml.

En l'absence de repère topographique sur le site, l'implantation a été réalisée préalablement à notre intervention par un géomètre.

Le schéma de l'implantation définitive des sondages est fourni en annexe 4.

Les coordonnées en X et Y des trente-trois sondages implantés par le géomètre sont jointes en annexe 5.

2.2 Sondages d'échantillonnage de sols

La campagne d'investigation a été menée du 13 au 16 juin 2016.

Elle a comporté la réalisation de trente-trois sondages d'échantillonnage de sols (notés SC1 à SC21, S1 à S8 et T1 à T4) exécutés au moyen :

- d'une sondeuse mécanique de type APAFOR montée sur chenilles et équipée d'une tarière hélicoïdale rotative de diamètre 100 mm (dix-sept sondages notés SC1 à SC4, SC6, SC7, SC9, SC10, SC12 et SC14 à SC21);
- d'une sondeuse mécanique de type FRASTE PL montée sur chenilles et équipée d'une tarière hélicoïdale rotative de diamètre 100 mm (seize sondages notés S1 à S8, T1 à T4, SC5, SC8, SC11 et SC13).

La profondeur atteinte est :

- d'environ 2 m de profondeur au droit des sondages SC1 à SC21 ;
- d'environ 5 m de profondeur au droit des sondages T1 à T4;
- d'environ 6 m au droit du sondage S5 (refus) ;
- d'environ 10 m au droit des sondages S1 à S4 et S6 à S8.

Ces sondages ont permis:

- le levé de la coupe géologique ;
- le prélèvement d'échantillons de sols à l'avancement des forations sur la tarière de la sondeuse, dont un certain nombre a été envoyé en laboratoire pour analyses.

Un nettoyage systématique entre chaque sondage des outils de prélèvements a été réalisé de façon à éviter les contaminations croisées (lavage des trains de tige préalablement à notre intervention sur site).

Les trente-trois sondages ont été rebouchés à l'issue de leur réalisation avec les cuttings de forage et un coulis de béton en tête.

2.3 Mesures, prélèvements et analyses des échantillons de sols

Des échantillons de sols ont été prélevés à l'avancement lors de la réalisation des trente-trois sondages de reconnaissance des sols. La fréquence d'échantillonnage a été adaptée en fonction, soit des changements de faciès, soit des observations organoleptiques.

Chaque échantillon a été immédiatement décrit (géologie, indices organoleptiques...) dès son prélèvement, puis conditionné rapidement dans des bocaux en verre hermétiquement bouchés mis à l'abri de l'air et de la lumière et isolés thermiquement.

Le nombre total d'échantillons de sols ainsi prélevés s'élève à trois-cent-quatre-vingt-huit (388).

Des mesures des teneurs en composés organiques volatils ont été réalisées au moyen d'un détecteur à photo-ionisation de type PID sur chacun de ces échantillons.

Quarante-et-un (41) échantillons composites ont été confectionnés par quartage et envoyés en laboratoire extérieur pour analyses. Ces échantillons ont été confectionnés à partir d'échantillons ponctuels prélevés globalement au sein des remblais de la tranche 0.0-1 à 2 m pour les sondages SC1 à SC21, de la tranche 0.0-5.0 m pour les sondages T1 à T4 et S1 à S8 puis de la tranche 5.0-10 m de profondeur maximum au droit des sondages S1 à S8 :

sondage	échantillon moyen	profondeur (m)		
S1	MOYS1A	0.0 / 0.2 / 0.5 / 0.7 / 1.0 / 1.5 / 2.0 / 2.5 / 3.0 / 3.5 / 4.0 / 4.5 / 5.0		
01	M OY S1B	5.5 / 6.0 / 6.5 / 7.0 / 7.5 / 8.0		
S2	M OY S2-A	0.0 / 0.2 / 0.5 / 0.7 / 1.0 / 1.5 / 2.0 / 2.5 / 3.0 / 3.5 / 4.0 / 4.5 / 5.0		
32	M OY S2-B	5.5 / 6.0 / 6.5 / 7.0 / 7.5 / 8.0		
S3	M OY S3-A	0.0 / 0.2 / 0.5 / 0.7 / 1.0 / 1.5 / 2.0 / 2.3 / 2.5 / 3.0 / 3.5 / 4.0		
33	M OY S3-B	4.0 / 4.5 / 5.0 / 5.5 / 6.0 / 6.5		
S4	M OY S4-A	9.9 / 0.2 / 0.5 / 0.7 / 1.0 / 1.5 / 2.9 / 2.5 / 3.0 / 3.5 / 4.0 / 4.5 //5.0		
54	M OY S4-B	5.5 / 6.0 / 6.5 / 7.0 / 7.5		
S5	M OY S5-A	0.0 / 0.2 / 0.5 / 0.7 / 1.0 / 1.5 / 2.0 / 2.5 / 3.0 / 3.5 / 4.0 / 4.5 / 5.0		
33	M OY S5-B	5.5 / 6.0 / 6.5		
S6	M OY S6-A	0.0 / 0.2 // 0.3 5// 0.5 7//01 <i>D</i> // 1105// 1250/ 2:20.5 2:3.0 3.9.5 3.4.0 4.04/54.5		
	M OY S6-B	5.0 / 5.5 / 6.0 / 6.5 / 7.0 / 7.5 // 80 / 8.5 / 9.0 / 9.5 / 10		
S7	M OY S7-A	0.0 / 0.2 / 0.3 // 0. 5 // 01.0 // 11.5 // 1250 /2205 23.0 3 3 5 3 5 4.04 .9 .54/.5 /05.0		
	M OY S7-B	5.5 / 6.0 / 6.5 / 7.0 / 7.5 / 8.0 / 8.5 / 9.0 / 9.5 / 10		
S8	M OY S8-A	0.0 / 0.2 // 0.5 // 0.5 // 0.10 // 1.15 // 1250 /2205 2:350 3:35 3:5.04.04.04.54.15 // 05.0		
	M OY S8-B	5.5 / 6.0 / 6.5 / 7.0 / 7.5 / 8.0 / 8.5 / 9.0 / 9.5 / 10		

sondage	échantillo n mo yen	profondeur (m)		
T1	MOYT1	0.0/0.1/0.2/0.5/0.7/10/15/2.0/2.5/3.0/3.5/4.0/4.5/5.0		
T2	MOYT2	0.0 / 0.1 / 0.2 / 0.5 / 0.7 / 10 / 15 / 2.0 / 2.5 / 3.0 / 3.5 / 4.0 / 4.5		
Т3	MOYT3	0.0/0.2/0.5/0.7/10/15/2.0/2.5/3.0/3.5/4.0/4.5/5.0		
T4	MOYT4	0.0/0.1/0.2/0.3/0.5/0.7/10/1.5/2.0/2.5/3.0/3.5/4.0/4.5/5.0		
SC1	MOYSC1	0.0 / 0.2 / 0.5 / 0.7 / 10		
SC2	MOY SC2	0.0/0.2/0.5/0.7/10/15/2.0		
SC3	MOYSC3	0.0/0.2/0.5/0.7/10/15/2.0		
SC4	MOYSC4	0.0/0.2/0.5		
SC5	MOYSC5	0.05/0.1/0.3/0.5/0.7/10		
SC6	MOYSC6	0.0/0.2/0.5/0.7/10/15/2.0		
SC7	MOYSC7	0.0/0.2/0.5/0.7		
SC8	MOYSC8	0.0/0.2/0.3/0.5/0.7/10/15/2.0		
SC9	MOYSC9	0.0/0.2/0.5/0.7/10		
SC 10	M OY SC 10	0.0/0.2/0.5/0.7/10		
SC 11	MOYSC11	0.0/0.1/0.3/0.5/0.7/10		
SC 12	M OY SC 12	0.0/0.3/0.5/0.7/10/15/2.0		
SC 13	M OY SC 13	0.1/ 0.3 / 0.5 / 0.7 / 10 / 15 / 2.0		
SC14	MOYSC14	0.0/0.3/0.5/0.7/10/15/2.0		
SC 15	M OY SC 15	0.0/0.2/0.5/0.7/10/15/2.0		
SC 16	M OY SC 16	0.0/0.3/0.5/0.7/10		
SC17	MOYSC17	0.0/0.2/0.5/0.7/10/15/2.0		
SC 18	M OY SC 18	0.0/0.2/0.5/0.7/10/15/2.0		
SC 19	M OY SC 19	0.0/0.2/0.5/0.7/10/15/2.0		
SC20	MOY SC20	0.0/0.2/0.5/0.7/10/15/2.0		
SC21	MOY SC21	0.0/0.2/0.5/0.7/10		

Quatre (4) échantillons composites ont également été confectionnés par quartage et envoyés en laboratoire extérieur pour la réalisation d'analyses agronomiques. Ces échantillons ont été confectionnés à partir d'échantillons ponctuels prélevés globalement au sein de la tranche de sol 0.0-0.5 m pour quatre des huit sondages réalisés au droit de la butte (sondages S1, S3, S5 et S7) :

sondage	échantillon moyen	profondeur (m)
S1	MOYS1	0.0 / 0.2 / 0.5
S3	MOYS3	0.0 / 0.2 / 0.5
S5	M OY S5	0.0 / 0.2 / 0.5
S7	MOYS7	0.0/0.2/0.3/0.5

2.4 Suivi des investigations

Les prélèvements ont été réalisés par un ingénieur **Arcadis** spécialiste de ce type de mission, dont le rôle était en particulier de :

- superviser l'atelier de sondage ;
- piloter la campagne en fonction des données recueillies à l'avancement ;
- décrire les terrains, réaliser les prélèvements d'échantillons et noter les observations organoleptiques;
- réaliser le conditionnement des échantillons prélevés ;
- effectuer les mesures des composés organiques volatils sur les échantillons de sols prélevés;
- veiller à la bonne application des consignes d'hygiène et de sécurité.

2.5 Programme des analyses

Le programme des analyses, établi conformément à la demande de la **MEL**, sur les 41 échantillons moyens représentatifs globalement de la tranche de remblais 0.0-1 à 2 m pour les sondages SC1 à SC21, 0.0-5.0 m pour les sondages T1 à T4 et S1 à S8 puis 5.0-10 m de profondeur maximum au droit des sondages S1 à S8, a été le suivant :

- caractérisation chimique en laboratoire suivant <u>tests d'acceptation des matériaux en</u> <u>installation de stockage de déchets industriels inertes</u> (conforme à l'arrêté du 12 décembre 2014 relatif aux installations de stockage de déchets inertes) avec dosage :
 - sur brut : matières sèches, COT, HAP, BTEX, PCB, hydrocarbures [C10-C40];
 - en sus sur le brut : 12 métaux lourds (As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, Zn), COHV;
 - essai de lixiviation normalisé X30402-2 (24 heures);
 - sur éluât : pH, conductivité, métaux lourds (As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, Zn), fluorures, chlorures, sulfates, indice phénols, COT, fraction soluble.

Le programme des analyses, établi conformément à la demande de la **MEL** sur les quatre échantillons moyens représentatifs globalement des tranches de sols 0.0 - 0.5 m de profondeur pour les sondages S1, S3, S5 et S7 a été le suivant :

caractérisation chimique en laboratoire suivant <u>tests agronomiques</u> avec dosage des paramètres suivants: pH (eau), carbone organique, matières organiques, rapport C/N, phosphore, sodium échangeable, argile, limons fins, limons grossiers, sables fins, sables grossiers, calcaire total, azote Dumas, CEC (Capacité d'Echange Cationique), calcium échangeable, magnésium échangeable, potassium échangeable, manganèse extractible, EDTA, fer extractible EDTA et aluminium échangeable.

3 RESULTATS

3.1 Avant-propos

L'étude effectuée donne une image de la situation existante à l'époque de l'intervention, et ce au droit des points de prélèvements, et ne préjuge pas de l'évolution ultérieure du site.

Dans les résultats donnés ci-après, certains paramètres sont variables dans le temps. Il s'agit notamment :

- des concentrations des différents polluants en rétention dans les sols ;
- des mesures des teneurs en composés organiques volatils.

3.2 Caractéristiques géologiques des terrains

Les sondages réalisés (notés SC1 à SC21, T1 à T4 et S1 à S8) ont mis en évidence la présence successivement de haut en bas :

- au droit du quartier d'habitation (sondages SC1 à SC21) :
 - sous une couche de terre végétale limoneuse ou plus rarement de schiste rouge toutvenant, de remblais rencontrés sur des épaisseurs variables : faibles à moyennes en SC1, SC4, SC5, SC7, SC9 à SC11, SC16, SC19 et SC21 (de 0.6 à 1.3 m de profondeur) à élevées (plus de 2 m d'épaisseur au droit des autres sondages). Ces remblais sont représentés :
 - généralement, par un limon / limon sableux de teinte variable (beige, brunâtre, grisâtre ou noirâtre) plus ou moins chargé en cailloutis, petits débris de briques, morceaux de craie, rares scories / mâchefers et déchets (petits débris de verre [SC8], de porcelaine [SC13] et de plastique [SC19]);
 - s'intercalant entre les horizons de limons et sur de faibles épaisseurs, des couches de craie altérée et de limon crayeux grisâtre;
 - puis le terrain naturel, rencontré uniquement sur dix des vingt-et-un sondages réalisés. Il
 est représenté par un limon beige, surplombant une craie altérée blanchâtre en SC10, et
 dont les bases respectives n'ont pas été atteintes vers 2 m de profondeur (profondeur
 maximale de foration des sondages SC1 à SC21);
- au droit de la plate-forme surélevée au sud-est (sondages T1 à T4) :
 - sous une couche de terre végétale limoneuse ou de schiste rouge tout-venant, de remblais rencontrés sur des épaisseurs supérieures à 5 m. Ces remblais sont représentés :
 - en tête, par un limon / limon sableux de teinte variable (brunâtre, verdâtre, grisâtre ou noirâtre) plus ou moins chargé en cailloutis, morceaux de craie, petits débris de briques, schistes noirs et silex et rares déchets (verre en T1);
 - plus en profondeur (dès 0.2 m de profondeur en T1 et 0.8 m en T2, T3 et T4), des couches de limon beige accompagné de morceaux de craie alternant avec des horizons de craie altérée ;
 - le terrain naturel n'a pas été atteint vers 5 m de profondeur (profondeur maximale de foration des sondages T1 à T4);

AFR-DIA-10001-RPT-A01 du 28/07/2016 Réf Aff. Arcadis : 16-000536 16-000536-DIA-10001-RPT-A01

- au droit de la butte en bordure sud (sondages S1 à S8) :
 - de remblais rencontrés sur des épaisseurs très importantes (de 6.7 m à plus de 10 m en \$6, \$7 et \$8). Ces remblais sont représentés :
 - en tête, par un limon brunâtre végétalisé plus ou moins chargé en débris de schistes noirs et plus rarement en débris de verre puis en S8 par une fine épaisseur de grave ternaire grisâtre;
 - puis jusqu'à des profondeurs variables (faibles aux extrémités de la butte : 0.3 m en S7 et environ 1 m en S1, S2 et S6 ; plus importantes en partie centrale : environ 2 m en S3, S4 et S5) par un limon beige accompagné de morceaux de craie et rares scories / mâchefers ;
 - plus en profondeur, par des couches de limon de teinte variable (beige, brunâtre, grisâtre, verdâtre et noirâtre), plus ou moins chargé en morceaux de craie, débris de briques, cailloutis et scories / mâchefers, alternant ponctuellement avec des horizons de craie altérée et comportant localement des éléments divers : verre (S1, S2, S4 et S6), tissus (S2), porcelaine (S8) et ferraille (S8);
 - puis le terrain naturel, rencontré uniquement au droit des sondages S1 à S4 (moitié ouest de la butte). Il est représenté par une craie altérée blanchâtre atteinte vers 8.0 / 8.5 m de profondeur, pouvant être recouverte par une couche de limon beige (rencontré à 6.7 et 7.8 m en S3 et S4), et dont la base n'a pas été atteinte vers 10 m de profondeur (profondeur maximale de foration).

Lors de notre intervention, aucune venue d'eau n'a été constatée.

Les coupes des sondages sont fournies en annexe 6.

3.3 Caractérisation des sols suivant tests agronomiques

Des analyses agronomiques ont été réalisées à la demande de la MEL.

Pour cela, quatre échantillons composites, représentatifs de la tranche 0.0 – 0.5 m au droit des sondages S1, S3, S5 et S7, ont été envoyés en laboratoire extérieur pour analyses

Les bordereaux de résultats des analyses agronomiques en laboratoire sont fournis en annexe 10.

3.4 Caractérisation de la pollution des sols

3.4.1 Observations organoleptiques et mesures des volatils

Les tableaux récapitulatifs des observations organoleptiques fournis en annexe 7 reprennent les observations effectuées sur les échantillons de sols.

Seule une légère odeur d'hydrocarbures a été relevée dans les remblais présents entre 5.8 et 6.5 m de profondeur en S5; cette odeur n'a été que peu corroborée par les mesures de composés organiques volatils qui mettent en évidence des mesures d'environ 2 ppm.

Le sondage SC1, pour lequel aucune odeur particulière n'a été relevée, a quant à lui mis en évidence des mesures de volatils pouvant atteindre 25 ppm.

3.4.2 Analyses des échantillons de sols

3.4.2.1 Avant-propos

Les résultats des analyses réalisées sur les échantillons de sols sont exprimés en mg/kg de matière sèche (ppm) pour l'ensemble des éléments et composés analysés. La matière sèche est exprimée en pourcentage par rapport à la matière brute.

Il n'existe pas, en France, de valeurs limites définissant des seuils de pollution pour envisager une réhabilitation du site. Ceux-ci sont calculés au cas par cas sur la base de calculs de Risques et des performances des technologies disponibles (dans le cadre du Plan de Gestion au sens des circulaires du MEDDE du 08/02/07).

Afin de pouvoir orienter les actions, les concentrations dans les échantillons de sols analysés sont donc comparées :

- entre elles ;
- pour les terres excavées à éliminer en centre, les valeurs seuils d'acceptation en installation de stockage de déchets inertes (ISDI), lorsqu'elles existent, présentées dans l'arrêté du 12 décembre 2014 relatif aux installations de stockage de déchets inertes.

Attention, ces seuils d'acceptation ne sont que des valeurs guides, utilisables dans le cadre de la gestion des déblais d'un site. Les installations de stockage pour matériaux inertes (ISDI) se réservent le droit de refuser des terres si ces dernières présentent des indices organoleptiques de pollution (odeur, couleur) ou un aspect jugé suspect et ce, même si les résultats d'analyses sont inférieurs aux seuils d'acceptation existant. Par exemple, la simple présence de mâchefer engendre généralement un refus auprès de ces centres, et ce, même si les composés métalliques présents ne sont pas lixiviables.

Les tableaux de synthèse des résultats sont présentés en annexe 8.

Les bordereaux des résultats des analyses en laboratoire sont intégralement fournis en annexe 9.

3.4.2.2 Comparaison suivant tests d'acceptation ISDI

Les quarante-et-un échantillons moyens (notés MOY S1-A à MOY S8-A, MOY S1-B à MOY S8-B, MOY T1 à MOY T4 et MOY SC1 à MOY SC21) constitués à partir des échantillons ponctuels de matériaux prélevés au sein des remblais respectivement présents au droit de chacun des trente-trois sondages ont été analysés.

◆Résultats des analyses sur brut :

Neuf des quarante-et-un échantillons analysés mettent en évidence un dépassement en **Carbone Organique Total** (COT - seuil admissible ISDI fixé à 30 000 ppm), avec les teneurs comprises entre 35 000 et 88 000 ppm (sondages concernés : S3 à S6, S8, SC14, SC15, SC19).

Toutefois, comme le précise l'Arrêté du 12 décembre 2014 - Annexe 2 « Une valeur limite plus élevée peut être admise, à condition que la valeur de 500 mg/kg de matière sèche soit respectée pour le COT sur éluât, soit au pH du sol, soit pour un pH situé entre 7.5 et 8.0 ». Ce qui est le cas pour les échantillons cités ci-dessus puisque sur ces échantillons les teneurs en COT sur éluât ne sont au maximum que de 100 mg/kg MS pour des pH globalement identiques à ceux mesurés sur le sol (seuil admissible ISDI fixé à 500 mg/kg MS).

On note également que l'échantillon moyen MOY S5-B (représentatif des remblais présents au droit du sondage S5 / tranche 5.0 – 6.5 m de profondeur) met en évidence un dépassement en hydrocarbures [C10-C40] (seuil admissible ISDI fixé à 500 ppm), avec une teneur de 2 010 ppm.

Les teneurs relevées pour les autres paramètres (HAP, BTEX et PCB) sont toutes inférieures aux seuils admissibles ISDI pour l'ensemble des échantillons analysés.

On notera également les valeurs remarquables suivantes, toutefois inférieures aux seuils admissibles en ISDI :

- en MOY S2-A (représentatif de la tranche de remblais 0.0 5.0 m de profondeur en S2)
 avec une teneur de 402 ppm en hydrocarbures [C10-C40] et de 0.069 ppm en benzène;
- en MOY S5-B (représentatif de la tranche de remblais 5.0 6.5 m de profondeur en S5)
 avec une teneur de 0.43 ppm en PCB (7 congénères).

◆ Résultats des tests de lixiviation :

Les essais de lixiviation ont été réalisés sur les quarante-et-un échantillons moyens notés MOY S1-A à MOY S8-A, MOY S1-B à MOY S8-B, MOY T1 à MOY T4 et MOY SC1 à MOY SC21.

Les vingt-neuf échantillons moyens MOY S2-A et B, MOY S4-A, MOY S5-A, MOY S6-A, MOY S7-A et B, MOY S8-A et B (colline), MOY T1 à MOY T4 (plate-forme surélevée est), MOY SC1, MOY SC3 à MOY SC9, MOY SC11, MOY SC13, MOY SC14, MOY SC16 à MOY SC20 (parties « basses ») n'ont mis en évidence aucune teneur supérieure aux seuils admissibles ISDI.

En revanche, les douze autres échantillons moyens ont mis en évidence des dépassements :

- en fraction soluble (seuil admissible ISDI fixé à 4 000 ppm) avec des teneurs de :
 - 4 200 ppm pour l'échantillon moyen MOY S1-B (représentatif des remblais présents au droit du sondage S1 / tranche 5.0 – 8.0 m);
 - 29 000 ppm pour l'échantillon moyen MOY SC2 (représentatif des remblais présents au droit du sondage SC2 / tranche 0.0 – 2.0 m);
 - 8 400 ppm pour les échantillons moyens MOY SC12 (représentatif des remblais présents au droit du sondage SC12 / tranche 0.0 2.0 m) et MOY SC15 (représentatif des remblais présents au droit du sondage SC15 / tranche 0.0 2.0 m);
 - 6 700 ppm pour l'échantillon moyen MOY SC21 (représentatif des remblais présents au droit du sondage SC21 / tranche 0.0 1.2 m);
- en sulfates (seuil admissible ISDI fixé à 1 000 ppm), avec une teneur de 5 000 ppm pour l'échantillon moyen MOY SC15 (représentatif des remblais présents au droit du sondage SC15 / tranche 0.0 – 2.0 m);
- en fluorures (seuil admissible ISDI fixé à 10 ppm), avec une teneur de 12 ppm pour l'échantillon moyen MOY SC10 (représentatif des remblais présents au droit du sondage SC10 / tranche 0.0 – 1.3 m);
- **en antimoine** (seuil admissible ISDI fixé à 0.06 ppm), avec des teneurs comprises entre 0.08 et 0.51 ppm pour les échantillons :
 - MOY S1-A et B (représentatif des remblais présents au droit du sondage S1 / tranche 0.0 – 8.0 m);
 - MOY S3-A et B (représentatif des remblais présents au droit du sondage S3 / tranche 0.0 – 6.7 m);
 - MOY S4-B (représentatif des remblais présents au droit du sondage S4 / tranche 5.0 – 7.5 m);
 - MOY S5-B (représentatif des remblais présents au droit du sondage S5 / tranche 5.0 – 6.5 m);
 - MOY S6-B (représentatif des remblais présents au droit du sondage S6 / tranche 4.5 – 10 m);

- en plomb (seuil admissible ISDI fixé à 0.5 ppm), avec des teneurs de :
 - 0.88 ppm en MOY S1-B (représentatif des remblais présents au droit du sondage S1 / tranche 5.0 – 8.0 m);
 - 1.5 ppm en MOY SC2 (représentatif des remblais présents au droit du sondage SC2 / tranche 0.0 – 2.0 m);
 - 3.6 ppm en SC12 (représentatif des remblais présents au droit du sondage SC12 / tranche 0.0 – 2.0 m);
 - 1.3 ppm en SC21 (représentatif des remblais présents au droit du sondage SC21 / tranche 0.0 – 1.2 m).

◆ Analyses des métaux lourds sur brut (en complément aux tests ISDI) :

On note principalement des dépassements significatifs du bruit de fond géochimique attendu en cuivre, mercure, plomb et/ou zinc au droit des échantillons moyens MOY S3-A et B, MOY S4-B, MOY S5-B, MOY S6-B, MOY S8-A et B (colline) avec des teneurs supérieures à très supérieures à la gamme ASPITET, et dans une moindre mesure en MOY SC10, MOY SC12 à SC15, MOY SC18 à SC20 (parties « basses »), avec en particulier :

- au droit de la butte :
 - en MOY S3-A (représentatif de la tranche 0.0 3.7 m en S3): 180 ppm en cuivre,
 0.36 ppm en mercure et 210 ppm en plomb;
 - en MOY S3-B (représentatif de la tranche 3.7 6.2 m en S3): 510 ppm en cuivre,
 0.64 ppm en mercure, 330 ppm en plomb et 510 ppm en zinc;
 - en MOY S4-B (représentatif de la tranche 5.0 − 7.5 m en S4): 1 000 ppm en cuivre,
 0.32 ppm en mercure, 560 ppm en plomb et 550 ppm en zinc;
 - en MOY S6-B (représentatif de la tranche 4.5 10 m en S6): 140 ppm en cuivre,
 0.88 ppm en mercure, 580 ppm en plomb et 490 ppm en zinc;
 - en MOY S8-A (représentatif de la tranche 0.0 5.0 m en S8): 420 ppm en plomb;
 - en MOY S8-B (représentatif de la tranche 5.0 10 m en S8): 150 ppm en cuivre,
 0.47 ppm en mercure et 230 ppm en plomb;
- dans le quartier d'habitation espaces verts :
 - en MOY SC20 (représentatif de la tranche 0.0 2.0 m en SC20): 720 ppm en plomb.

D'autres dépassements sont également relevés pour les autres sondages par rapport aux valeurs guides ASPITET, notamment en cadmium, cuivre, mercure, plomb et zinc mais ces concentrations restent toutefois globalement dans le même ordre de grandeur que la gamme ASPITET, et donc non significatives.

◆Analyses des COHV (Composés Organo-Halogénés Volatils) sur brut (en complément aux tests ISDI) :

La présence de COHV a été recherchée sur les quarante-et-un échantillons moyens notés MOY S1-A à MOY S8-A, MOY S1-B à MOY S8-B, MOY T1 à MOY T4 et MOY SC1 à MOY SC21.

Toutes les teneurs en COHV sont inférieures aux limites de quantification respectives.

4 SYNTHESE ET CONCLUSIONS

4.1 Rappels : objectif de l'étude et consistance de la mission

La **METROPOLE EUROPEENNE DE LILLE (MEL)** a confié à **Arcadis** la réalisation d'une campagne de prélèvements et d'analyses d'échantillons de sols au droit du quartier d'habitation localisé Faubourg de Béthune et bordé par le boulevard de Metz, l'avenue Beethoven et l'autoroute A25 à Lille (59).

La majeure partie de la zone d'étude abrite un quartier d'habitation constitué d'immeubles collectifs des années 1950, d'espaces verts et d'aménagements annexes de type voirie, groupe scolaire et commerces.

La bordure sud du site a quant à elle été réaménagée dans les années 1970 en butte imposante d'une hauteur d'environ 7/8 m et d'une longueur de 700 m. Selon l'examen d'anciennes photographies aériennes, cette butte pourrait résulter de l'apport de sous-produits du chantier de création de l'autoroute A25.

Selon la **MEL**, notre zone d'étude pourrait faire l'objet d'un projet d'aménagement dont la teneur n'est à ce jour pas connue.

Dans ce contexte et préalablement à tout aménagement de ce site, la **MEL** a souhaité faire réaliser une campagne d'investigations dans le but de caractériser la qualité chimique des remblais sur l'ensemble du quartier ainsi que des matériaux constitutifs de la butte présente en bordure sud des terrains. La **MEL** a également souhaité une caractérisation d'un point de vue agronomique des cinquante premiers centimètres de sol au droit de la butte en bordure sud.

Au regard de l'absence de données connues afférentes à des antériorités industrielles, aucune étude historique et environnementale n'a été demandée par la **MEL** qui a souhaité une caractérisation des sols suivant un maillage systématique. La présente étude a donc été menée pour déterminer la nature et la qualité chimique des matériaux au droit du périmètre d'étude. Cette étude ne constitue donc pas un diagnostic environnemental au sens de la circulaire du 08 février 2007 du Ministère de l'Environnement (aujourd'hui MEDDE).

Le programme des investigations de terrain demandé est le suivant :

- réalisation de trente-trois sondages implantés de la manière suivante :
 - vingt-et-un sondages (notés SC1 à SC21) d'une profondeur de 2 m répartis au droit des zones « basses » du quartier suivant un maillage systématique d'un sondage pour environ 8 000 m²;
 - quatre sondages (notés T1 à T4) d'une profondeur de 5 m répartis au droit de la plateforme surélevée en partie est / sud-est du quartier suivant un maillage systématique d'un sondage pour environ 1 800 m²;
 - huit sondages (notés S1 à S8) d'une profondeur de 10 m répartis au droit de la partie sommitale de la butte en bordure sud selon un maillage systématique d'un sondage par section de longueur unitaire d'environ 80 ml;
- prélèvements ponctuels d'échantillons de sols au droit de ces trente-trois sondages;

- constitution d'échantillons composites (moyens) par quartage à partir des échantillons unitaires prélevés, à raison globalement par sondage :
 - d'un échantillon moyen pour les sondages SC1 à SC21 (tranche de remblais 0-1 à 2 m) et T1 à T4 (tranche de remblais 0-5 m);
 - de deux échantillons moyens pour les sondages S1 à S8 (tranches de remblais 0-5 m et 5-10 m maximum);
- caractérisation chimique en laboratoire des quarante-et-un échantillons moyens ainsi constitués (un à deux par sondage), suivant tests d'acceptation des matériaux en installation de stockage de déchets industriels inertes (conforme à l'arrêté du 12 décembre 2014 relatif aux installations de stockage de déchets inertes) avec dosage :
 - sur brut : matières sèches, COT, HAP, BTEX, PCB, hydrocarbures [C10-C40];
 - en sus sur brut : métaux lourds (As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, Zn) et COHV;
 - essai de lixiviation normalisé X30402-2 (24 heures);
 - sur éluât : pH, conductivité, métaux lourds (As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, Zn), fluorures, chlorures, sulfates, indice phénols, COT, fraction soluble;
- constitution de quatre échantillons composites (moyen) par quartage à partir des échantillons de remblais unitaires prélevés dans la tranche de sol 0.0 – 0.5 m au droit de la butte (sondages S1, S3, S5 et S7) pour envoi en laboratoire et caractérisation suivant des tests agronomiques.

Le présent rapport rend compte et synthétise les données recueillies au cours de la campagne d'investigations de terrain par sondages, prélèvements d'échantillons de sols et analyses.

4.2 Caractéristiques géologiques des terrains

Les sondages réalisés (notés SC1 à SC21, T1 à T4 et S1 à S8) ont mis en évidence la présence successivement de haut en bas :

- au droit du quartier d'habitation (sondages SC1 à SC21) :
 - sous une couche de terre végétale limoneuse ou plus rarement de schiste rouge toutvenant, de remblais rencontrés sur des épaisseurs variables : faibles à moyennes en SC1, SC4, SC5, SC7, SC9 à SC11, SC16, SC19 et SC21 (de 0.6 à 1.3 m de profondeur) à élevées (plus de 2 m d'épaisseur au droit des autres sondages). Ces remblais sont représentés :
 - généralement, par un limon / limon sableux de teinte variable (beige, brunâtre, grisâtre ou noirâtre) plus ou moins chargé en cailloutis, petits débris de briques, morceaux de craie, rares scories / mâchefers et déchets (petits débris de verre [SC8], de porcelaine [SC13] et de plastique [SC19]);
 - s'intercalant entre les horizons de limons et sur de faibles épaisseurs, des couches de craie altérée et de limon crayeux grisâtre;
 - puis le terrain naturel, rencontré uniquement sur dix des vingt-et-un sondages réalisés. Il est représenté par un limon beige, surplombant une craie altérée blanchâtre en SC10, et dont les bases respectives n'ont pas été atteintes vers 2 m de profondeur (profondeur maximale de foration des sondages SC1 à SC21);

- au droit de la plate-forme surélevée au sud-est (sondages T1 à T4) :
 - sous une couche de terre végétale limoneuse ou de schiste rouge tout-venant, de remblais rencontrés sur des épaisseurs supérieures à 5 m. Ces remblais sont représentés :
 - en tête, par un limon / limon sableux de teinte variable (brunâtre, verdâtre, grisâtre ou noirâtre) plus ou moins chargé en cailloutis, morceaux de craie, petits débris de briques, schistes noirs et silex et rares déchets (verre en T1);
 - plus en profondeur (dès 0.2 m de profondeur en T1 et 0.8 m en T2, T3 et T4), des couches de limon beige accompagné de morceaux de craie alternant avec des horizons de craie altérée;
 - le terrain naturel n'a pas été atteint vers 5 m de profondeur (profondeur maximale de foration des sondages T1 à T4);
- au droit de la butte en bordure sud (sondages S1 à S8) :
 - de remblais rencontrés sur des épaisseurs très importantes (de 6.7 m à plus de 10 m en S6, S7 et S8). Ces remblais sont représentés :
 - en tête, par un limon brunâtre végétalisé plus ou moins chargé en débris de schistes noirs et plus rarement en débris de verre puis en S8 par une fine épaisseur de grave ternaire grisâtre;
 - puis jusqu'à des profondeurs variables (faibles aux extrémités de la butte : 0.3 m en S7 et environ 1 m en S1, S2 et S6; plus importantes en partie centrale : environ 2 m en S3, S4 et S5) par un limon beige accompagné de morceaux de craie et rares scories / mâchefers;
 - plus en profondeur, par des couches de limon de teinte variable (beige, brunâtre, grisâtre, verdâtre et noirâtre), plus ou moins chargé en morceaux de craie, débris de briques, cailloutis et scories / mâchefers, alternant ponctuellement avec des horizons de craie altérée et comportant localement des éléments divers : verre (S1, S2, S4 et S6), tissus (S2), porcelaine (S8) et ferraille (S8);
 - puis le terrain naturel, rencontré uniquement au droit des sondages S1 à S4 (moitié ouest de la butte). Il est représenté par une craie altérée blanchâtre atteinte vers 8.0 / 8.5 m de profondeur, pouvant être recouverte par une couche de limon beige (rencontré à 6.7 et 7.8 m en S3 et S4), et dont la base n'a pas été atteinte vers 10 m de profondeur (profondeur maximale de foration).

Lors de notre intervention, aucune venue d'eau n'a été constatée.

4.3 Etat de pollution des sols

4.3.1 Observations organoleptiques

Seule une légère odeur d'hydrocarbures a été relevée dans les remblais présents entre 5.8 et 6.5 m de profondeur en S5; cette odeur n'a été que peu corroborée par les mesures de composés organiques volatils qui mettent en évidence des mesures d'environ 2 ppm.

Des mesures de volatils pouvant dépasser 25 ppm ont quant à elles été retrouvées au droit du sondage SC1, où aucune odeur particulière n'avait été observée.

4.3.2 Comparaison des résultats par rapport aux seuils d'acceptation ISDI

Les tests d'acceptation en ISDI réalisés ont mis en évidence que les remblais présents dans les secteurs suivants devront faire l'objet d'une évacuation en filière spécifique du fait des dépassements des critères d'acceptation de l'arrêté ministériel du 12/12/14 :

- au droit de la butte : 7 échantillons sur 16 analysés du fait de la présence d'antimoine et de plomb sur lixiviat ainsi que ponctuellement d'hydrocarbures [C10-C40] sur brut ;
- au droit des parties « basses » : 5 échantillons sur 25 analysés principalement du fait de la présence sur lixiviat de plomb, sulfates, fluorures et fraction soluble.

En ce qui concerne la tranche de remblais 5.0 – 6.5 m de profondeur présente au droit du sondage S5, elle devra faire l'objet d'une évacuation en filière spécifique du fait principalement de la présence d'hydrocarbures [C10-C40] sur brut à une concentration dépassant les critères de l'arrêté ministériel du 12/12/14.

En revanche, les tests d'acceptation en ISDI réalisés au droit de la plate-forme surélevée est ont mis en évidence que les remblais présents dans ce secteur pourraient être admissibles en décharge de matériaux inertes s'ils devaient être évacués en filière extérieure.

En conséquence, d'après les tests d'acceptation en ISDI (Installation de Stockage de Déchets Inertes), réalisés suivant l'Arrêté du 12 décembre 2014 sur les quarante-et-un échantillons composites confectionnés et représentatifs des matériaux traversés au droit des trente-trois sondages répartis selon un maillage systématique au droit du quartier d'habitation et sur tout le linéaire de la butte, les matériaux excavés dans le cadre du projet pourraient être éliminés dans plusieurs filières, précisées dans le tableau en page suivante.

Condon		Tranche de sol (m)	Filières d'acceptation appropriée (sous réserve de validation préalable par les exploitants des divers centres)		
Sondage	Echantillon moyen		ISDI	ISDI + ou revalorisation	Biocentre, traitement physico- chimique ou ISDND
Secteur de					
S1	MOY S1-A	0.0 - 5.0		X	
	MOY S1-B	5.0 - 8.0		Х	
S2	MOY S2-A	0.0 - 5.0	X		
	MOY S2-B	5.0 - 8.0	Х		
S3	MOY S3-A	0.0 - 3.7		X	
	MOY S3-B	3.7 - 6.7		Х	
S4	MOY S4-A	0.0 - 5.0	Х		
· ·	MOY S4-B	5.0 - 7.5			Х
S5	MOY S5-A	0.0 - 5.0	Х		
	MOY S5-B	5.0 - 6.5			Х
S6	MOY S6-A	0.0 - 4.5	Х		
	MOY S6-B	4.5 - 10		X	
S7	MOY S7-A	0.0 - 5.0	Х		
<u> </u>	MOY S7-B	5.0 - 10	X		
S8	MOY S8-A	0.0 - 5.0	Х		
	MOY S8-B	5.0 - 10	Х		
	surrélevée est				
T1	MOY T1	0.0 - 5.0	X		
T2	MOY T2	0.0 - 5.0	Х		
T3	MOY T3	0.0 - 5.0	Х		
T4	MOY T4	0.0 - 5.0	X		
Zones "bas					
SC1	MOY SC1	0.0 - 1.1	Х		
SC2	MOY SC2	0.0 - 2.0		X	
SC3	MOY SC3	0.0 - 2.0	Х		
SC4	MOY SC4	0.0 - 0.6	X		
SC5	MOY SC5	0.0 - 1.2	X		
SC6	MOY SC6	0.0 - 2.0	Х		
SC7	MOY SC7	0.0 - 0.8	Х		
SC8	MOY SC8	0.0 - 2.0	Х		
SC9	MOY SC9	0.0 - 1.2	X		
SC10	MOY SC10	0.0 - 1.3		X	
SC11	MOY SC11	0.0 - 1.2	Х		
SC12	MOY SC12	0.0 - 2.0			Х
SC13	MOY SC13	0.0 - 2.0	X		
SC14	MOY SC14	0.0 - 2.0	X		
SC15	MOY SC15	0.0 - 2.0			Х
SC16	MOY SC16	0.0 - 1.2	X		
SC17	MOY SC17	0.0 - 2.0	X		
SC18	MOY SC18	0.0 - 2.0	X		
SC19	MOY SC19	0.0 - 2.0	X		
SC20	MOY SC20	0.0 - 2.0	X		
SC21	MOY SC21	0.0 - 1.2		X	

<u>NB</u>: IDSI +: ISDI disposant d'un Arrêté Préfectoral l'autorisant à des seuils d'acceptation 3 fois supérieurs aux seuils de l'Arrêté Ministériel du 12/12/2014 pour les paramètres sur lixiviats.

ISDND: Installation de Stockage de Déchets Non Dangereux.

4.4 Commentaires et recommandations

La présence d'un bruit de fond significatif en métaux lourds a été relevée dans les sols au droit de la quasi-totalité de la zone d'étude, et très ponctuellement des hydrocarbures [C10-C40] en profondeur au droit du sondage S5 (butte).

Il convient de rappeler que, d'une manière générale, les dangers pour la santé humaine dus à la présence de métaux et composés organiques (hydrocarbures volatils) dans le sous-sol sont liés essentiellement aux voies d'exposition suivantes :

- ① contact cutané avec des matériaux contaminés,
- 2 inhalation de poussières contaminées par envol,
- 3 inhalation de composés ou éléments volatils,
- (4) ingestion directe de matériaux contaminés,
- ⑤ ingestion de légumes ou fruits contaminés via des potagers ou arbres fruitiers,
- © ingestion d'eau souterraine contaminée via d'éventuels puits privatifs.

Selon la **MEL**, la zone d'étude pourrait faire l'objet d'un projet d'aménagement dont la teneur n'est à ce jour pas connue.

En l'absence d'information sur le projet d'aménagement au droit de la zone d'étude, les voies d'exposition liés ① au contact cutané avec des matériaux contaminés, ② à l'inhalation de poussières contaminées par envol, ③ inhalation de composés ou éléments volatils, ④ à l'ingestion directe de matériaux contaminés et ⑤ ingestion de légumes ou fruits contaminés via des potagers ou arbres fruitiers, sont considérées comme pertinentes, et nécessitent en conséquence des mesures d'aménagement spécifiques.

Les cibles sont les adultes et enfants fréquentant le site.

En conséquence et en cas d'usage sensible (habitat, jardin potagers...), et pour assurer une parfaite gestion des contraintes afférentes aux futurs projets de réaménagement du site conformément à la circulaire du 08 février 2007, nous recommandons d'engager sur la base d'un projet avancé, des études complémentaires au droit des terrains.

Ainsi, dans un premier temps, des **sondages complémentaires** de caractérisation de la qualité des sols pourront être réalisés sur la base des schémas conceptuels associés aux aménagements respectifs de la zone d'étude.

Au regard des résultats, il pourra ensuite être envisagé de réaliser un ou plusieurs Plans de Gestion du site en phase avec les contraintes des projets à mener (aménagements possibles, mesures de dépollution envisageables, choix et adaptation des usages selon les coûts et les avantages...).

4.5 Risques transitoires

Lors des travaux de terrassement liés à l'aménagement du site, le personnel devra être équipé des EPI de type chaussures, combinaisons, masques à poussières, et respecter quelques règles d'hygiène simples :

- ne pas boire ni manger sur le chantier dans les zones de travail (manger dans une zone aménagée en conséquence est néanmoins possible);
- se laver les mains et le visage en fin de poste.

9999

AFR-DIA-10001-RPT-A01 du 28/07/2016Réf Aff. Arcadis : 16-000536 16-000536-DIA-10001-RPT-A01

Caractérisation de matériaux Rapport

Limitations du rapport

Arcadis a élaboré ce rapport pour l'usage exclusif de la METROPOLE EUROPEENNE DE LILLE, conformément au cahier des charges élaboré dans le cadre du marché à bon de commande MEL intitulé « Etude de pollution des sols et des eaux et surveillances piézométriques - années 2014-2018 ».

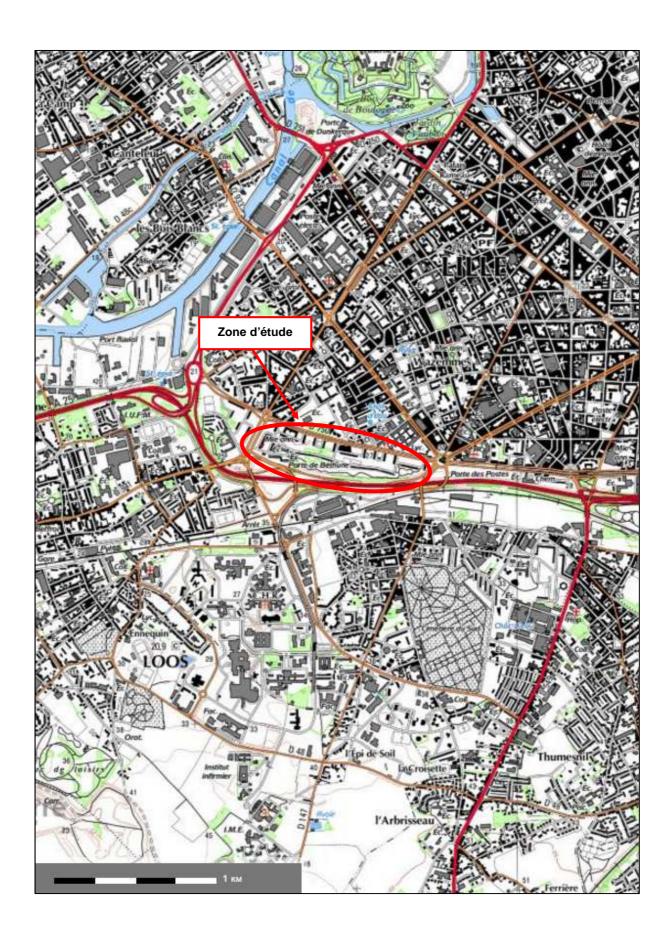
Ce rapport, ainsi que l'ensemble de ses annexes, constituent un ensemble indissociable; en conséquence, l'utilisation qui pourrait être faite d'une communication partielle ou reproduction partielle de ce rapport et annexes, ainsi que toute interprétation au-delà des indications et énonciations d'**Arcadis** ne sauraient engager la responsabilité de celle-ci.

Il est rappelé que les résultats de la reconnaissance s'appuient sur un échantillonnage ponctuel, et que cette méthodologie ne permet pas de lever la totalité des aléas liés à l'hétérogénéité du ou des milieux étudiés.

Par ailleurs les conclusions de la présente étude valent que pour les usages, scénarios, composés et valeurs toxicologiques considérés. La prise en compte d'autres usages, d'une part, ou de nouveaux résultats analytiques et données toxicologiques, d'autre part, pourrait conduire à la révision et à l'actualisation des conclusions de la présente étude.

Les conclusions et recommandations du présent rapport sont basées pour partie sur des informations extérieures fournies par les personnes et entités auxquelles elles ont été demandées, non garanties par Arcadis ; sa responsabilité en la matière ne saurait être engagée.

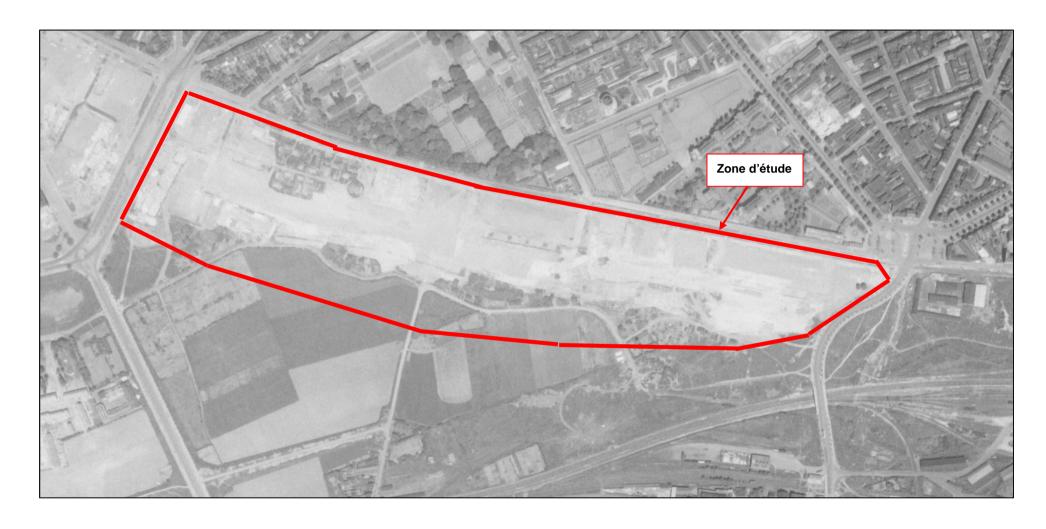
Enfin l'utilisation de ce rapport et de ses annexes à d'autres fins que celles définies dans la proposition **Arcadis**, par la **MEL** ou par des tiers, est de l'entière responsabilité de l'utilisateur.

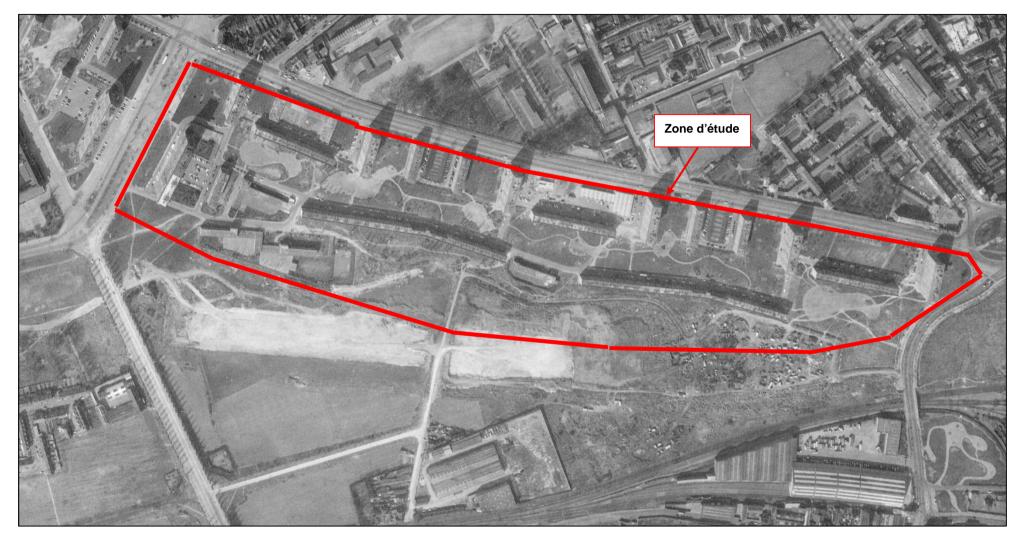

Droit d'auteur

© Ce rapport est la propriété exclusive d'**Arcadis**. Seul le destinataire du présent rapport est autorisé à le reproduire ou l'utiliser pour ses propres besoins. Ce rapport pourra être transmis aux tiers via les actes notariés.

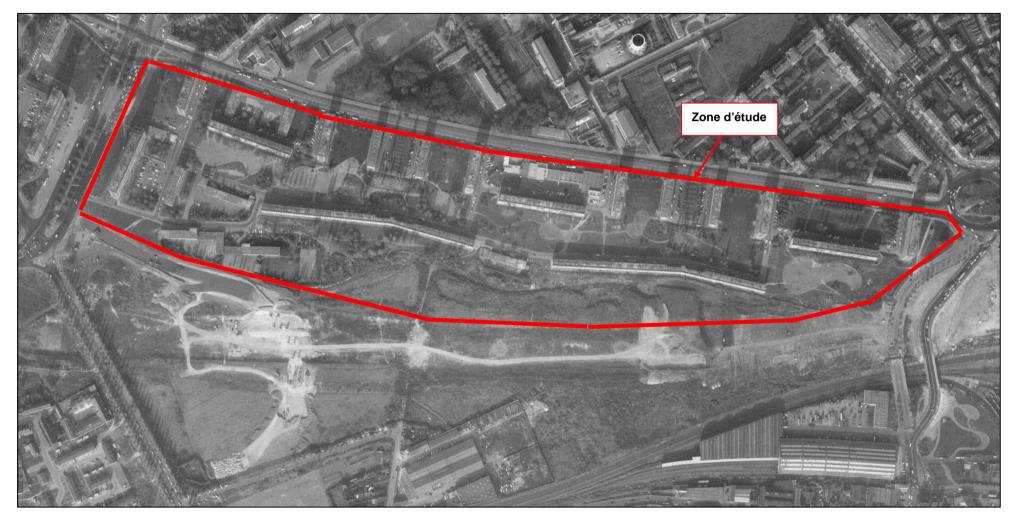
9999

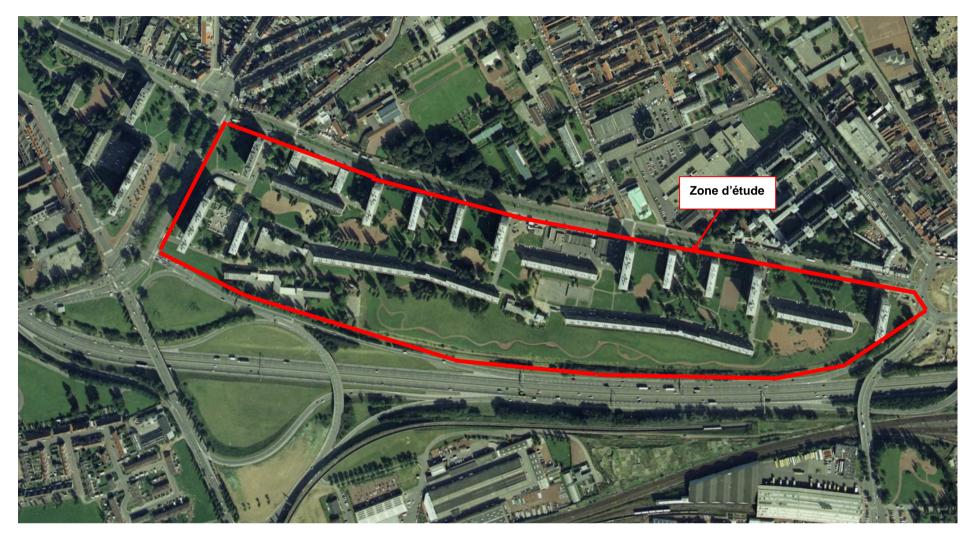
Annexe 1 Plan de localisation (source : carte IGN de Lille – Roubaix -Tourcoing)

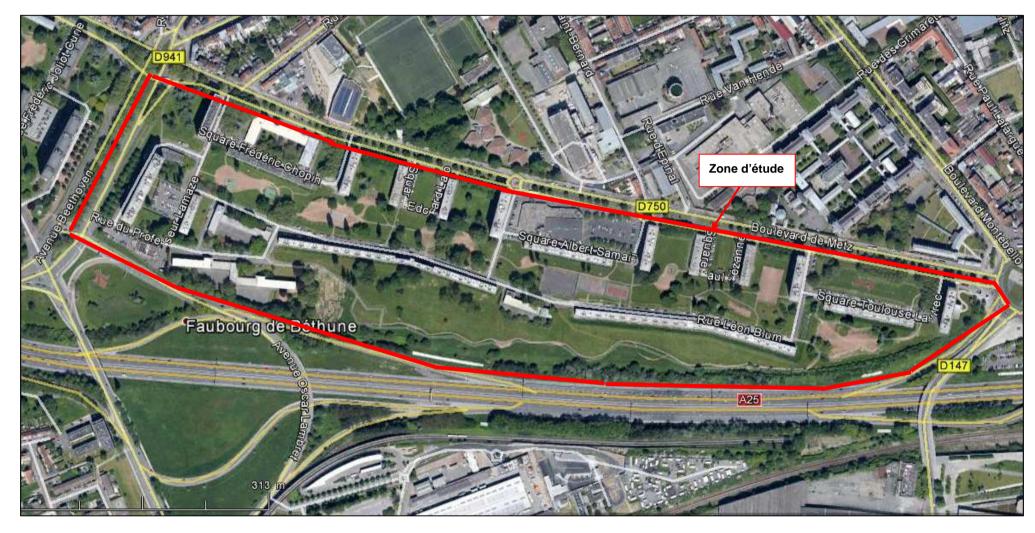

Réf Aff. Arcadis: 16-000536 / NTW 9338608 16-000536-DIA-10001-RPT-A01


Réf Aff. Arcadis: 16-000536 / NTW 9338608 16-000536-DIA-10001-RPT-A01

Annexe 2 Photographies aériennes (source : photothèque IGN Saint-Mandé et Google Earth)


Réf Aff. Arcadis: 16-000536 / NTW 9338608 16-000536-DIA-10001-RPT-A01


PHOTOGRAPHIE DE 1957


PHOTOGRAPHIE DE 1969

PHOTOGRAPHIE DE 1972

PHOTOGRAPHIE DE 1988

PHOTOGRAPHIE DE 2012

Annexe 3 Photographies du site dans son état actuel

Vue n°1 : vue panoramique de la moitié ouest de la butte de terre présente au sud de la zone d'étude

Vue n°2 : vue panoramique de la moitié est de la butte présente au sud de la zone d'étude

Vue n°3 : vue du dénivelé présent entre la butte en bordure sud du site et l'autoroute A25 [hors zone d'étude]

Vue n°4 : vue panoramique de la partie surélevée au sud-est du site (lieu de réalisation des sondages T1 à T4)

Vue n°5 : vue panoramique des espaces verts présents dans le quartier d'habitation

Vue n°6 : vue panoramique des espaces verts présents dans le quartier d'habitation

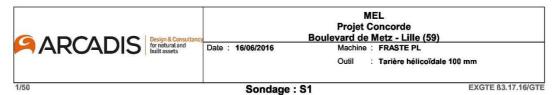
Vue n°7 : vue panoramique des espaces verts présents dans le quartier d'habitation

Vue n°8 : vue panoramique des espaces verts présents dans le quartier d'habitation

Annexe 4 Schéma d'implantation des sondages Arcadis

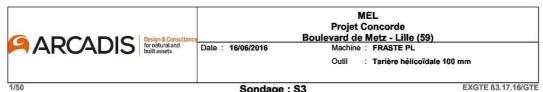
METROPOLE EUROPEENNE DE LILLE
Projet Concorde - Boulevard de Metz - Lille (59)

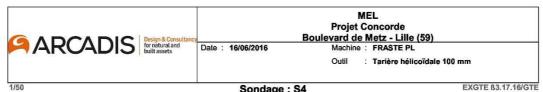
Caractérisation de matériaux
Rapport

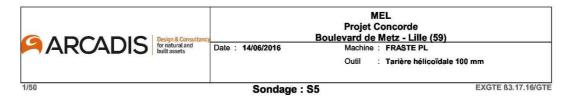

Schéma d'implan	tation des sondages ARCADIS	MEL Quartier Concerde Boolevard de Mats
# 100 CO	Cróé le : 28/97/16	LH,LE (59)
ARCADIS	Exhelle graphique	Charge d'affaire : ARG
Agence de Dunkerque	Descinatour : SPK	Affaire / 9338668
TA BOOK HOLD IN BUILDING	Plus SEC 2008 - Life records - embgrs - 20160706 - 13.0%	Dunier : 84-7825


Annexe 5 Coordonnées des sondages (source : SARL DEBAY)

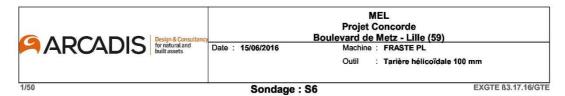
N°	Х	Υ	Remarques
S1	649 674	324 572	
S2	649 738	324 560	
S3	649 804	324 548	
S4	649 884	324 543	
S5	649 955	324 533	
S6	650 027	324 531	
S 7	650 094	324 526	
S8	650 153	324 528	
SC1	649 447	324 826	Approximation 1m
SC2	649 506	324 755	
SC3	649 686	324 754	Approximation 0.5m
SC4	649 600	324 709	
SC5	649 571	324 661	
SC6	649 749	324 733	
SC7	649 740	324 680	Approximation 0.5m
SC8	649 693	324 612	
SC9	649 827	324 715	Approximation 1m
SC10	649 824	324 652	Approximation 0.5m
SC11	649 806	324 611	
SC12	649 868	324 640	
SC13	649 868	324 569	
SC14	649 952	324 636	
SC15	650 057	324 666	
SC16	650 019	324 609	
SC17	650 111	324 607	
SC18	650 179	324 632	
SC19	650 193	324 579	Approximation 0.5m
SC20	650 264	324 633	
SC21	650 341	324 611	
T1	650 247	324 575	
T2	650 252	324 538	Approximation 1m
T3	650 309	324 546	
T4	650 412	324 570	Approximation 1m


Annexe 6 Coupes lithologiques


	*	Sonda	ige: 51	27012	
Profondeur		Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
8:98 m 0.00			0.0 m		
0.101110.00	RRRRR	Terre végétale : limon brunâtre	0.2 m		
0.40 m		Remblais : limon beige	0.5 m		
0.50-	RRRRR		0.7 m		
	RRRRR	Remblais : limon beige, granules de craie et	0.7 111		
1.00- 1.20 m	R R R R R R R R R R R R R R R R R R R	rares petits débris de briques	1.0 m		
1.70 m	R R R R R R R R R R R R R R R R R R R	Remblais : limon crayeux grisâtre	1.5 m		
2.10 m2.00		Remblais : limon sableux brunâtre à noirâtre, petits débris de briques, cailloutis, granules de craie, débris de scories / mâchefers et éléments divers (verre)	2.0 m		
2.50		Remblais : limon verdâtre à noirâtre,	2.5 m		
3.20 m	RRRRR RRRRR RRRRR RRRRR RRRRR RRRRR RRRR	quelques petites granules de craie et débris de briques	3.0 m		
3.50	R R R R R R R R R R		3.5 m		
4.00	RRRRR		4.0 m		
4.50	B B B B	Remblais : limon grisâtre, petits débris de briques et morceaux de craie, scories /	4.5 m		
5.00-	RRRRR	mâchefers	5.0 m		
5.50-	RRRRR		5.5 m		
6.20 m ^{6.00}	R R R R R R R R R		6.0 m		
6.50			6.5 m		
7.00	R R R R R R R R R R	orajo at raron dábrio da brigues	7.0 m		
7.50		State of fallow destribute singular	7.5 m		3
8.20 m	RRRR RRRR RRRR RRRR		8.0 m		
8.50			8.5 m		
9.00		Craie altérée blanchâtre	9.0 m		
9.50-			9.5 m		
10.0010.00			10 m		


1/50	Sondage : S2		EXGI	EXGIE B3.17.16/GTE	
Profondeur	Lithologie	Prise d'échantilion	Observations organoleptiques	Niveau d'eau	
8:98 m 0.00		0.0 m			
0.10 m _{0.00}	R R R R R Terre végétale : limon brunâtre	0.2 m			
0.50	RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR	0.5 m			
0.50	R R R R R R R R R R R R R R R R R R R	9 0.7 m			
1.20 m	RRRRR	1.0 m			
1.50	R R R R R R R R R R R R R R R R R R R	1.5 m			
2.00 – 2.20 m	RRR RRRR RRR RRR	2.0 m			
2.50	R R R R R R R R R	2.5 m			
3.00	R R R R R R R de craie et petits débris de briques, débris ce	le 3.0 III			
3.50	R_R_R_R_	3.5 m			
3.80 m 4.00 4.20 m	R R R R R R R R R R R R R R R R R R R	4.0 m			
4.70 m	R. R. R. R. Remblais : limon beige, morceaux de craie	4.5 m			
5.20 m	R R R R R Remblais : limon brunâtre, granules de crai				
5.70 m	R R R R R R R R R R R R R R R R R R R	5.5 m			
6.00-	R R R R R R R R	6.0 m			
6.50	"R R R R R R R R R R R R R R R R R R R	6.5 m			
7.00 – 7.20 m	R R R R R R R R	7.0 m			
7.50 – 7.80 m	RRRRR RRRRR RRRRR RRRRR RRRRR RRRRR RRRR	7.5 m			
8.00	R R R Granules de craie R R R R R R R R R R R R R R R R R R R	8.0 m			
8.40 m 8.50	R'R'R'R 3 3 3 3 3 3	8.5 m			
9.00	Craie blanchâtre	9.0 m			
9.50-		9.5 m			
10.00160.00		10 m			

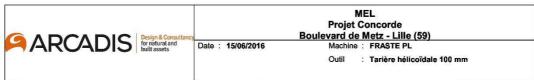
1/50	o Sc		ige : S3	EXGTI	EXGTE 83.17.16/GTE	
Profondeur		Lithologie	Prise d'échantilion	Observations organoleptiques	Niveau d'eau	
8.98 m 8.18 m 0.00	L		0.0 m			
0.10 m _{0.00}	RRRRR	Terre végétale : limon brunâtre, rares petits	0.2 m			
0.40 m		débris de verre Remblais : limon beige	0.5 m			
0.60 m0.50		Remblais : limon beige, quelques petits	0.7 m			
0.80 m		débris de briques et granules de craie	0.7 111			
1.20 m		Remblais : limon sableux beige, nombreux petits débris de briques et granules de craie	1.0 m			
1.60 m1.50	R R R R R R R R R R R R R R R	Remblais : limon beige, nombreux petits morceaux de craie et quelques débris de briques et scories / mâchefers	1.5 m			
2.10 m2.00		Remblais : limon beige, rares granules de craie et débris de briques	2.0 m			
	RRRRR	Remblais : limon beige, granules de craie, débris de briques et scories / mâchefers	2.3 m			
2.60 m2.50	RRRRR	Remblais : argile crayeuse vert clair et limon	2.5 m			
2.60 112.50	RRRR	sableux verdâtre	81			
3.20 m ^{3.00}		Remblais : craie blanchâtre et limon sableux noirâtre, petits débris de briques	3.0 m			
3.70 m		Remblais : limon grisâtre à noirâtre, débris de briques et granules de craie	3.5 m			
4.00			4.0 m			
4.50			4.5 m			
5.00-	R R R R R R R R R R R R R R R R R R R	Remblais : limon noirâtre, petits débris de briques et granules de craie	5.0 m			
5.50	R R R R R R R R R R R R R R R R R R R R		5.5 m			
6.20 m ^{6.00}	R R R R R R R R R R R R R R R		6.0 m			
6.70 m		Remblais : limon verdâtre, granules de craie et petits débris de briques	6.5 m			
7.00-			7.0 m			
7.50		Limon beige	7.5 m			
8.00			8.0 m			
8.30 m	 		8			
8.50			8.5 m			
9.00		Craie blanchâtre	9.0 m			
9.50-			9.5 m			
10.00160.00			10 m			



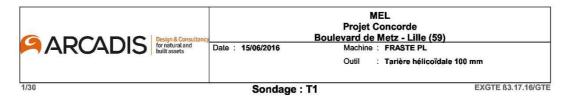
1/50		Sonda	ige : S4	EXG	E B3.17.16/GTE
Profondeur		Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
8:98 m 8:18 m 0.00			0.0 m		
0.10 m _{0.00}	RRRRR	Terre végétale : limon brunâtre	0.2 m		1 1
		Remblais : limon beige à brunâtre, petits	0.5 m		
0.60 m0.50	R R R R R R R R R R R R R R R	morceaux de craie et débris de briques	0.7 m		
1.00 — 1.30 m	R R R R R R R R R R R R R R R R	Remblais : limon beige, petis morceaux de craie	1.0 m		
1.50	R R R R R R R R R R R R R R	Remblais : limon beige, petits débris de	1.5 m		
2.00 2.20 m	R R R R R R R R R R R R R	briques et morceaux de craie, quelques scories / mâchefers	2.0 m		
2.50	RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRRR	Remblais : limon grisâtre, nombreux petits morceaux de craie	2.5 m		
3.20 m	RRRRR	morceaux de Gale	3.0 m		
3.50	RRRRR RRRR RRRR RRRR RRRR		3.5 m		
4.00	R R	Remblais : limon grisâtre, nombreux petits	4.0 m		
4.50 -	R R R R R R R R R R R R R R R R R R R	morceaux de craie et rares débris de briques	4.5 m		
5.00 — 5.40 m	R_R_R_R_R_R		5.0 m		
5.50 — —	RRRRR RRRRR RRRR RRRR RRRR RRRR RRRR RRRR	Remblais : limon noirâtre, nombreux petits débris de briques et petits cailloutis	5.5 m 6.0 m		
6.20 m 6.00 —			Personal Const.		
6.50 — —	RRRRR	Remblais: limon grisâtre, petites granules de craie, débris de briques, scories / mâchefers et rares éléments divers (verre)	6.5 m		
7.00 — 7.20 m	RRRR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.0 m		
7.50 — 7.80 m _	R R	Remblais : limon sableux brunâtre, débris de briques, cailloutis et éléments divers (verre)	50000000		
8.00 — 8.30 m		Limon beige à brunâtre	8.0 m		
8.50			8.5 m		
9.00		Craie blanchâtre	9.0 m		
9.50— —			9.5 m		
10.001/0.00	11111		10 m		

Profondeur		Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
0.00 m			0.0 m		
0.15 m _{0.00}	V_V_V_V_V_	Terre végétale : limon brunâtre	0.2 m		
0.30 m	RRRRR	Remblais : limon beige à brunâtre, rares	180700		
0.50-	[R R R R R R R] _	petits débris de briques	0.5 m		
1.00	IN N N N N	Remblais : limon beige à grisâtre, quelques	0.7 m		
1.20 m	RRRRR P	etites granules de craie, débris de briques, petits cailloutis et scories / mâchefers	1.0 m		
1.50 —	R.R.R.R.F	Remblais : limon beige, granules de craie, ailloutis, scories / mâchefers et rares petits débris de briques	1.5 m		
2.00 — 2.30 m	R R R R R R R R R R R R R R R R R R R R	temblais : limon beige, granules de craie et rares petits débris de briques	2.0 m		
2.50	RRRRR RRRR RRRR RRRR		2.5 m		
3.00	RRRRR	emblais : limon beige et craie altérée, rares scories / mâchefers et petits débris de	3.0 m		
3.50	RRRR RRRR RRRR RRRR	briques	3.5 m		
3.90 m	RRRRR		4.0 m		
4.10 m4.00	RRRRR	Remblais : limon beige à noirâtre, scories / mâchefers	4.0 111		
4.50	RRRRR RRRRR RRRRRR	Remblais : limon beige, morceaux de craie,	4.5 m		
5.20 m	RRRR	rares cailloutis et petits débris de briques	5.0 m		
5.50 — 5.80 m	RRRR	Remblais : craie altérée grisâtre	5.5 m		
6.00	RRRRR RRRR RRRR RRRR	Remblais : limon sableux noirâtre, craie altérée et rares petits débris de briques	6.0 m	Légère odeur d'hydrocarbures	
6.50 m6.50	RRRRR		6.5 m		

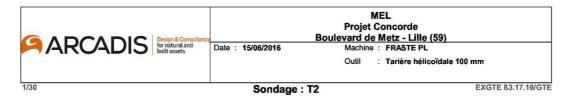
Arrêt à 6.5 m de profondeur sur point dur


		XX CX-0004440000			T i
Profondeur		Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
0:09 m		10 No. 10	0.0 m		
0.25 m ^{0.00}	RRRRR	Terre végétale : limon brunâtre	8:3 m		1 1
0.40 m		Remblais : limon beige à brunâtre, rares	0.5 m		1 1
0.50		petits débris de briques, cailloutis et granules de craie			
	RRRRR	Remblais : limon brunâtre, grave ternaire	0.7 m		1 1
0.90 m	8 8 8 8 8	grisâtre, petits débris de briques et granules	1.0 m		
1.00		de craie	0.000.000.000		1 1
1.30 m	RRRR	Remblais : limon beige, petits morceaux de			1 1
1.50	RRRRR	craie et rares scories / mâchefers	1.5 m		1 1
		Remblais : limon crayeux beige			1 1
-	RRRRR		2.0 m		
2.00	RRRRR		2.0111		
	RRRRR				
2.50		Remblais : limon beige à brunâtre, morceaux	2.5 m		
2.50		de craie			1 1
-	RRRRR RRRRR RRRRR RRRR RRRR				1 1
3.00			3.0 m		1 1
3.20 m	R R R R R R R R R R R R R R R		8		1 1
	RRRR		3.5 m		1 1
3.50			20021200		
-	RRRRR	Remblais : limon crayeux grisâtre, quelques			
4.00	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	petits cailloutis, débris de briques et de	4.0 m		
4.00	RRRRR	schistes noirs			1 1
-	RRRR RRRR RRRRR RRRRR RRRRR RRRRR RRRRR RRRR		45		1 1
4.50			4.5 m		1 1
4.70 m	R R R R R R R R R R R R R R R R R R R R				1 1
			5.0 m		
5.00-					1 1
-			200.000		1 1
5.50-			5.5 m		
	RRRRR				1 1
-	RRRRR		6.0 m		
6.00-	RRRRR		6.0 111		1 1
-		Remblais : limon sableux brunâtre, grisâtre à			1 1
0.50		noirâtre, granules de craie, débris de briques,	6.5 m		
6.50	R R R R R R R R R R R R R R R	cailloutis, scories / mâchefers et quelques			1 1
-	RRRR RRRR RRRR RRRRR RRRRR RRRR RRRR RRRR	éléments divers (verre)			1 1
7.00-			7.0 m		
South Mark	R R R R R R R R R R R R R R				
	R R R R R		7.5 m		
7.50 –]
-	RRRRR				1
8 00	RRRRR RRRR RRRR RRRR RRRR RRRR		8.0 m		
8.20 m					
	R R R R R R R R R R R R R R R R R R R		8.5 m		
8.50	RRRRR	Remblais : limon crayeux grisâtre et craie	6.5 III		1
6.5	RRRRR	altérée blanchâtre, rares petits débris de			
		briques et scories / mâchefers	9.0 m		
9.00 — 9.20 m					
-	R R R R R R R R R R R R R R R R R R R				
9.50-	RRRRR	Remblais : craie altérée blanchâtre, rares	9.5 m		
5.50	RRRRR	petits débris de briques			
10.00160.00	R R R R R R R R R R	parita dastra de brigado	10		
10.00 ra .00	TATATATA		10 m		

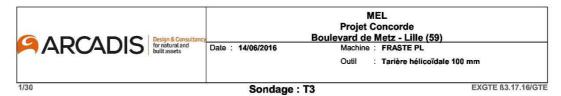
: Tarière hélicoïdale 100 mm

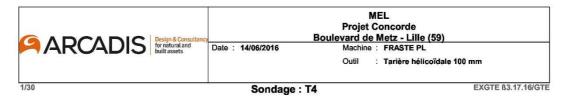

1/50 **EXGTE B3.17.16/GTE** Sondage : S7

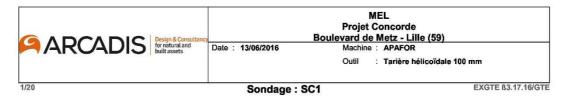
Profondeur		Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
8:15 mo.oo	V. V. V. V. V.	Terre végétale : limon brunâtre	0.0 m		
0.25 m	RRRRR	Remblais : limon beige à brunâtre	8: 3 m		
0.50			0.5 m		
	RRRRR		0.7 m		
1.00-			1.0 m		
1.50		Remblais : craie altérée blanchâtre à grisâtre	1.5 m		
2.20 m ^{2.00}	RRRR RRRR RRRR RRRR RRRR RRRR		2.0 m		
2.50	R R R R	Remblais : limon beige et craie altérée, débris	2.5 m		
3.20 m ^{3.00}		de briques et quelques scories / mâchefers	3.0 m		
3.50			3.5 m		
4.00	R R R R R R R R R R R R R R R R R R R		4.0 m		
4.50	R R		4.5 m		
5.00-		Remblais : limon gris-beige, petits morceaux de craie et de briques, quelques scories /	5.0 m		
5.50-		mâchefers	5.5 m		
6.00	R R R R R R R R R R R R R R R		6.0 m		
6.50	RRRRR		6.5 m		
7.20 m	RRRR RRRR RRRR RRRR RRRR		7.0 m		
7.50	RRRRR RRRRR RRRRR RRRRR RRRR	Remblais : limon beige, morceaux de craie et quelques petits débris de briques	7.5 m		4000
8.20 m	RRRRRR	as according to the state of th	8.0 m		ue de
8.50	RRRRR RRRR RRRRR RRRRR		8.5 m		o A current
9.00		Remblais : limon crayeux grisâtre, quelques petits débris de briques et rares cailloutis	9.0 m		roicial IFAVI IIT? 9 Awow.isanlifres fr
9.50 -	RRRRR RRRRR RRRRR RRRRR RRRRR RRRRR RRRR		9.5 m		1900
10.00160.00	RRRRR		10 m		

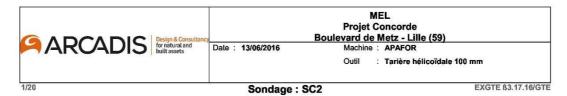


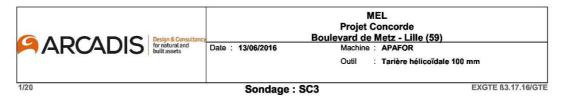
1/50 EXGTE \$3.17.16/GTE Sondage : S8

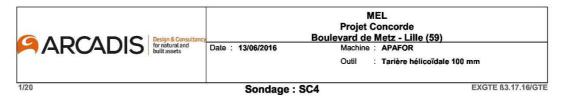

		aage . oo		
Profondeur	Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
0.00 m		0.0 m		
0.15 mo.00	Terre végétale : limon brunâtre, nombreux	8:3 m		
	R R R R R P P P P P P P P P P P P P P P			
0.50	R R R R R R R R R R R R R R R R R R R			
	្ត្រីក្ត្រី Remblais : limon brunâtre, rares petits débr	is 0.7 m		
).90 m	R R R R de briques	1.0 m		
1.00— 1.20 m	R R R R R R R R R Remblais : craie altérée blanchâtre	1.0 III		
1.50 — 1.80 m	R R R R R R R R R R R R R R R R R R R			
2.10 m2.00	Remblais : limon beige, craie alteree blanchâtre et grave ternaire grisâtre, petits	2.0 m		
2.60 m2.50	débris de briques R R R R R R Remblais : limon brunâtre à grisâtre, R R R R R R débris de briques, rares morceaux de siles	2.5 m		
3.10 m3.00	"R R R R R R R R R R R R R R R R R R R	s		
3.50	R R R Remblais: limon grisâtre, petits morceaux of crale et débris de briques, rares petits schistes noirs	le 3.5 m		
3.90 m	R R R R R	4.0 m		
4.00 4.50 4.70 m	Remblais : limon sableux brunâtre à noirâtr RRRRRR RRRRR de craie et éléments divers (carrelage)			
5.00 — 5.30 m	Remblais: limon crayeux grisâtre et limon crayeux grisâtre et limon brunâtre, granules de craie et rares petits			
5.50 5.70 m	R R R R R R R R R R R R R R R R R R R	5.5 m		
6.20 m	Remblais : limon gris-beige, nombreux peti débris de briques, granules de craie	6.0 m		
6.50	R R R R R R R R R R R R	6.5 m		
7.00	R G granules de craie, cailloutis, quelques débr	s		
7.50	R R R R R R R R	7.5 m		
0.00	RRRR RRRR RRRR	8.0 m		
8.30 m _ 8.50 —	RRRR RRRR RRRR	8.5 m		
0.00	R R R R R R R R R R R R R R R R R R R	9.0 m		
9.50	R R R R B R B B B B B B B B B B B B B B	9.5 m		
10.001/0.00	R R R R	10 m		

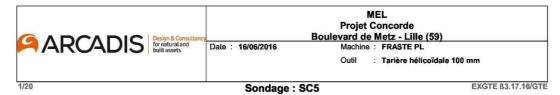

		Ť ·	·	1
Profondeur	Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
8:89 m	R. R. R. R. I. Dombleis coshists source to to and	0.1 m		
0.15 m ^{0.00}	Remblais : schiste rouge tout-venant RR R R R R R R R R R R R R R R R R R R	0.1 m		
0.50	R R R R R R R R R R R R R R R R R R R	0.5 m		
0.80 m	R R R R	0.7 m		
1.00-	R R R R R R R R R R R R R R R R R R R	1.0 m		
1.40 m	``R`R`R`R` R_R_R_R_R			
1.50	R R R R R R R R R R R R R R R R	1.5 m		
2.00 – 2.20 m	Remblais : craie altérée beige-blanchâtre	2.0 m		
2.60 m ^{2.50}	RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR	2.5 m		
-	R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.	3.0 m		
3.50-	R R R R R R R R R R R R R R R R R R R	3.5 m		4
4.00	RRRR RRRR RRRR	4.0 m		
4.50	R R R R R R R R R R R R R R R R R R R	4.5 m		
	R R R R R R R R			-
5.00 m5.00	R R R R	5.0 m		

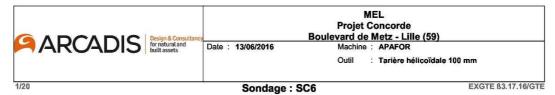

Profondeur		Lithologie	Prise d'échantilion	Observations organoleptiques	Niveau d'eau
8:89 m 0.00			0.0 m		
0.00	RRRRR	Terre végétale : limon beige, nombreux petits schistes rouges	0.1 m		
	*	Remblais : limon sableux noirâtre, petits schistes rouges, de briques et de silex,	0.3 m		
0.60 m ^{0.50}	RRRRRA	cailloutis Remblais : craie altérée blanchâtre	0.5 m		
0.80 m		Remblais : craie atteree blanchaire Remblais : limon sableux brunâtre, petites granules de craie, débris de briques et de silex, cailloutis	0.7 m		
1.00 —	RRRRR RRRRR RRRR RRRR RRRR	Remblais : craie altérée blanchâtre	1.0 m		
1.60 m ^{1.50}	RRRRR RRRRR RRRR RRRR RRRR	Remblais : limon beige, petits morceaux de craie	1.5 m		
4000000	R R R R R R R R R R R R R R R R R R R R	Remblais : craie altérée blanchâtre	2.0 m		
2.50	RRRRR RRRR RRRR RRRR RRRR RRRR	Remblais : limon beige	2.5 m		
3.00-	R R R R R R R R R	Remblais : craie altérée blanchâtre	3.0 m		
	R R R R R R R R R R R R R R R R R R R R	Remblais : limon beige, granules de craie	3.5 m		
4.00	R R R R R R R R R R R R R R R	Remblais : craie altérée blanchâtre	4.0 m		
4.50	RRRRR RRRRR RRRRR RRRRR RRRRR RRRR RRRRR	Remblais : craie blanchâtre	4.5 m		
5.00 m5.00	RRRRR		5.0 m		

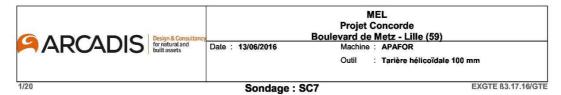

Profondeur		Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
0.00	R R R R R R R R R R R R R R R R R	Remblais : schiste rouge tout-venant	0.0 m 0.2 m		
0.50	RRRRR RRRRR RRRR RRRR RRRR RRRRR	Remblais : limon beige-verdâtre, petits morceaux de craie et débris de briques, résidus de schistes noirs	0.5 m		
0.80 m —		residus de sonistes notis	1.0 m		
1.50 –	R R	Remblais : limon beige, morceaux de craie	1.5 m		
	RRRR RRRR RRRR RRRR RRRR RRRR RRRR	Name and a stage, marcada, ac stage	2.0 m		
2.60 m ^{2.50}	RRRRR RRRR RRRR RRRR RRRR		2.5 m		
3.00 — 3.20 m	RRRR RRRR RRRR RRRR RRRR RRRR RRRR	Remblais : craie altérée blanchâtre	3.0 m		
3.50	RRRR		3.5 m		
4.00-	RRRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR	Remblais : limon beige, petits morceaux de craie et quelques petits débris de briques	4.0 m		
4.50	RRRRR RRRRR RRRRR RRRRR		4.5 m		
5.00 m5.00	R R R R R R R R R R R R R R R		5.0 m		

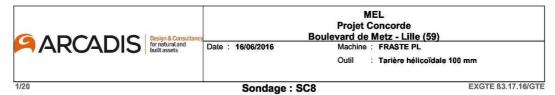

			i i		
Profondeur		Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
0.00 m			0.0 m		
0.15 m ^{0.00}	~~~~~	Terre végétale : limon à limon sableux	0.1 m		
0.25 m	* * * * *	brunâtre	0.2 m		
	RRRRR	Remblais : limon sableux grisâtre	0.3 m		
0.60 m ^{0.50}	R R	Remblais : limon beige, quelques petits débris de briques et granules de craie	0.5 m		
0.80 m —	R R R R R R R R R R R R R R R R R R R R	Remblais : limon beige à brunâtre, rares petits cailloutis	0.7 m		
1.00 — 1.20 m	RRRRR RRRR RRRR RRRR RRRR	Remblais : limon beige	1.0 m		
1.50 1.70 m	RRRRR RRRRR RRRR RRRR RRRR RRRR	Remblais : limon beige, nombreux morceaux de craie	1.5 m		
2.00-	R R R R R R R R R R R R R R R	Remblais : limon beige, morceaux de craie, petits débris de briques et schistes noirs	2.0 m		
2.60 m ^{2.50}	RRRRR RRRR RRRR RRRR RRRR		2.5 m		
3.00 — 3.20 m	R R R R R R R R R R R R R R R R R R R	Remblais : limon beige à grisâtre, quelques granules de craie et résidus de schistes noirs	3.0 m		
3.50-		Remblais : craie blanchâtre, débris de briques	3.5 m		
3.80 m -	RRRRR		ļ l		
4.00 — 4.20 m	R R	Remblais : craie blanchâtre	4.0 m		
_	R R R R R R R R R R R R R R R R R R R	Remblais : craie blanchâtre, quelques petits débris de briques	4.5 m		
E 00E 00	RIRIRIR		F0		
5.00 m5.00			5.0 m		

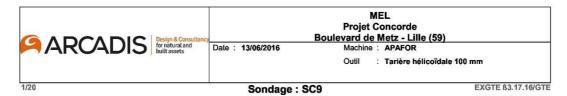

Profondeur	Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
0.00 m 0.05 m _{0.00}	Terre végétale : limon sableux brunâtre	0.0 m		-
-	R R R R R R R R R R R R R R R R R R R	0.2 m		
0.40 m 0.50 –	RRRR RRRR RRRR RRRR	0.5 m		
-	R R R R R R R R R R R R R R R R R R R	0.7 m		
1.00 — 1.10 m	R R R R R R R R R R R R R R R R R R R	1.0 m		
1.50	Limon beige	1.5 m		
2.00 m2.00		2.0 m		

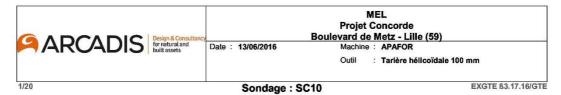

Profondeur 8:89 M	Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
0.00	Remblais : schiste rouge tout-venant	0.0 m		
0.30 m -	R R R R R R R R R R R R R R R R R R R	0.2 m		
0.50 — 0.60 m	R R R R R R R R Remblais : craie altérée, petits débris de R R R R R R R R R R R R R	0.5 m		
1.00	R R	0.7 m		
1.10 m	R R R R R R R R R R R R R R R R R R R	1.5 m		
1.90 m 2.00 m2.00	R R R R R R R R R R R R R R R R	2.0 m		

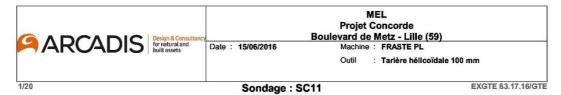

Profondeur	Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
0.05 m _{0.00}	Terre végétale : limon brunâtre	0.0 m		
0.30 m -	R R R R R R R R R R R R R R R R R R R R	0.2 m		
0.50	R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.	0.5 m		
0.90 m	NR NR NR Nombreuses granules de craie, débris de RRRRRR RRRRRRRRRRRRRRRRRRRRRRRRRRRR	0.7 m		
1.00	R R R R R R R R R	1.0 m		
1.50 1.60 m	RRRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR	1.5 m		
_	R R			
2.00 m2.00	R_R_R_R	2.0 m		

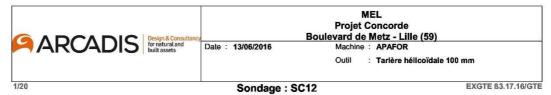

Profondeur	Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
	R R R R R R R R R R R R R R R R R R R			
– 0.40 m	R R R R R R R R R R R R R R R R R R R	0.2 m		
0.50 — 0.60 m	R R R R R R R R	0.5 m		
_		0.7 m		
1.00	Limon beige, granules de craie	1.0 m		
1.20 m		-		
1.50	Limon beige	1.5 m		
2.00 m2.00		2.0 m		

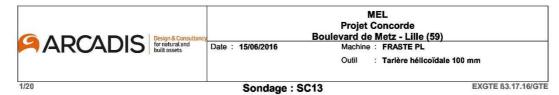

Profondeur	Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
).00 m).10 m ^{0.00}	Terre végétale : limon brunâtre	0.05 m 0.1 m		
-	R R R R R R R R R R R R R R	€ 0.3 m		
	R R R R R R R R R R R R R R R R R	0.5 m		
-	RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRRR	0.7 m		
1.00-	R R R R R R R R R R R R R R R R R R R	1.0 m		
.20 m	R. A. B.	1.5 m		
.00 m2.00		2.0 m		

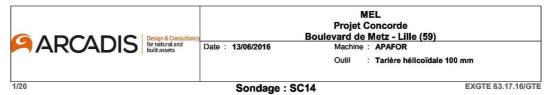

3					
Profondeur	Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau	
0.00 m 0.10 m ^{0.00}	Terre végétale : limon brunâtre	0.0 m		1	
0.10 III	R R R R R R R R R R R R R R R R R R R				
0.50 – 0.60 m	RRRR RRRR RRRR	0.5 m			
0.90 m	R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.	0.7 m			
1.00 – 1.30 m	R R R R R R R R R R R R R R R R R R R				
1.50	RARARA RRRR RRRR RRRR RRRR RRRR RRRR R	1.5 m			
2.00 m2.00	R R R R R R R R R R R R R R R R R R R	2.0 m			

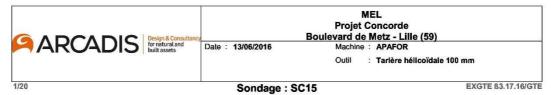

Profondeur	Lithologie	Prise d'échantilion	Observations organoleptiques	Niveau d'eau
).00 m).10 m ^{0.00}	Terre végétale : limon brunâtre	0.0 m		1
.30 m -	R R R R R Remblais : limon sableux brunâtre, rar			
0.50	RRRR RRRR RRRR RRRR RRRR RRRRR RRRRR RRRR	0.5 m		
).80 m _	R R R R R R R R R R R R R R R R R R R	0.7 m		
1.00		1.0 m		
	_::::- _::::-			
1.50	Limon beige	1.5 m		
2.00 m2.00	 	2.0 m		

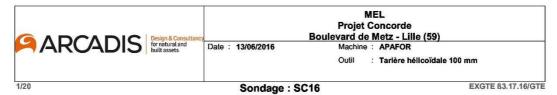

Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
Tomo vánátalo : limon hrunâtro	0.0 m		+
 	-0		
R R R R R R R R R R R R R R R R R R R			
R R R R R R	0.3 m		
R R R R R R R R R R R R R R petits débris de briques, cailloutis et élément	0.5 m		
R R R R R R R R R R R R R	0.7 m		
RRARA RRARA RRARA RRARA RRARA RRARA RRARA	1.0 m		
RARRER RARRER RARRER RARRER RARRER RARRER RARRER RARRER RARRER	1.5 m		
RRRR RRRR RRRR RRRR RRRRR RRRRR			
	Terre végétale : limon brunâtre R. R	Terre végétale : limon brunâtre R. R	Terre végétale : limon brunâtre R. R. R. R. R. Remblais : limon beige, granules de craie R. R

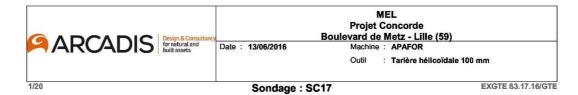

Profondeur	Lithologie	Prise d'échantilion	Observations organoleptiques	Niveau d'eau
0.10 m ^{0.00}	Terre végétale : limon brunâtre	0.0 m		
0.30 m -	K K K K R R R R R R R R R R R R R R R	0.2 m		
0.50 — 0.60 m	RRRR RRRR RRRR RRRR RRRR RRRRR RRRRR RRRR	0.5 m		
0.80 m	RRRR RRRR RRRR RRRR RRRR RRRR	0.7 m		
1.00 – 1.20 m	RRRR RRRR RRRR RRRRR RRRRR RRRR RRRR RRRR	1.0 m		
1.50	Limon beige, quelques granules de craie	1.5 m		
2.00 m2.00		2.0 m		


Profondeur		Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
0.10 m ^{0.00}		Remblais : limon légèrement sableux brunâtre, cailloutis et rares petits débris de	0.0 m		
		briques	0.2 m		
0.50 0.60 m	R R R R R R R R R R R R R R R R R R R	Remblais : limon beige, granules de craie, débris de briques et cailloutis	0.5 m		
			0.7 m		
1.00 –	RRRRR RRRRR RRRRR RRRRR RRRRR RRRRR RRRR	Remblais : limon grisâtre, débris de briques, cailloutis et granules de craie	1.0 m		
1.50 –		Limon beige, granules de craie	1.5 m		
1.80 m					
2.00 m2.00		Craie altérée	2.0 m		

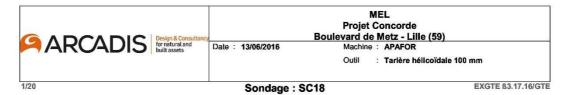

Profondeur	Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
0.00 m		0.0 m		
0.05 m _{0.00}	R R R R R	0.1 m		
- 0.40 m	R R R R R R R R R R R R R R R R R R R	0.3 m		
0.50 0.60 m	RRRR RRRR RRRR Remblais : craie altérée blanchâtre	0.5 m		
	R R R R R R R R	0.7 m		
1.00 – 1.20 m	R R R R R R R R R R R R R R R R R R R	1.0 m		
1.50	Limon beige	1.5 m		
2.00 m2.00		2.0 m		

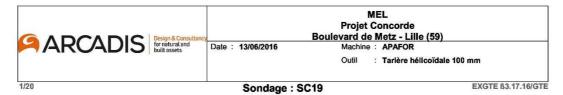

Prise d'échantillon Niveau d'eau Observations organoleptiques Profondeur Lithologie 0.00 m 0.05 m_{0.00} Terre végétale : limon légèrement sableux brunâtre Remblais : limon légèrement sableux brunâtre, rares granules de craie et débris de briques 0.0 m 0.20 m 0.3 m Remblais : limon beige à brunâtre, granules de craie et petits débris de briques 0.5 m 0.50 0.60 m 0.7 m Remblais : craie altérée 0.90 m 1.0 m 1.00 ogiciel JEAN LUTZ S.A - www.jeanlutzsa.fr Remblais : limon grisâtre à brunâtre, nombreuses granules de craie et petits débris de briques 1.5 m 1.50 1.60 m Remblais : limon crayeux grisâtre, rares petits débris de briques 2.00 m2.00 2.0 m


Prise d'échantillon Niveau d'eau Observations organoleptiques Profondeur Lithologie 0.00 m 0.05 m_{0.00} Terre végétale : limon brunâtre Remblais : limon beige à brunâtre, petits cailloutis calcaires, débris de briques et quelques scories / mâchefers 0.3 m 0.5 m 0.50 0.60 m 0.7 m Remblais : craie altérée blanchâtre 0.80 m 1.0 m 1.00 ogiciel JEAN LUTZ S.A - www.jeanlutzsa.fr Remblais : limon brunâtre, petits cailloutis calcaires, rares débris de briques, cailloutis et rares éléments divers en tête (morceaux de tasse) 1.5 m 1.50 Remblais : craie altérée blanchâtre, débris de 2.00 m2.00 2.0 m


Prise d'échantillon Niveau d'eau Observations organoleptiques Profondeur Lithologie 0.00 m 0.05 m_{0.00} Terre végétale : limon sableux brunâtre Remblais : limon sableux brunâtre, quelques petites granules de craie et débris de briques 0.0 m 0.20 m 0.3 m Remblais : limon beige, granules de craie, rares petits débris de briques 0.5 m 0.50 0.60 m Remblais : limon brunâtre, granules de craie, petits débris de briques, cailloutis 0.7 m 0.80 m 1.0 m 1.00 ogiciel JEAN LUTZ S.A - www.jeanlutzsa.fr Remblais : limon grisâtre à noirâtre, granules de craie, débris de briques, cailloutis, niveau de briques vers 1.5 m 1.5 m 1.50 1.70 m Remblais : limon grisâtre, beige et brunâtre et sable grisâtre, débris de briques, granules de craie, cailloutis 2.00 m2.00 2.0 m

Prise d'échantillon Niveau d'eau Observations organoleptiques Profondeur Lithologie 0.00 m 0.10 m^{0.00} Terre végétale : limon légèrement sableux brunâtre 0.0 m 0.2 m Remblais : limon beige, morceaux de craie et rares petits débris de briques 0.40 m 0.5 m 0.50 0.7 m Remblais : limon brunâtre, petits morceaux de craie et débris de briques, quelques résidus de scories / mâchefers 1.0 m 1.00 ogiciel JEAN LUTZ S.A - www.jeanlutzsa.fr 1.20 m Remblais : limon grisâtre à noirâtre, quelques cailloutis et petits débris de briques 1.5 m 1.50 1.70 m Remblais : sable gris-beige, débris de briques et cailloutis 2.00 m2.00 2.0 m

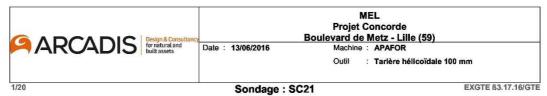

Profondeur	Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
0.05 m _{0.00}	Y Y Y Y Torre vécétale : limes echleuv havaêtre	- 22		-
0.20 m	Terre végétale : limon sableux brunâtre R R R R R R Remblais : limon sableux brunâtre, quelques R R R R R R R R R R R B R R R B R R R B R R R R B R R R R B R R R R	0.0 m		
0.40 m	R R R R R R R R R R R R R R R R R R R	0.3 m		
0.50 0.60 m	Remblais : limon beige, nombreuses granules de crale et petits débris de briques	0.5 m		
1.00—	RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR	0.7 m		
1.20 m		1.5 m		


Prise d'échantillon Niveau d'eau Observations organoleptiques Profondeur Lithologie 0.00 m 0.10 m^{0.00} 0.0 m Terre végétale : limon brunâtre 0.2 m Remblais : limon beige à brunâtre, granules de craie, rares petits débris de briques et quelques cailloutis 0.5 m 0.50 0.60 m 0.7 m Remblais : limon grisâtre puis beige, nombreux morceaux de craie altérée, rares petits débris de briques 1.0 m 1.00 ogiciel JEAN LUTZ S.A - www.jeanlutzsa.fr 1.20 m 1.5 m 1.50 Remblais : limon crayeux grisâtre

2.0 m

2.00 m2.00

Profondeur	Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
	R R R R R R R R R R R R R R R R R R R	0.0 m		
.30 m -	R R R R R R R R R R R R R R R R R R R	0.2 m		
0.50 .60 m	RRRRR RRRRR RRRRR RRRRR RRRRRR RRRRRRRR	0.5 m		
.90 m	RRRR RRRR RRRRR RRRRR RRRRR RRRRR	0.7 m		
1.00 —	RRRR RRR RRRR RRRR RRRR	1.0 m		
-	R R R R R R R R R	1.5 m		
1.50 – .70 m	R R R R R R R R R R R R R R R R R R R	1.5 111		
.00 m2.00	R R R R R R R R R R R R R R R R R R R	2.0 m		


Profondeur	Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
0.10 m ^{0.00}	Remblais : limon brunâtre, petites granules	100000000000000000000000000000000000000		
-	RRRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR	0.2 m		
0.50	R R R R R R R R R R R R R R R R R R R R	0.5 m		
	R R R R R R R R R R R R R R R R R R R R	0.7 m		
1.00 — 1.20 m	R R	1.0 m		
1.50		1.5 m		
2.00 m2.00	Limon beige	2.0 m		

: Tarière hélicoïdale 100 mm

1/20 EXGTE \$3.17.16/GTE Sondage : SC20

Profondeur	Lithologie	Prise d'échantillon	Observations organoleptiques	Niveau d'eau
0.10 m ^{0.00}	Terre végétale : limon brunâtre, quelques petites granules de craie	0.0 m		
0.30 m -	Remblais : limon beige, quelques petites RRRRR granules de craie, rares résidus de scories / RRRRR mâchefers	0.2 m		
0.50 0.60 m	R R R R R R R R	0.5 m		
0.90 m	R R	0.7 m		
1.00—	RRRR	1.0 m		
1.50 –	R R R R R R R R R R R R R R R R R R R	1.5 m		
-	R R R R R R R R R R R R R R R R R R R			

Prise d'échantillon Niveau d'eau Observations organoleptiques Profondeur Lithologie 0.00 m 0.10 m^{0.00} Terre végétale : limon brunâtre, quelques granules de craie 0.0 m Remblais : limon beige à brunâtre, quelques granules de craie 0.2 m 0.30 m 0.5 m Remblais : limon à limon sableux brunâtre, rares petits débris de briques et cailloutis 0.50 0.7 m 0.80 m Remblais : limon beige, quelques petites granules de craie 1.0 m 1.00 ogiciel JEAN LUTZ S.A - www.jeanlutzsa.fr 1.20 m 1.5 m 1.50 Limon beige 2.00 m2.00 2.0 m

Annexe 7 Tableaux de synthèse des observations organoleptiques

Sondage	Prof. sondage (m)	Prof. éch	Mesures PID (ppm)	Observations organoleptiques
		0.0		
		0.2		
		0.5		
		0.7		
		1.0		
		1.5		
		2.0		
		3.0		
		3.5		
		4.0		
S1	10.0	4.5		
		5.0		
		5.5		
		6.0		
		6.5		
		7.0		
		7.5		
		8.0 8.5		
		9.0		
		9.5		
		10		
		0.0		
		0.2		
		0.5		
		0.7		
		1.0		
	10.0	2.0		
		2.5		
		3.0		
		3.5		
		4.0		
S 2		4.5		
		5.0		
		5.5		
		6.0		
		6.5 7.0		
		7.5		
		8.0		
		8.5		
		9.0		
		9.5		
	ļ	10	ļ	
		0.0	<u> </u>	
		0.2		
		0.5	}	
		1.0		
		1.5		
		2.0	l	
		2.3		
		2.5		
		3.0		
		3.5	ļ	
S 3	10.0	4.0		
		4.5	 	
		5.0	 	
		6.0	1	
		6.5		
		7.0		
		7.5		
		8.0		
		8.5		
		9.0	<u> </u>	
		9.5	ļ	
		10		

Sondage	Prof. sondage (m)	Prof. éch	Mesures PID (ppm)	Observations organoleptiques
		0.0		
		0.0		
		0.5		
		0.7		
		1.0		
		1.5		
		2.0		
		2.5		
		3.0		
		3.5		
		4.0		
S4	10.0	4.5		
		5.0		
		5.5		
		6.0		
		6.5 7.0		
		7.5		
		8.0	 	
		8.5		
		9.0		
		9.5		
		10		
		0.0		
		0.2		
	6.5	0.5		
		0.7		
		1.0		
		1.5		
		2.0		
S5		2.5		
		3.0		
		4.0		
		4.5		
		5.0		
		5.5	1.5	
		6.0	1.1	Très légère odeur d'hydrocarbures
		6.5	1.4	Très légère o deur d'hydrocarbures
		0.0		
		0.2		
		0.3		
		0.5		
		0.7		
		1.0		
		1.5		
		2.0		
		2.5		
		3.0		
		4.0		
S 6	10.0	4.5		
		5.0	1	
		5.5	1.1	
		6.0		
		6.5		
		7.0		
		7.5		
		8.0		
		8.5		
		9.0		
		9.5		
		10	<u> </u>	

Sondage	Prof. sondage (m)	Prof. éch (m)	Mesures PID (ppm)	Observations organoleptiques
		0.0		
		0.2		
		0.3		
		0.5		
		0.7		
		1.0		
		1.5		
		2.0		
		2.5		
		3.0		
		3.5 4.0		
S 7	10.0	4.5		
		5.0		
		5.5		
		6.0		
		6.5		
		7.0		
		7.5		
		8.0		
		8.5		
		9.0		
		9.5		
		10		
		0.0		
		0.2	-	
		0.5		
		0.7		
		1.0		
		1.5		
		2.0		
		2.5		
		3.0		
		3.5		
S8	10.0	4.0		
		4.5		
		5.0		
		5.5		
		6.0		
		7.0		
		7.5		
		8.0		
		8.5		
		9.0		
	Ī	9.5		
		10		
		0.0		
		0.1		
	Ī	0.2		
		0.5		
		0.0		
		0.7		
T.1	4.0	1.0	-	
T1	4.0	1.5	1	
	Ī	2.0	 	
	Ī	3.0	1	
		3.5		
		4.0	 	
		4.5		
		5.0	 	

Sondage	Prof. sondage (m)	Prof. éch	Mesures PID (ppm)	Observations organoleptiques
		0.0		
		0.1		
		0.2		
		0.5		
		0.0		
		0.7		
		1.0		
T2	4.0	1.5		
		2.0		
		2.5		
		3.0		
		3.5		
		4.0		
		4.5		
		5.0		
		0.0		
		0.2		
		0.5		
		0.7		
		1.0		
		1.5		
Т3	4.0	2.0		
		2.5		
		3.0		
		3.5		
		4.0		
		4.5		
		5.0		
		0.1		
		0.2		
		0.3		
		0.5		
		0.7		
		1.0		
m.	4.0	1.5		
T4	4.0	2.0		
		2.5		
		3.0		
		3.5		
		4.0		
		4.5		
		5.0		
		0.0		
		0.2	25	
		0.5	3	
SC1	2.0	0.7		
		1.0	3	
		1.5	2	
		2.0		
		0.0		
		0.2		
		0.5		
SC2	2.0	0.7		
		1.0		
		1.5		
		2.0		
		0.0		
		0.2		
		0.5		
SC3	2.0	0.7		
		1.0		
		1.5		

	P ro f.		Mesures	
Sondage	sondage (m)	Prof. éch	P ID (ppm)	Observations organoleptiques
		0.0		
		0.2		
SC4	2.0	0.5		
504	2.0	1.0		
		1.5		
		2.0		
		0.05		
		0.1		
		0.5		
SC5	2.0	0.7		
		1.0		
		1.5		
		2.0		
		0.0		
		0.5		
SC6	2.0	0.7		
		1.0		
		1.5	<u> </u>	
		2.0 0.0		
		0.0		
		0.5		
SC7	2.0	0.7		
		1.0		
		1.5		
		2.0 0.0		
	2.0	0.2		
		0.3		
SC8		0.5		
		0.7		
		1.0		
		2.0		
		0.0		
		0.2		
0.00		0.5		
SC9	2.0	0.7		
		1.5		
		2.0		
		0.0		
		0.2		
SC 10	2.0	0.5		
SCID	2.0	1.0	 	
		1.5		
		2.0		
		0.0		
		0.1		
		0.3		
SC11	2.0	0.5		
		1.0		
		1.5		
		2.0		
		0.0	ļ	
		0.3	 	
SC 12	2.0	0.7	 	
		1.0		
		1.5		
	<u> </u>	2.0		

Sondage	Prof. sondage (m)	Prof. éch	Mesures PID (ppm)	Observations organoleptiques
		0.1		
		0.1		
		0.5		
SCB	2.0	0.7		
505	2.0	1.0		
		1.5		
		2.0		
		0.0		
		0.3		
		0.5		
SC 14	2.0	0.7		
		1.0		
		1.5		
		2.0		
		0.0		
		0.2		
		0.5		
SC 15	2.0	0.7		
		1.0		
		1.5		
		2.0		
		0.0		
		0.3		
		0.5		
SC 16	2.0	0.7		
		1.0		
		1.5		
		2.0		
		0.0		
		0.2		
		0.5		
S C 17	2.0	0.7		
		1.0		
		1.5		
		2.0		
		0.0		
		0.2		
		0.5		
S C 18	2.0	0.7		
		1.0		
		1.5		
		2.0		
		0.0		
		0.2		
		0.5		
SC 19	2.0	0.7		
		1.0		
		1.5		
		2.0		
		0.0		
		0.2		
		0.5		
SC20	2.0	0.7		
		1.0		
		1.5		
		2.0		
		0.0		
		0.2		
		0.5		
SC21	2.0	0.7		
		1.0		
		1.5		
		2.0	1	

Annexe 8 Tableaux de synthèse des résultats des analyses en laboratoire sur échantillons de sols

Paramètres / éléments	Unité	Gamme ASPITET "s o ls o rdinaire s "	Seuil admissible en contenu total en mg/kg de	MOY S1-A	MOY S1-B	MOY S2-A	MOY S2-B	MOY S3-A	MOY S3-B	MOY S4-A	MOY S4-B	MOY S5-A	MOY S5-B	MOY S6-A	MOY S6-B	MOY S7-A	MOY S7-B	MOY S8-A	MOY S8-B	MOY T1	MOY T2	моч тз	MOY T4
c o m po s é s		po ur les métaux	matière sèche (*)	0.0 - 5.0 m	5.0 - 8.0 m	0.0 - 5.0 m	5.0 - 8.0 m	0.0 - 3.7 m	3.7 - 6.7 m	0.0 - 5.0 m	5.0 - 7.5 m	0.0 - 5.0 m	5.0 - 6.5 m	0.0 - 4.5 m	4.5 - 10 m	0.0 - 5.0 m	5.0 - 10 m	0.0 - 5.0 m	5.0 - 10 m	0.0 - 5.0 m	0.0 - 4.5 m	0.0 - 5.0 m	0.0 - 5.0 m
Caracté ris atio n Matière sèche (MS)	% brut	_	-	84.0	84.4	85.1	85.3	84.2	80.0	83.3	83.1	83.2	82.4	82.2	82.7	85.5	82.7	82.8	83.5	82.9	83.9	83.6	82.6
pH	-	-	-	8.5	8.5	8.6	8.3	8.4	8.4	8.5	8.4	8.5	9.0	8.5	8.0	8.6	8.4	8.3	8.3	9.2	8.6	8.8	8.6
COT Métaux	mg/kg ms	-	30 000	18 000	14 000	11000	10 000	39 000	88 000	8 200	64 000	20 000	52 000	12 000	72 000	7 300	19 000	35 000	18 000	7 200	16 000	3 300	23 000
Antimo ine (Sb)	mg/kg ms	_	-	< 0.5	< 0.5	< 0.5	< 0.5	3.9	2.8	< 0.5	19	< 0.5	< 0.5	< 0.5	5.1	1.0	2.5	1.1	2.4	< 0.5	0.7	0.6	< 0.5
Arsenic (As)	mg/kg ms	1-25	-	6.9	6.1	3.7	4.9	8.1	13	6.0	12	11	9.0	5.9	13	4.6	8.5	7.0	6.9	4.0	8.3	7.0	6.8
Baryum (Ba)	mg/kg ms	0.05 - 0.45	,	94	90	28	52 0.2	190	370	38	250	260	490	67	470	50 0.2	130	120	180	42 0.2	84	58	68
Cadmium (Cd) Chrome (Cr)	mg/kg ms mg/kg ms	10 - 90	-	0.3 24	0.3 20	0.1	20	23	26	0.2 19	24	0.2 25	0.3 29	0.2 19	27	0.2 14	0.4	24	17	12.	0.3 26	< 0.1 25	20
Cuivre (Cu)	mg/kg ms	2 - 20	-	33	35	7.5	19	180	5 10	12	1000	40	86	20	140	29	120	88	150	7.7	19	11	22
Mercure (Hg) Molyhdène (Mo.)	mg/kg ms	0.02 - 0.1	·	0.20	0.18	< 0.05	0.08	0.36	0.64	< 0.05	0.32	0.13	0.29	0.12 < 1.0	2.0	0.08	0.17 < 1.0	0.25 < 10	0.47 < 1.0	< 0.05	< 0.05	< 0.05	0.13
Nickel (Ni)	mg/kg ms mg/kg ms	2 - 60	-	< 1.0 16	< 1.0 14	< 1.0	< 1.0 14	< 1.0 19	29	< 1.0 15	2.1	< 1.0	53	< 1.0 15	2.0	< 1.0	< 1.0 16	< 1.0 16	< 1.0 14	< 1.0 9.4	< 1.0	< 1.0 18	< 1.0 15
Plomb (Pb)	mg/kg ms	9 - 50	-	82	110	12	25	210	330	44	560	130	110	37	580	43	150	420	230	11	23	13	41
Sélénium (Se)	mg/kg ms	0.10 - 0.70	-	< 1.0	< 1.0	< 1.0	< 1.0 42	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (Zn) Hydro c a rbure s	mg/kg ms	10 - 100	-	93	100	20	42	230	3 10	49	330	1/0	110	31	490	00	180	100	240	24	31	30	02
HC (C 10-C 12)	mg/kg ms	-	-	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	<4	< 4	< 4	< 4	< 4
HC (C 12-C 16) HC (C 16-C 20)	mg/kg ms mg/kg ms	-	-	< 4	< 4 14	< 4	< 4	< 4 13	< 4 14	< 4	< 4 14	10	120	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4
HC (C16-C20) HC (C20-C24)	mg/kg ms mg/kg ms	-	-	4	15	- 8 14	13	23	21	4	23	26	240	6	36	< 2	8 11	16	8	< 2	< 2	< 2	4
HC (C24-C28)	mg/kg ms	-	-	4	15	46	29	38	29	5	39	12	490	8	54	< 2	13	23	10	< 2	< 2	< 2	4
HC (C28-C32) HC (C32-C36)	mg/kg ms mg/kg ms	-	-	4	18 17	100	69 94	39 26	30 21	6	47 34	7	560 400	8	56 30	<2 <2	13	23	10 7	< 2	<2	< 2	4 < 2
HC (C36-C40)	mg/kg ms	-	-	< 2	10	92	61	13	11	< 2	18	< 2	180	< 2	13	< 2	3	7	4	< 2	< 2	< 2	< 2
HC (somme C10-C40)	mg/kg ms	-	500	< 20	95	402	278	156	131	28	177	83	2 0 10	32	210	< 20	59	91	44	< 20	< 20	< 20	< 20
Hydro carbures Aro Naphtalène		olycycliques (HAP)	< 0.050	< 0.050	< 0.050	< 0.050	0.084	< 0.050	< 0.050	0.22	< 0.050	0.086	< 0.050	0.10	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.097
Acénaphtylène	mg/kg ms mg/kg ms	-	-	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Acénaphtène	mg/kg ms	-	-	< 0.050	0.2	0.11	< 0.050	0.17	< 0.050	< 0.050	0.22	< 0.050	0.19	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Fluorène Phénanthrène	mg/kg ms mg/kg ms	-	-	< 0.050 0.26	0.26 1.9	0.33	< 0.050 0.13	0.13 1.7	0.2 1.5	< 0.050 0.13	0.34 2.3	< 0.050 0.31	0.24 1.9	< 0.050 0.43	0.079	< 0.050 0.076	0.063	0.088	<0.050 0.43	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 0.23
Anthracène	mg/kg ms mg/kg ms	-	-	< 0.050	0.46	0.36	< 0.050	0.40	0.40	< 0.050	0.42	< 0.050	0.51	0.43	0.93	< 0.050	0.80	0.18	0.43	< 0.050	< 0.050	< 0.050	< 0.23
Fluoranthène	mg/kg ms	-	-	0.35	2.8	1.5	0.20	2.5	2.3	0.24	2.9	0.47	3.4	0.97	2.4	0.20	1.3	2.4	0.79	< 0.050	0.061	< 0.050	0.39
P yrène Benzo (a) anthracène	mg/kg ms mg/kg ms	-	-	0.20 0.17	1.8	0.52	0.12	1.7 0.91	1.8 0.89	0.14	1.9 1.0	0.29	1.7	0.63 0.45	1.5	0.14 0.099	0.81	1.4	0.53 0.35	< 0.050 < 0.050	< 0.050 < 0.050	<0.050 <0.050	0.22
Chrysène	mg/kg ms	-	-	0.17	1.0	0.32	0.084	0.91	0.78	0.091	0.96	0.17	1.3	0.40	1.1	0.10	0.53	1.0	0.35	< 0.050	< 0.050	< 0.050	0.19
Benzo (b) fluo ranthène	mg/kg ms	-	-	0.15	1.1	0.53	0.13	1.1	1.0	0.080	1.0	0.19	1.3	0.47	1.3	0.13	0.60	1.2	0.41	< 0.050	< 0.050	0.068	0.23
Benzo (k) fluo ranthène Benzo (a) pyrène	mg/kg ms mg/kg ms	-	-	< 0.050	0.52	0.21	< 0.050	0.50	0.46 0.83	< 0.050	0.48	0.11	0.67	0.24 0.44	0.63	< 0.050	0.30 0.52	0.56 0.86	0.22	< 0.050 < 0.050	< 0.050	< 0.050	0.10 0.18
Dibenzo (a,h)anthracène	mg/kg ms	_	-	< 0.050	0.11	0.081	< 0.050	0.095	0.12	< 0.050	0.094	< 0.050	0.15	< 0.050	0.15	< 0.050	0.068	0.12	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Benzo (g,h,i)pérylène	mg/kg ms	-	-	0.073	0.46	0.21	0.086	0.63	0.55	< 0.050	0.54	0.16	0.45	0.27	0.68	0.074	0.35	0.59	0.28	< 0.050	< 0.050	< 0.050	0.097
Indéno (1,2,3-cd)pyrène Total HAP (16)	mg/kg ms mg/kg ms	-	50	0.13	0.72	0.31	0.096	0.81	0.78	0.088	0.73	0.17	0.9	0.4	1.0	0.11	0.5 6.5	0.91	0.42	< 0.050	< 0.050	< 0.050	0.16
BTEX															•	-							
Benzène To luène	mg/kg ms	-	-	< 0.050 < 0.050	< 0.050	< 0.069	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050	< 0.050 < 0.050	< 0.050	< 0.050 < 0.050	< 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050	< 0.050	< 0.050	< 0.050 < 0.050
Ethylbenzène	mg/kg ms mg/kg ms	-	-	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
m,p-Xylène	mg/kg ms	-	-	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
o-Xylène somme des BTEX(4)	mg/kg ms	-	- 6	< 0.050 < la	< 0.050 < la	< 0.050	< 0.050 < la	< 0.050 < la	< 0.050 < la	< 0.050 < la	< 0.050 < la	< 0.050 < la	< 0.050 < la	< 0.050 < la	< 0.050 < la	< 0.050 < la	< 0.050 < la	< 0.050 < la	<0.050 < la	< 0.050 < la	< 0.050 < la	< 0.050 < la	< 0.050 < la
COHV	mg/Kg ms		Ü													-							
Chlorure de vinyle	mg/kg ms	-	-	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Dichlorométhane Chloroforme	mg/kg ms mg/kg ms	-	-	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Tétrachlorure de carbon	mg/kg ms	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Trichloro éthylène	mg/kg ms	-	-	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Tetrachloroéthylène 1,1,1-Trichloroéthane	mg/kg ms mg/kg ms	-	-	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05 < 0.05
1,1,2-Trichloroéthane	mg/kg ms	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1-Dichloroéthane	mg/kg ms	-	-	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
1,2-Dichloroéthane 1,1-dichloroéthylène	mg/kg ms mg/kg ms	-	-	< 0.05	< 0.05 < 0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.10	< 0.05	< 0.05 < 0.10	< 0.05	< 0.05	< 0.05	< 0.05 < 0.10
c is 1,2-dichloro éthylène	mg/kg ms	-	-	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
rans 1,2-dichloro éthène PCB	mg/kg ms	-	-	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
PCB 28	mg/kg ms	-	-	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.038	0.0018	0.0017	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
PCB 52	mg/kg ms	-	-	< 0.0010	0.0023	< 0.0010	< 0.0010	0.0099	0.0075	< 0.0010	0.0026	< 0.0010	0.083	0.0036	0.0051	< 0.0010	0.0027	0.0094	0.0041	< 0.0010	< 0.0010	< 0.0010	< 0.0010
P CB 101 P CB 118	mg/kg ms mg/kg ms	-	-	< 0.0010	0.0043	< 0.0010	< 0.0010	0.014	0.014	< 0.0010	0.0058	< 0.0010	0.059	0.0022 0.0013	0.0071 0.0036	< 0.0010 < 0.0010	0.0054 0.0046	0.023	0.0089 0.0072	< 0.0010	< 0.0010	< 0.0010	< 0.0010 < 0.0010
P CB 138	mg/kg ms mg/kg ms	-	-	< 0.0010	0.0033	< 0.0010	< 0.0010	0.0073	0.0073	0.0010	0.0051	< 0.0010	0.032	0.0017	0.0036	< 0.0010	0.0046	0.019	0.0072	< 0.0010	< 0.0010	< 0.0010	0.0010
PCB 153	mg/kg ms	-	-	< 0.0010	0.0038	< 0.0010	< 0.0010	0.0072	0.0075	0.0013	0.0045	< 0.0010	0.076	0.0013	0.008	< 0.0010	0.006	0.024	0.0071	< 0.0010	< 0.0010	< 0.0010	0.0017
PCB 180 SOMMEPCB (7)	mg/kg ms mg/kg ms	-	- 1	< 0.0010	0.0019	< 0.0010	< 0.0010 < la	0.0046	0.003	< 0.0010	0.002	< 0.0010	0.062	< 0.0010	0.0054	< 0.0010 < la	0.003	0.014	0.0031	< 0.0010	< 0.0010	< 0.0010	< 0.0010
SOMME F CB (/)	mg/kg ms		1	< IQ	0.020	< IU	< IU	0.032	0.049	0.003	0.024	< IU	0.43	0.012	0.040	< IQ	0.029	0.12	0.039	< IQ	< IU	< IU	0.004

Valeur supérieure à la gamme ASP ITET "sols ordinaires" pour les métaux

Valeur supérieure aux seuils ISDI (anciennement CSD III)

Valeur significative

lq: limite de quantification

(*) Arrêté du 12 décembre 2014 relatif aux installations de stockage de déchets inertes

 $E chantillon\ MOYS1-A\ constitué\ par: S1-0.0\ m\ /\ S1-0.2\ m\ /\ S1-0.5\ m\ /\ S1-0.0\ m\ /\ S1-0.5\ m\ /\ S1-0.0\ m\ /\ S1-$

Echantillon MOY S I-B constitué par : S1 - 5.5 m / S1 - 6.0 m / S1 - 6.5 m / S1 - 6.0 m / S1 - 7.0 m / S1 - 7.0 m / S1 - 8.0 m Echantillon MOY S2 - A constitué par : S2 - 0.0 m / S2 - 0.2 m / S2 - 0.5 m / S2 - 0.5 m / S2 - 0.5 m / S2 - 1.0 m / S2 - 1.5 m / S2 - 2.0 m / S2 - 2.5 m / S2 - 3.0 m / S2 - 3.0 m / S2 - 3.5 m / S2 - 4.0 m / S2 - 4.5 m / S2 - 5.0 m

Echantillon MOYS2-B constitué par: \$2 - 5.5 m / \$2 - 6.0 m / \$2 - 6.5 m / \$2 - 7.0 m / \$2 - 7.5 m / \$2 - 8.0 m Echantillon MOYS3-A constitué par: \$3 - 0.0 m / \$3 - 0.2 m / \$3 - 0.5 m / \$3 - 0.5 m / \$3 - 1.0 m / \$3 - 1.5 m / \$3 - 2.0 m / \$3 - 2.5 m / \$3 - 3.0 m / \$3 - 3.5 m Echantillon MOYS3-B constitué par: \$3 - 4.0 m / \$3 - 4.5 m / \$3 - 5.0 m / \$3 - 5.5 m / \$3 - 6.0 m / \$3 - 6.5 m

Echantillon MOYS5-A constitué par: \$5 - 0.0 m / \$5 - 0.2 m / \$5 - 0.5 m / \$5 - 0.7 m / \$5 - 0.7 m / \$5 - 10 m / \$5 - 10 m / \$5 - 2.5 m / \$5 - 2.5 m / \$5 - 3.5 m / \$5 - 3.5 m / \$5 - 3.5 m / \$5 - 4.0 m / \$5 - 4.5 m / \$5 - 5.0 m Echantillon MOYS5-B constitué par: \$5 - 5.5 m / \$5 - 6.0 m / \$5 - 6.5 m

Echantillon MOYS5-B constitué par: \$5 - 5.5 m | \$5 - 6.0 m | \$5 - 6.5 m | \$6 - 0.2 m | \$6 - 0.5 m | \$6 - 0.5

 $E chantillon\ MOYT2\ constitué\ par: T2\ - 0.0\ m\ /\ T2\ - 0.1\ m\ /\ T2\ - 0.5\ m\ /\ T2\ - 0.5\ m\ /\ T2\ - 0.7\ m\ /\ T2\ - 1.5\ m\ /\ T2\ - 1.5\ m\ /\ T2\ - 2.0\ m\ /\ T2\ - 2.5\ m\ /\ T2\ - 3.0\ m\ /\ T2\ - 3.5\ m\ /\ T2\ - 4.0\ m\ /\ T2\ - 4.5\ m\ /\ T2\ - 4.0\ m\ /\ T2\ - 4.5\ m\ /\ T3\ - 1.0\ m\ /\ T3\ - 1.0\ m\ /\ T3\ - 1.0\ m\ /\ T3\ - 2.0\ m\ /\ T3\ - 3.5\ m\ /\ T3\ - 3.5\ m\ /\ T3\ - 4.0\ m\ /\ T3\ - 4.5\ m\ /\ T3\ - 5.0\ m\ /\$

Echantillon MOYT4 constitué par: T4 - 0.1 m / T4 - 0.2 m / T4 - 0.3 m / T4 - 0.5 m / T4 - 0.5 m / T4 - 0.7 m / T4 - 10 m / T4 - 1.5 m / T4 - 2.5 m / T4 - 2.5 m / T4 - 3.5 m / T4 - 3.5 m / T4 - 4.5 m / T4 - 4.5 m / T4 - 5.0 m

Paramètres / éléments	Unité	Gamme ASPITET "s o ls o rdinaire s"	Seuil admissible en contenu total en mg/kg de	MOY SC1	MOY SC2	MOY SC3	MOY SC4	MOY SC5	MOY SC6	MOY SC7	MOY SC8	MOY SC9	MOY SC10	MOY SC11	MOY SC12	MOY SC13	MOY SC14	MOY SC15	MOY SC16	MOY SC17	MOY SC18	MOY SC19	MOY SC20	MOY SC21
composés		po ur les métaux	matière sèche (*)	0.0 - 1.1 m	0.0 - 2.0 m	0.0 - 2.0 m	0.0 - 0.6 m	0.0 - 1.2 m	0.0 - 2.0 m	0.0 - 0.8 m	0.0 - 2.0 m	0.0 - 1.2 m	0.0 - 1.3 m	0.0 - 1.2 m	0.0 - 2.0 m	0.0 - 2.0 m	0.0 - 2.0 m	0.0 - 2.0 m	0.0 - 1.2 m	0.0 - 2.0 m	0.0 - 2.0 m	0.0 - 2.0 m	0.0 - 2.0 m	0.0 - 1.2 m
Caractéris ation Matière sèche (MS)	% brut	_	_	87.1	83.3	82.0	85.1	82.6	81.8	83.8	81.6	81.5	85.3	81.8	81.6	81.8	82.4	81.4	82.3	81.4	82.2	80.7	82.7	83.2
pН	-	-	-	8.3	8.8	8.7	8.7	8.5	8.6	8.3	8.4	8.5	8.5	8.4	8.5	8.5	8.4	7.8	8.6	8.5	8.6	8.5	8.6	8.4
COT Métaux	mg/kg ms	-	30 000	13 000	4 300	18 000	11000	17 000	12 000	26 000	24 000	9 100	26 000	28 000	19 000	12 000	35 000	71000	21000	16 000	9 800	77 000	19 000	18 000
Antimo ine (Sb)	mg/kg ms	-	-	< 0.5	< 0.5	< 0.5	< 0.5	1.0	< 0.5	0.7	< 0.5	< 0.5	1.1	4.1	< 0.5	0.8	3.0	1.0	1.4	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5
Arsenic (As)	mg/kg ms	1-25	-	6.0	5.0 56	7.3 73	6.9 83	8.1 130	4.6 49	8.8 100	6.9 120	8.4 85	11 240	6.5 82	6.5 130	6.3 89	8.0 200	8.3 200	8.3 110	3.5 48	6.3	7.8 140	5.8 65	9.1
Baryum (Ba) Cadmium (Cd)	mg/kg ms mg/kg ms	0.05 - 0.45	-	0.2	0.1	0.2	0.2	0.4	0.2	0.4	0.4	0.2	0.5	0.4	0.5	0.3	0.5	0.4	0.4	0.1	0.3	0.3	0.2	180
Chrome (Cr)	mg/kg ms	10 - 90	-	21	15	23	21	25	14	24	22	27	30	21	15	19	25	24	29	10	16	19	16	31
Cuivre (Cu) Mercure (Hg)	mg/kg ms mg/kg ms	2 - 20 0.02 - 0.1	-	0.07	0.06	16 0.06	0.09	49 0.12	0.06	45 0.15	0.19	0.12	0.38	45 0.14	45 0.28	26	0.26	72	0.18	0.12	0.62	71	0.10	0.12
Molybdène (Mo)	mg/kg ms	- 0.02	-	< 1.0	< 1.0	< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Nickel (Ni)	mg/kg ms	2 - 60 9 - 50	-	13	12 20	17 33	18	19	11 22	17	16	18 49	24	15	13	15	20	21	23	7.3 42	14	16	13	21
Plomb (Pb) Sélénium (Se)	mg/kg ms mg/kg ms	0.10 - 0.70	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (Zn)	mg/kg ms	10 - 100	-	60	49	64	69	170	44	120	98	120	300	110	180	89	260	200	120	54	96	100	66	260
Hydro carbures	mg/kg ms	_		< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 1
HC (C 12-C 16)	mg/kg ms			<4	< 4	<4	< 4	< 4	< 4	<4	< 4	< 4	<4	<4	<4	< 4	< 4	<4	<4	< 4	< 4	<4	<4	< 4
HC (C16-C20)	mg/kg ms	-	-	< 2	< 2	5	3	< 2	< 2	5	< 2	< 2	5	6	4	6	5	6	4	< 2	< 2	3	2	6
HC (C20-C24) HC (C24-C28)	mg/kg ms mg/kg ms	-	-	5	< 2 < 2	5	5	< 2 < 2		10	< 2 3	< 2	12	6	5 8	7	6 7	10 14	8	< 2 3	< 2 3	6	3 4	8 12
HC (C28-C32)	mg/kg ms	-	-	5	< 2	4	5	< 2	5	11	3	3	11	5	8	5	7	12	9	3	3	6	4	13
HC (C32-C36) HC (C36-C40)	mg/kg ms mg/kg ms	-	-	3	< 2	< 2	3	< 2	3	5	< 2	< 2	5	< 2	6	< 2	4	7	5	< 2	< 2	3	< 2	10
HC (c30-C40) HC (somme C10-C40)	mg/kg ms	-	500	< 20	< 20	< 20	<20	< 20	< 20	42	< 20	< 20	45	28	34	31	32	55	35	< 20	< 20	26	< 20	55
	matiques P	o lyc yc liques (HAP)	0.040				0.050				0.050								0.050				
Naphtalène Acénaphtylène	mg/kg ms mg/kg ms	-	-	< 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050	< 0.050 < 0.050	< 0.050 < 0.050	0.091 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	0.12 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 0.067	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050
Acénaphtène	mg/kg ms	-	-	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.16	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Fluorène	mg/kg ms	-	-	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.11	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
P hénanthrène Anthracène	mg/kg ms mg/kg ms	-	-	0.073 < 0.050	<0.050 <0.050	0.45 0.11	0.16 < 0.050	0.48 0.24	0.13 < 0.050	< 0.050	< 0.050	0.11 < 0.050	0.45	0.81 0.087	0.22 < 0.050	1.3 0.27	0.34	0.32 < 0.050	0.39 < 0.050	0.07 < 0.050	0.13 < 0.050	0.17 < 0.050	0.16 < 0.050	0.99
Fluoranthène	mg/kg ms	-	-	0.21	0.19	1.3	0.36	1.2	0.35	0.47	0.34	0.29	1.0	0.94	0.56	2.3	0.73	0.58	0.79	0.20	0.28	0.37	0.44	2.2
P yrène Benzo (a)anthracène	mg/kg ms mg/kg ms	-	-	0.14 0.10	0.16 0.10	1.0 0.61	0.22 0.16	0.82 0.45	0.24 0.17	0.27	0.25 0.13	0.21	0.61 0.45	0.62 0.28	0.37 0.27	1.6 0.93	0.50	0.38 0.27	0.53 0.32	0.12	0.18 0.12	0.25 0.21	0.27 0.23	1.3 0.84
Chrys ène	mg/kg ms	-	-	0.11	0.083	0.54	0.16	0.40	0.17	0.20	0.17	0.13	0.43	0.26	0.26	0.82	0.33	0.27	0.32	0.097	0.12	0.21	0.22	0.69
Benzo (b) fluo ranthène	mg/kg ms	-	-	0.14	0.11	0.54	0.18	0.45	0.17	0.25	0.20	0.15	0.50	0.33	0.33	0.88	0.45	0.33	0.41	0.14	0.13	0.24	0.25	0.85
Benzo (k)fluo ranthène Benzo (a)pyrène	mg/kg ms mg/kg ms	-	-	< 0.050 0.095	0.06	0.30	0.081	0.25 0.44	0.087	0.11	0.085	0.075 0.12	0.23	0.15 0.28	0.16	0.44	0.22	0.16	0.19	0.061	0.064	0.12	0.12	0.43
Dibenzo (a,h)anthracène	mg/kg ms	-	-	< 0.050	< 0.050	< 0.050	< 0.050	0.062	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.088	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.094
Benzo (g,h,i)pérylène Indéno (1,2,3-cd)pyrène	mg/kg ms	-	-	0.064	< 0.050 0.094	0.30 0.44	0.083	0.30 0.42	0.086	0.11	0.097	0.087	0.28 0.40	0.23	0.22	0.40	0.23	0.15 0.25	0.21	0.076	0.069	0.12 0.19	0.13	0.53
Total HAP (16)	mg/kg ms mg/kg ms	-	50	1.0	0.89	6.2	1.7	5.5	1.7	2.3	1.8	1.4	4.8	4.3	3.1	11	3.8	2.9	3.8	1.1	1.3	2.1	2.3	9.7
BTEX				0.040	0.050	0.050			0.040			0.050								0.050				
Benzène To luène	mg/kg ms mg/kg ms	-	-	< 0.050	< 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050	<0.050 <0.050	< 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050	< 0.050 < 0.050	<0.050 <0.050	< 0.050 < 0.050	< 0.050 < 0.050	< 0.050	< 0.050
Ethylbenzène	mg/kg ms	-	-	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
m,p-Xylène	mg/kg ms	-	-	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10 < 0.050	< 0.10	< 0.10 < 0.050	< 0.10 < 0.050	< 0.10 < 0.050	< 0.10	< 0.10 < 0.050	< 0.10 < 0.050	< 0.10 < 0.050	< 0.10	< 0.10 < 0.050	< 0.10 < 0.050	< 0.10 < 0.050	< 0.10	< 0.10 < 0.050	< 0.10	< 0.10
o-Xylène somme des BTEX(4)	mg/kg ms mg/kg ms		6	< 0.050 < lq	< lq	< lq	< lq	< lq	< 0.050 < lq	< 0.050 < lq	< 0.050 < lq	< 0.050 < lq	< 0.050 < lq	< 0.050 < lq	< 0.050 < lq	< 0.050 < lq	< 0.050 < lq	< 0.050 < lq	< lq	< lq	< 0.050 < lq	< 0.050 < lq	< 0.050 < lq	< lq
COHV				.0.02	.0.00	.0.00	.0.00	.0.00	.0.00	.0.02	-0.02	.0.02	.0.02	.0.00	.0.00	.0.00	.0.02	.0.00	.0.02	.0.00	-0.00	.0.00	.0.02	10.00
Chlorure de vinyle Dichlorométhane	mg/kg ms mg/kg ms	-	-	< 0.02 < 0.05	< 0.02	< 0.02 < 0.05	< 0.02 < 0.05	< 0.02 < 0.05	< 0.02 < 0.05	< 0.02 < 0.05	< 0.02 < 0.05	< 0.02 < 0.05	< 0.02 < 0.05	< 0.02 < 0.05	< 0.02 < 0.05	< 0.02 < 0.05	< 0.02 < 0.05	< 0.02 < 0.05	< 0.02 < 0.05	< 0.02 < 0.05	< 0.02 < 0.05	< 0.02 < 0.05	< 0.02 < 0.05	< 0.02 < 0.05
Chloroforme	mg/kg ms	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Tétrachlorure de carbon Trichloro éthylène	mg/kg ms	-	-	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05
Te tra chlo ro éthylè ne	mg/kg ms mg/kg ms	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1,1-Trichloroéthane	mg/kg ms	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1,2-Trichloroéthane	mg/kg ms mg/kg ms	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichloro éthane	mg/kg ms		_	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1-dichloroéthylène	mg/kg ms	-	-	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
cis 1,2-dichloro éthylène trans 1,2-dichloro éthène	mg/kg ms mg/kg ms	-	-	< 0.025 < 0.025	<0.025 <0.025	< 0.025 < 0.025	< 0.025 < 0.025	< 0.025 < 0.025	< 0.025 < 0.025	< 0.025 < 0.025	< 0.025 < 0.025	< 0.025 < 0.025	< 0.025 < 0.025	< 0.025 < 0.025	< 0.025 < 0.025	< 0.025 < 0.025	< 0.025 < 0.025	< 0.025 < 0.025	< 0.025 < 0.025	< 0.025 < 0.025	< 0.025 < 0.025	< 0.025 < 0.025	< 0.025 < 0.025	< 0.025 < 0.025
PCB																								
P CB 28 P CB 52	mg/kg ms mg/kg ms	-	-	< 0.0010	< 0.0010	< 0.0010 < 0.0010	< 0.0010	< 0.0010 < 0.0010	< 0.0010	< 0.0010 < 0.0010	< 0.0010 < 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010 < 0.0010	< 0.0010 < 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010 < 0.0010	< 0.0010 < 0.0010	< 0.0010	< 0.0010	< 0.0010 0.0014
PCB 101	mg/kg ms mg/kg ms	-		< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0018	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0026	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0062	0.0059
P C B 118	mg/kg ms	-	-	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0012	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0023	0.0012	< 0.0010	< 0.0010	< 0.0010	0.0065	0.0038
P CB 138 P CB 153	mg/kg ms mg/kg ms	-	-	< 0.0010	< 0.0010	< 0.0010	0.0014	0.0016	< 0.0010	0.0026	< 0.0010	0.0026	0.0036	< 0.0010	0.0017 < 0.0010	0.0017 < 0.0010	< 0.0010	0.0064	0.0044	< 0.0010	< 0.0010	< 0.0010	0.0058	0.013
PCB 180	mg/kg ms	-	-	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0014	< 0.0010	< 0.0010	0.0019	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0026	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0088
SOMME PCB (7)	mg/kg ms	-	1	< lq	< lq	< lq	0.003	0.003	< lq	0.006	< l q	0.006	0.010	< lq	0.002	0.002	< lq	0.019	0.008	< l q	< lq	< lq	0.027	0.045

Valeur supérieure à la gamme ASP ITET "sols ordinaires" pour les métaux

Valeur supérieure aux seuils ISDI (anciennement CSD III)

Valeur s ignific a tive

lq: limite de quantification

(*) Arrêté du 12 décembre 2014 relatif aux installations de stockage de déchets inertes

 $E chantillon\ MOY\ SC1 constitu\'e\ par: SC1-0.0\ m\ /\ SC1-0.2\ m\ /\ SC1-0.5\ m\ /\ SC1-0.7\ m\ /\ SC1-1.0\ m\ /\ SC1-1.0\$

Echantillon MOYSC2 constitué par: SC2 -0.0 m / SC2 -0.2 m / SC3 -0.5 m / SC3 -0.7 m / SC3 -1.0 m / SC2 -1.0 m / SC2 -1.5 m / SC2 -2.0 m Echantillon MOYSC3 constitué par: SC3 -0.0 m / SC3 -0.2 m / SC3 -0.5 m / SC3 -0.7 m / SC3 -1.0 m / SC3 -1.5 m / SC3 -2.0 m

Echantillon MOYSC4 constitué par: SC4 - 0.0 m / SC4 - 0.2 m / SC5 - 0.3 m / SC5 - 0.7 m / SC5 - 1.0 m / SC5 - 1.0 m / SC5 - 2.0 m Echantillon MOYSC5 constitué par: SC5 - 0.05 m / SC5 - 0.1 m / SC5 - 0.3 m / SC5 - 0.5 m / SC5 - 0.7 m / SC5 - 1.0 m Echantillon MOYSC6 constitué par: SC6 - 0.0 m / SC6 - 0.2 m / SC6 - 0.5 m / SC6 - 0.7 m / SC6 - 1.5 m / SC6 - 1.0 m / SC6 - 2.0 m Echantillon MOYSC7 constitué par: SC7 - 0.0 m / SC7 - 0.2 m / SC7 - 0.5 m / SC7 - 0.7 m

Echantillon MOYSC8 constitué par: SC8 - 0.0 m / SC8 - 0.2 m / SC8 - 0.2 m / SC8 - 0.5 m / SC8 - 0.7 m / SC8 - 1.0 m / SC8 - 1.5 m / SC8 - 2.0 m Echantillon MOYSC9 constitué par: SC9 - 0.0 m / SC9 - 0.2 m / SC9 - 0.5 m / SC9 - 0.7 m / SC9 - 1.0 m

Echantillon MOYSC9 constitué par: SC9 - 0.0 m / SC9 - 0.2 m / SC9 - 0.5 m / SC9 - 0.7 m / SC9 - 1.0 m Echantillon MOYSC10 constitué par: SC10 - 0.0 m / SC10 - 0.2 m / SC10 - 0.5 m / SC10 - 0.7 m / SC10 - 1.0 m Echantillon MOYSC11 constitué par: SC11 - 0.0 m / SC11 - 0.1 m / SC11 - 0.3 m / SC11 - 0.5 m / SC11 - 0.7 m / SC11 - 1.0 m Echantillon MOYSC12 constitué par: SC12 - 0.0 m / SC12 - 0.3 m / SC12 - 0.5 m / SC12 - 0.7 m / SC12 - 1.0 m / SC12 - 1.5 m / SC12 - 2.0 m Echantillon MOYSC13 constitué par: SC13 - 0.1 m / SC13 - 0.3 m / SC13 - 0.5 m / SC13 - 0.7 m / SC13 - 1.0 m / SC13 - 1.5 m / SC13 - 2.0 m Echantillon MOYSC14 constitué par: SC14 - 0.0 m / SC14 - 0.3 m / SC14 - 0.5 m / SC14 - 0.7 m / SC13 - 1.0 m / SC14 - 1.5 m / SC14 - 2.0 m Echantillon MOYSC15 constitué par: SC15 - 0.0 m / SC15 - 0.2 m / SC15 - 0.5 m / SC15 - 0.7 m / SC15 - 1.0 m / SC15 - 1.5 m / SC15 - 2.0 m Echantillon MOYSC16 constitué par: SC15 - 0.0 m / SC16 - 0.3 m / SC16 - 0.5 m / SC16 - 0.7 m / SC15 - 1.0 m / SC15 - 1.5 m / SC15 - 2.0 m Echantillon MOYSC16 constitué par: SC15 - 0.0 m / SC17 - 0.2 m / SC17 - 0.5 m / SC17 - 0.7 m / SC17 - 1.0 m / SC17 - 1.5 m / SC17 - 2.0 m Echantillon MOYSC18 constitué par: SC15 - 0.0 m / SC18 - 0.2 m / SC18 - 0.7 m / SC18 - 1.0 m / SC17 - 1.5 m / SC17 - 2.0 m Echantillon MOYSC19 constitué par: SC15 - 0.0 m / SC18 - 0.2 m / SC18 - 0.5 m / SC18 - 0.7 m / SC19 - 1.0 m / SC19 - 1.5 m / SC19 - 2.0 m Echantillon MOYSC19 constitué par: SC19 - 0.0 m / SC19 - 0.2 m / SC19 - 0.7 m / SC19 - 1.0 m / SC19 - 1.5 m / SC19 - 2.0 m Echantillon MOYSC20 constitué par: SC20 - 0.0 m / SC19 - 0.2 m / SC20 - 0.7 m / SC20 - 1.0 m / SC20 - 1.5 m / SC20 - 0.7 m / SC20 - 1.0 m / S

 $Echantillon\ MOY\ SC20\ constitute\ par: SC20\ -\ 0.0\ m\ /\ SC20\ -\ 0.2\ m\ /\ SC20\ -\ 0.5\ m\ /\ SC20\ -\ 0.7\ m\ /\ SC20\ -\ 1.0\ m\ /\ SC20\ -\ 1.5\ m\ /\ SC20\ -\ 2.0\ m\ /\ SC20\ -\ 1.0\ m\ /\ SC2$

Echantillon MOY SC21cons titué par : SC21-0.0 m / SC21-0.2 m / SC21-0.5 m / SC21-0.7 m / SC21-10 m

	Seuil	Seuil																					
	admis sible	admis sible		MOV S1-A	MOV SLR	MOV S2-A	MOV S2.B	MOY S3-A	MOV S3.R	MOV SA-A	MOV SA.B	MOV S5-A	MOV S5-R	MOV S6-A	MOV S6-R	MOY S7-A	MOV S7-R	MOV SS.A	MOV SS-R	MOY T1	MOY T2	MOY T3	MOY T4
Paramètres / substances	en contenu	en contenu	Unité	MOI SI-A	MOT SI-B	MOI 52-A	MO1 32-B	MO1 55-A	МОТ 33-В	MO1 54-A	MO1 54-B	MO1 33-A	МОТ 33-В	MOT SU-A	МОТ 30-В	MOI STA	МОТ 37-В	MOI 30-A	МОТ 38-В	MOI II	MO1 12	MOT 13	MO1 14
r arameties / substances	total en	total en	Onite																				ı
	mg/kg de matière	mg/kg de							4.0						4.7.40								
	matiere	matière		0.0 - 5.0 m	5.0 - 8.0 m	0.0 - 5.0 m	5.0 - 8.0 m	0.0 - 4.0 m	4.0 - 6.2 m	0.0 - 5.0 m	5.0 - 7.5 m	0.0 - 5.0 m	5.0 - 6.5 m	0.0 - 4.5 m	4.5 - 10 m	0.0 - 5.0 m	5.0 - 10 m	0.0 - 5.0 m	5.0 - 10 m	0.0 - 5.0 m	0.0 - 5.0 m	0.0 - 5.0 m	0.0 - 5.0 m
	CPPHP 141	CPP IIP I TO							<u> </u>	Analy	ses sur bru	t	•		•				•				
COT	30 000		mg/kg ms	18 000	14 000	11000	10 000	39 000	88 000	8 200	64 000	20 000	52 000	12 000	72 000	7 300	19 000	35 000	18 000	7 200	16 000	3 300	23 000
Somme des HC (somme C10-	500		mg/kg ms	< 20	95	402	278	156	131	28	177	83	2 0 10	32	210	< 20	59	91	44	< 20	< 20	< 20	< 20
Somme des 16 HAP	50		mg/kg ms	1.6	14	7.2	1.0	13	12	0.94	14	2.2	15	4.8	12	1.0	6.5	12	4.2	< lq	0.06	0.07	2.1
Somme des BTEX(4)	6		mg/kg ms	< lq	< lq	0.069	< lq	< lq	< lq	< lq	< lq	< lq	< lq	< lq	< lq	< lq	< lq	< lq	< lq	< lq	< lq	< lq	< lq
Somme des PCB (7)	1		mg/kg ms	< lq	0.02	< lq	< lq	0.052	0.049	0.003	0.024	< lq	0.43	0.012	0.04	< lq	0.029	0.12	0.039	< lq	< lq	< lq	0.004
										Analys	es sur lixivi	at				-				-			
Caracté ris atio n																							
pH	-	-	-	8.3	8.5	8.4	8.2	8.2	8.4	8.3	8.4	8.3	9.3	8.1	8.1	8.3	8.3	8.3	8.2	9.5	7.6	9.2	8.5
Conductivité	-	-	μS/cm	150	180	130	190	160	200	110	220	120	240	130	300	94.9	150	140	170	72.2	96.1	67.2	100
Fraction soluble	4 000	60 000	mg/kg MS	1 100	4 200	< 1000	1400	1000	1200	< 1000	1500	< 1000	1700	1000	1900	< 1000	< 1000	< 1000	1 100	< 1000	< 1000	< 1000	< 1000
COT	500	800	mg/kg MS	30	68	21	12	28	54	14	62	15	100	21	26	15	< 10	18	12	11	12	< 10	12
Indice phénols	1	-	mg/kg MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chlorures	800	15 000	mg/kg MS	66	81	38	17	46	38	23	140	15	120	55	27	18	25	25	19	35	20	< 10	25
Sulfates	1000	20 000	mg/kg MS	81	250	84	460	150	150	94	270	82	690	52	880	60	260	150	320	< 50	< 50	60	97
Fluorures	10	150	mg/kg MS	6.0	7.0	5.0	7.0	8.0	9.0	7.0	7.0	8.0	6.0	6.0	5.0	8.0	9.0	8.0	8.0	6.0	6.0	7.0	8.0
Métaux	2.25	0.5		0.00	0.40	0.05	0.05	0.00	0.45	0.05	0.51	0.05	0.11	0.05	0.40	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Antimo ine (Sb)	0.06	0.7	mg/kg MS	0.08	0.10	0.05	< 0.05	0.08	0.17	0.05	0.51	< 0.05	0.14	< 0.05	0.10	< 0.05	< 0.05	0.06	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Arsenic (As)	0.5	2	mg/kg MS	< 0.05	0.08	< 0.05	< 0.05	< 0.05	< 0.05 0.56	< 0.05 0.14	0.07	< 0.05	0.13	< 0.05 0.13	< 0.05 0.53	< 0.05 < 0.1	< 0.05 0.22	< 0.05 0.25	< 0.05 0.34	< 0.05	< 0.05	< 0.05	< 0.05
Baryum (Ba) Cadmium (Cd)	0.04	- 1	mg/kg MS	0.15 < 0.001	0.78	< 0.001	< 0.1 < 0.001	0.29 < 0.001	< 0.001	< 0.001	0.35 < 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.1	< 0.001	< 0.001	< 0.001	< 0.1 < 0.001	< 0.1	< 0.1	< 0.1
Chrome (Cr)	0.04	10	mg/kg MS mg/kg MS	< 0.001	0.002	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.02	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.03	0.001	< 0.001	< 0.001	0.001	< 0.001
Cuivre (Cu)	0.5	50	mg/kg MS	0.14	0.10	0.07	0.02	0.18	0.54	0.08	0.75	0.02	0.16	0.02	0.18	0.02	0.02	0.03	0.03	0.04	0.02	< 0.02	0.05
Mercure (Hg)	0.01	0.2	mg/kg MS	< 0.0003	0.23	< 0.007	< 0.003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.007	< 0.0003	< 0.0003	< 0.0003	< 0.003	< 0.02	< 0.003
Molybdène (Mo)	0.01	-	mg/kg MS	0.0003	0.0015	0.06	0.0003	0.10	0.19	< 0.0003	0.26	0.06	0.32	0.0003	0.20	< 0.00	0.05	0.06	< 0.003	< 0.003	< 0.0003	< 0.0003	< 0.005
Nickel (Ni)	0.3	10	mg/kg MS	< 0.05	0.18	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Plomb (Pb)	0.5	10	mg/kg MS	< 0.05	0.88	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Sélénium (Se)	0.1	0.5	mg/kg MS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Zinc (Zn)	4	50	mg/kg MS	0.03	0.63	< 0.02	0.07	0.04	0.13	0.04	0.10	0.06	0.06	0.13	0.12	0.04	0.04	0.10	0.03	< 0.03	0.02	< 0.03	0.06
Zinc (Zii)		50	mg/kg Mo	0.03	0.03	< 0.02	0.07	0.04	0.10	0.04	0.10	0.00	0.00	0.13	0.12	0.04	0.04	0.10	0.03	< 0.02	0.02	< 0.02	0.00

(*) Arrêté du 12 décembre 2014 relatif aux installations de stockage de déchets inertes

(**) Décis ion n°2003/33/CE du 19 décembre 2002 relative aux critères et procédures d'admis sion des déchets dans les décharges

Résultat > valeur seuil à ne pas dépasser

 $Echantillon\ MOYS1-A\ constitute\ par: S1-0.0\ m\ /\ S1-0.5\ m\ /\ S1-0.5\ m\ /\ S1-0.0\ m\ /\ S1-1.5\ m\ /\ S1-0.0\ m\ /\ S1-0.5\ m\ /\ S1-0.0\ m\ /\ S1-$

Echantillo n MOY S1-B constitué par : S1-5.5 m / S1-6.0 m / S1-6.5 m / S1-7.0 m / S1-7.5 m / S1-8.0 m

Echantillon MOY S2-A constitué par: S2-0.0 m / S2-0.2 m / S2-0.5 m / S2-0.0 m / S2-2.5 m / S2-2.5 m / S2-3.5 m / S2-3.5 m / S2-4.0 m / S2-4.5 m / S2-5.0 m

Echantillon MOY S2-B constitué par: S2 - 5.5 m / S2 - 6.0 m / S2 - 6.5 m / S2 - 7.0 m / S2 - 7.5 m / S2 - 8.0 m

Februtillon MOY S3-A constitué par: S3 - 0.0 m / S3 - 0.2 m / S3 - 0.5 m / S3 - 0.7 m / S3 - 10 m / S3 - 15 m / S3 - 2.0 m /

Echantillo n MOY S3-A constitué par : S3 - 0.0 m / S3 - 0.2 m / S3 - 0.5 m / S3 - 0.7 m / S3 - 1.0 m / S3 - 1.5 m / S3 - 2.0 m / S3 - 2.5 m / S3 - 3.0 m / S3 - 3.5 m Echantillo n MOY S3-B constitué par : S3 - 4.0 m / S3 - 4.5 m / S3 - 5.5 m / S3 - 6.5 m

 $Echantillon\ MOYS4-A\ constitut\'e par: S4-0.0\ m\ /\ S4-0.5\ m\ /\ S4-$

 $E chantillo\,n\,MOY\,S4-B\,\,co\,ns\,titu\'{e}\,\,par\,:\,S4\,-\,5.5\,\,m\,\,/\,\,S4\,-\,6.0\,\,m\,\,/\,\,S4\,-\,6.5\,\,m\,\,/\,\,S4\,-\,7.0\,\,m\,\,/\,\,S4\,-\,7.5\,\,m$

Echantillo n MOYS5-A constitué par: S5 - 0.0 m / S5 - 0.2 m / S5 - 0.5 m / S5 - 0.7 m / S5 - 1.0 m / S5 - 1.5 m / S5 - 2.0 m / S5 - 2.5 m / S5 - 3.0 m / S5 - 3.5 m / S5 - 4.0 m / S5 - 4.5 m / S5 - 5.0 m

Echantillo n MOY S5-B constitué par : S5 - 5.5 m / S5 - 6.0 m / S5 - 6.5 m

Echantillon MOY S6-A constitué par: S6-0.0 m / S6-0.2 m / S6-0.3 m / S6-0.5 m / S6-0.5 m / S6-1.5 m / S6-2.5 m / S6-2.5 m / S6-3.5 m / S6-3.5 m / S6-4.0 m / S6-4.5 m

 $Echantillon\ MOY\ S6-B\ constitué\ par: S6-5.0\ m\ /\ S6-6.0\ m\ /\ S6-6.0\ m\ /\ S6-6.5\ m\ /\ S6-6.0\ m\ /\ S6-6.5\ m\ /\ S6-8.0\ m\ /\ S6-8.0\ m\ /\ S6-9.0\ m\ /\ S6-9.5\ m\ /\ S6-9.0\ m\ /\ S6-9.5\ m\ /\ S6-9.0\ m\ /\ S7-9.0\ m\ /\ S$

Echantillon MOY S7-B constitué par: S7 - 6.5 m / S7 - 6.5 m / S7 - 7.5 m / S7 - 7.5 m / S7 - 8.5 m / S7 - 9.5 m / S7 - 9.5 m / S7 - 10 m

Echantillon MOY S8-A constitué par: S8 - 0.0 m / S8 - 0.2 m / S8 - 0.3 m / S8 - 0.5 m / S8 - 2.5 m / S8 - 2.5 m / S8 - 2.5 m / S8 - 3.5 m / S8 - 4.0 m / S8 - 4.5 m / S8 - 5.0 m Echantillon MOY S8-B constitué par: S8 - 5.5 m / S8 - 6.0 m / S8 - 6.5 m / S8 - 7.0 m / S8 - 7.0 m / S8 - 7.0 m / S8 - 8.5 m / S8 - 8.5 m / S8 - 9.0 m / S8 - 9.5 m / S8 - 10 m

Echantillon MOYT1constitué par: T1-0.0 m / T1-0.1 m / T1-0.2 m / T1-0.5 m / T1-0.5 m / T1-1.0 m / T1-1.5 m / T1-2.0 m / T1-2.5 m / T1-3.0 m / T1-3.5 m / T1-4.0 m / T1-4.5 m / T1-5.0 m

 $Echantillon\ MOY\ T2\ constitute\ par: T2\ -0.0\ m\ /\ T2\ -0.1\ m\ /\ T2\ -0.5\ m\ /\ T3\ -$

Echantillon MOY T4 constitute par: T4 - 0.1 m / T4 - 0.2 m / T4 - 0.3 m / T4 - 0.5 m / T4 - 0.5 m / T4 - 0.7 m / T4 - 1.0 m / T4 - 1.5 m / T4 - 2.0 m / T4 - 2.5 m / T4 - 3.5 m / T4 - 4.0 m / T4 - 4.5 m / T4 - 5.0 m

AFR-DIA-10001-RPT-A01 du 28/07/2016Réf Aff. Arcadis : 16-000536 / NTW 9338608 16-000536-DIA-10001-RPT-A01

Paramètres / substances	Seuil admissible en contenu total en	Seuil admissible en contenu total en	Unité	MOY SC1	MOY SC2	MOY SC3	MOY SC4	MOY SC5	MOY SC6	MOY SC7	MOY SC8	MOY SC9	MOY SC10	MOY SC11	MOY SC12	MOY SC13	MOY SC14	MOY SC15	MOY SC16	MOY SC17	MOY SC18	MOY SC19	MOY SC20	MOY SC21
	mg/kg de matière sèche (*)	mg/kg de matière sèche (**)		0.0 - 1.1 m	0.0 - 2.0 m	0.0 - 2.0 m	0.0 - 0.6 m	0.0 - 1.2 m	0.0 - 2.0 m	0.0 - 0.8 m	0.0 - 2.0 m	0.0 - 1.2 m			0.0 - 2.0 m	0.0 - 1.2 m	0.0 - 2.0 m	0.0 - 1.2 m						
An	alyses sur bru	ı t												alyses sur b										
COT	30 000		mg/kg ms	13 000	4 300	18 000	11000	17 000	12 000	26 000	24 000	9 100	26 000	28 000	19 000	12 000	35 000	71000	21000	16 000	9 800	77 000	19 000	18 000
Somme des HC (somme C10-	500		mg/kg ms	< 20	< 20	< 20	< 20	< 20	< 20	42	< 20	< 20	45	28	34	31	32	55	35	< 20	< 20	26	< 20	55
Somme des 16 HAP	50		mg/kg ms	1.0	0.89	6.2	1.7	5.5	1.7	2.3	1.8	1.4	4.8	4.3	3.1	11	3.8	2.9	3.8	1.1	1.3	2.1	2.3	9.7
Somme des BTEX(4)	6		mg/kg ms	< lq	< lq	< lq	< lq	< lq	< lq	< lq	< lq	< lq	< lq	< lq	< lq	< lq								
Somme des PCB (7)	1		mg/kg ms	< lq	< lq	< lq	0.003	0.003	< lq	0.006	< lq	0.006	0.010	< lq	0.002	0.002	< lq	0.019	0.008	< lq	< lq	< lq	0.027	0.045
Anal	lyses sur lixivi	iat											Ana	lyses sur lix	civiat									
Caracté ris atio n									_	_		_		_					_	_		_		
pH	-	-	-	8.1	9.0	8.4	8.2	8.4	8.2	8.1	8.2	8.1	10.0	8.2	8.3	8.6	8.2	7.6	8.2	7.5	8.4	8.1	7.5	8.0
Conductivité	-	-	μS/cm	180	77.5	79.7	110	93.3	93.0	150	89.0	110	170	140	110	92.7	180	980	100	110	110	150	100	130
Fraction soluble	4 000	60 000	mg/kg MS	1700	29 000	< 1000	< 1000	< 1000	< 1000	1300	< 1000	< 1000	< 1000	1200	8 400	< 1000	< 1000	8 400	< 1000	< 1000	1300	< 1000	< 1000	6 700
COT	500	800	mg/kg MS	31	180	16	12	24	16	35	24	22	17	25	140	19	16	12	21	21	16	22	20	110
Indice phénols	1	-	mg/kg MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chlorures	800	15 000	mg/kg MS	110	21	20	20	20	21	28	23	27	49	67	19	29	36	13	16	34	46	32	17	62
Sulfates	1000	20 000	mg/kg MS	100	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	59	< 50	< 50	< 50	360	5 000	< 50	< 50	65	< 50	< 50	410
Fluorures	10	150	mg/kg MS	8.0	7.0	6.0	6.0	7.0	5.0	8.0	5.0	5.0	12	5.0	8.0	6.0	6.0	4.0	7.0	6.0	7.0	8.0	5.0	9.0
Métaux					-																			
Antimo ine (Sb)	0.06	0.7	mg/kg MS	< 0.05	< 0.05	< 0.05	< 0.05	0.06	< 0.05	< 0.05	< 0.05	< 0.05	0.06	0.06	< 0.05	< 0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Arsenic (As)	0.5	2	mg/kg MS	< 0.05	0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.09	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06
Baryum (Ba)	20	-	mg/kg MS	0.12	2.8	< 0.1	0.17	0.10	0.10	0.17	0.11	0.11	0.19	0.18	2.7	0.13	0.18	0.61	< 0.1	0.13	0.20	0.31	0.15	1.4
Cadmium (Cd)	0.04	1	mg/kg MS	< 0.001	0.004	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.002	< 0.001	0.004	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.005
Chrome (Cr)	0.5	10	mg/kg MS	0.41	0.09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.02	< 0.02	0.06	< 0.02	< 0.02	0.10	< 0.02	< 0.02	< 0.02	0.04	< 0.02	0.03
Cuivre (Cu)	2	50	mg/kg MS	0.11	0.68	0.06	0.10	0.12	0.08	0.11	0.10	0.09	0.15	0.12	0.96	0.06	0.10	0.05	0.09	0.10	0.10	0.15	0.09	0.29
Mercure (Hg)	0.01	0.2	mg/kg MS	< 0.0003	0.0042	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	0.0073	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	0.0016
Molybdène (Mo)	0.5	-	mg/kg MS	0.07	< 0.05	< 0.05	0.07	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.09	0.11	< 0.05	< 0.05	0.05	0.06	< 0.05	< 0.05	0.05	0.12	< 0.05	< 0.05
Nickel (Ni)	0.4	10	mg/kg MS	< 0.05	0.07	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Plomb (Pb)	0.5	10	mg/kg MS	< 0.05	1.5	< 0.05	0.06	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.08	< 0.05	3.6	< 0.05	0.08	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1.3
Sélénium (Se)	0.1	0.5	mg/kg MS	< 0.05	0.08	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.07	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Zinc (Zn)	4	50	mg/kg MS	0.03	1.3	0.06	0.11	0.06	0.05	0.09	0.03	0.06	0.10	0.07	3.1	0.05	0.16	0.10	0.06	0.05	0.06	0.05	0.19	2.4

(*) Arrêté du 12 décembre 2014 relatif aux installations de stockage de déchets inertes

(**) Décis ion n'2003/33/CE du 19 décembre 2002 relative aux critères et procédures d'admis sion des déchets dans les décharges

 $R \, \acute{e} \, s \, ulta \, t > va \, le \, ur \, s \, e \, uil \, \grave{a} \, ne \, \, pa \, s \, \, d\acute{e} \, pa \, s \, s \, e \, r$

 $E chantillo\,n\,MOY\,SC\,1\,c\,o\,n\,s\,titu\'e\,\,par\,:\,S\,C\,1\,-\,0.0\,\,m\,\,/\,\,S\,C\,1\,-\,0.2\,\,m\,\,/\,\,S\,C\,1\,-\,0.5\,\,m\,\,/\,\,S\,C\,1\,-\,0.7\,\,m\,\,/\,\,S\,C\,1\,-\,1.0\,\,m\,\,$ Echantillo n MOY SC2 constitué par : SC2 - 0.0 m / SC2 - 0.2 m / SC2 - 0.5 m / SC2 - 0.7 m / SC2 - 1.0 m / SC2 - 1.5 m / SC2 - 2.0 m Echantillo n MOY SC3 constitué par : SC3 - 0.0 m / SC3 - 0.2 m / SC3 - 0.5 m / SC3 - 0.7 m / SC3 - 1.0 m / SC3 - 1.5 m / SC3 - 2.0 m Echantillo n MOY SC4 constitué par: SC4 - 0.0 m / SC4 - 0.2 m / SC4 - 0.5 m Echantillon MOY SC5 constitué par : SC5 - 0.05 m / SC5 - 0.1m / SC5 - 0.3 m / SC5 - 0.5 m / SC5 - 0.7 m / SC5 - 10 m $Echantillon\ MOY\ SC6\ constitué\ par: SC6\ -\ 0.0\ m\ /\ SC6\ -\ 0.2\ m\ /\ SC6\ -\ 0.5\ m\ /\ SC6\ -\ 0.7\ m\ /\ SC6\ -\ 1.0\ m\ /\ SC6\ -\ 1.5\ m\ /\ SC6\ -\ 2.0\ m\ /\ SC6\ -\ 1.0\ m\ /\ SC6\ -\ 1.$ Echantillo n MOY SC7 constitué par : SC7 - 0.0 m / SC7 - 0.2 m / SC7 - 0.5 m / SC7 - 0.7 m Echantillo n MOY SC8 constitué par : SC8 - 0.0 m / SC8 - 0.2 m / SC8 - 0.3 m / SC8 - 0.5 m / SC8 - 0.7 m / SC8 - 1.0 m / SC8 - 1.5 m / SC8 - 2.0 m Echantillo n MOY SC9 constitué par : SC9 - 0.0 m / SC9 - 0.2 m / SC9 - 0.5 m / SC9 - 0.7 m / SC9 - 1.0 m Echantillo n MOY SC 10 constitué par : SC 10 - 0.0 m / SC 10 - 0.2 m / SC 10 - 0.5 m / SC 10 - 0.7 m / SC 10 - 1.0 m Echantillon MOY SC 11 constitué par : SC 11 - 0.0 m / SC 11 - 0.1 m / SC 11 - 0.3 m / SC 11 - 0.5 m / SC 11 - 0.7 m / SC 11 - 1.0 m $Echantillon\ MOY\ SC\ 12\ constitué\ par: SC\ 12\ -0.0\ m\ /\ SC\ 12\ -0.3\ m\ /\ SC\ 12\ -0.5\ m\ /\ SC\ 12\ -0.7\ m\ /\ SC\ 12\ -1.5\ m\ /\ SC\ 12\ -2.0\ m\ /\ SC\ 12\ -0.0\ m\ /\ SC$ $Echantillon\ MOY\ SC\ 13\ constitué\ par: SC\ 13\ -0.1\ m\ /\ SC\ 13\ -0.5\ m\ /\ SC\ 13\ -0.7\ m\ /\ SC\ 13\ -1.0\ m\ /\ SC$ Echantillon MOY SC 14 constitué par : SC 14 - 0.0 m / SC 14 - 0.3 m / SC 14 - 0.5 m / SC 14 - 0.7 m / SC 14 - 1.0 m / SC 14 - 1.5 m / SC 14 - 2.0 m Echantillon MOY SC 15 constitué par : SC 15 - 0.0 m / SC 15 - 0.2 m / SC 15 - 0.5 m / SC 15 - 0.7 m / SC 15 - 1.0 m / SC 15 - 1.5 m / SC 15 - 2.0 m Echantillon MOY SC 16 constitué par: SC 16 - 0.0 m / SC 16 - 0.3 m / SC 16 - 0.5 m / SC 16 - 0.7 m / SC 16 - 1.0 m Echantillo n MOY SC 17 constitué par: SC 17 - 0.0 m / SC 17 - 0.2 m / SC 17 - 0.5 m / SC 17 - 0.5 m / SC 17 - 1.5 m / SC 17 - 1.5 m / SC 17 - 2.0 m $Echantillon\ MOY\ SC\ 18\ constitué\ par:\ SC\ 18\ -\ 0.0\ m\ /\ SC\ 18\ -\ 0.2\ m\ /\ SC\ 18\ -\ 0.5\ m\ /\ SC\ 18\ -\ 0.7\ m\ /\ SC\ 18\ -\ 1.5\ m\ /\ SC\ 18\ -\ 2.0\ m\ /\ SC\ 18\ -\ 1.5\ m\ /\ 18\ -\ 1.5\$ $Echantillon\ MOY\ SC\ 19\ constitué\ par: SC\ 19\ -0.0\ m\ /\ SC\ 19\ -0.2\ m\ /\ SC\ 19\ -0.5\ m\ /\ SC\ 19\ -0.7\ m\ /\ SC\ 19\ -1.5\ m\ /\ SC\ 19\ -2.0\ m\ /\ SC\ 19\ -0.7\ m\ /\ SC$ Echantillo n MOY SC20 constitué par: SC20 - 0.0 m / SC20 - 0.2 m / SC20 - 0.5 m / SC20 - 0.7 m / SC20 - 1.0 m / SC20 - 1.5 m / SC20 - 2.0 m Echantillo n MOY SC21constitué par: SC21- 0.0 m / SC21- 0.2 m / SC21- 0.5 m / SC21- 0.7 m / SC21- 1.0 m

AFR-DIA-10001-RPT-A01 du 28/07/2016 Réf Aff. Arcadis: 16-000536 / NTW 9338608 16-000536-DIA-10001-RPT-A01 Annexe 9 Bordereaux des résultats des analyses en laboratoire

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

ARCADIS ESG AGENCE NORD 240 RUE DE L'ALBECK BP4204 ZI DE PETITE-SYNTHE 59378 DUNKERQUE CEDEX 1 FRANCE

 Date
 22.06.2016

 N° Client
 35004727

 N° commande
 591767

RAPPORT D'ANALYSES

N° Cde 591767 Solide / Eluat

 Client
 35004727 ARCADIS ESG AGENCE NORD

 Référence
 FR0152 / E. MOUSSAY / 9338608 / 16-0168 Q

Date de validation 15.06.16 Prélèvement par: Client (0)

Madame, Monsieur

Nous avons le plaisir de vous adresser ci-joint le rapport définitif des analyses chimiques provenant du laboratoire pour votre dossier en référence.

Sauf avis contraire, les analyses accréditées selon la norme EN ISO CEI 17025 ont été effectuées conformément aux méthodes de recherche citées dans les versions les plus actuelles de nos listes de prestations des Comités d'Accréditation Néerlandais (RVA), reconnus Cofrac, sous les numéro L005.

Si vous désirez recevoir de plus amples informations concernant le degré d'incertitudes d'une méthode de mesure déterminée, nous pouvons vous les fournir sur demande.

Nous signalons que le certificat d'analyses ne pourra être reproduit que dans sa totalité.

Nous vous informons que seules les conditions générales de AL-West, déposées à la Chambre du Commerce et de l'Industrie de Deventer, sont en vigueur.

Au cas où vous souhaiteriez recevoir des renseignements complémentaires, nous vous prions de prendre contact avec le service après-vente.

En vous remerciant pour la confiance que vous nous témoignez, nous vous prions d'agréer, Madame, Monsieur l'expression de nos sincères salutations.

Respectueusement,

Jan Hora

AL-West B.V. M. Claude Gautheron, Tel. +33/380680143 Chargé relation clientèle

page 1 de 23

N° Cde 591767 Solide / Eluat

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Hoitá

614051

644052

.iii, www.ai-west.iii

N° échant.	Prélèvement	Nom d'échantillon
614948	13.06.2016 11:59	MOY SC1
614949	13.06.2016 11:59	MOY SC2
614950	13.06.2016 11:59	MOY SC3
614951	13.06.2016 11:59	MOY SC4
614952	13.06.2016 11:59	MOY SC6

614040

614050

644040

	Unité	614948 MOY SC1	614949 MOY SC2	614950 MOY SC3	614951 MOY SC4	614952 MOY SC6
Prétraitement des échantille	ons					
Matière sèche	%	87,1	83,3	82,0	85,1	81,8
Lixiviation						
Lixiviation (EN 12457-2)		++	++	++	++	++
Analyses Physico-chimique	es					
pH-H2O		8,3	8,8	8,7	8,7	8,6
COT Carbone Organique Tota	al mg/kg Ms	13000	4300	18000	11000	12000
Prétraitement pour analyses de	es métaux					
Minéralisation à l'eau régale		++	++	++	++	++
Métaux						
Antimoine (Sb)	mg/kg Ms	<0,5	<0,5	<0,5	<0,5	<0,5
Arsenic (As)	mg/kg Ms	6,0	5,0	7,3	6,9	4,6
Baryum (Ba)	mg/kg Ms	69	56	73	83	49
Cadmium (Cd)	mg/kg Ms	0,2	0,1	0,2	0,2	0,2
Chrome (Cr)	mg/kg Ms	21	15	23	21	14
Cuivre (Cu)	mg/kg Ms	25	14	16	32	21
Mercure (Hg)	mg/kg Ms	0,07	0,06	0,06	0,09	0,06
Molybdène (Mo)	mg/kg Ms	<1,0	<1,0	<1,0	<1,0	<1,0
Nickel (Ni)	mg/kg Ms	13	12	17	18	11
Plomb (Pb)	mg/kg Ms	64	20	33	69	22
Sélénium (Se)	mg/kg Ms	<1,0	<1,0	<1,0	<1,0	<1,0
Zinc (Zn)	mg/kg Ms	60	49	64	69	44
HAP						
Acénaphtylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Fluorène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Pyrène	mg/kg Ms	0,14	0,16	1,0	0,22	0,24
Benzo(b)fluoranthène	mg/kg Ms	0,14	0,11	0,54	0,18	0,17
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Anthracène	mg/kg Ms	<0,050	<0,050	0,11	<0,050	<0,050
Benzo(a)anthracène	mg/kg Ms	0,10	0,10	0,61	0,16	0,17
Benzo(a)pyrène	mg/kg Ms	0,095	0,090	0,59	0,13	0,16
Benzo(g,h,i)pérylène	mg/kg Ms	0,064	<0,050	0,30	0,083	0,086
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,060	0,30	0,081	0,087
Chrysène	mg/kg Ms	0,11	0,083	0,54	0,16	0,17

Kamer van Koophandel Directeur Nr. 08110898 pp.a. Elly VAT/BTW-ID-Nr.: Dr. Paul V

el Directeur ppa. Elly van Bakergem Dr. Paul Wimmer page 2 de 23

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 591767 Solide / Eluat

N° échant.	Prélèvement	Nom d'échantillon
614953	13.06.2016 11:59	MOY SC7
614954	13.06.2016 11:59	MOY SC9
614955	13.06.2016 11:59	MOY SC10
614956	13.06.2016 11:59	MOY SC12
614957	13.06.2016 11:59	MOY SC14

	Unité	614953 MOY SC7	614954 MOY SC9	614955 MOY SC10	614956 MOY SC12	614957 MOY SC14
Prétraitement des échantillons						
Matière sèche	%	83,8	81,5	85,3	81,6	82,4
Lixiviation						
Lixiviation (EN 12457-2)		++	++	++	++	++
Analyses Physico-chimiques						
pH-H2O		8,3	8,5	8,5	8,5	8,4
COT Carbone Organique Total	mg/kg Ms	26000	9100	26000	19000	35000
Prétraitement pour analyses des m	étaux					
Minéralisation à l'eau régale		++	++	++	++	++
Métaux						
Antimoine (Sb)	mg/kg Ms	0,7	<0,5	1,1	<0,5	3,0
Arsenic (As)	mg/kg Ms	8,8	8,4	11	6,5	8,0
Baryum (Ba)	mg/kg Ms	100	85	240	130	200
Cadmium (Cd)	mg/kg Ms	0,4	0,2	0,5	0,5	0,5
Chrome (Cr)	mg/kg Ms	24	27	30	15	25
Cuivre (Cu)	mg/kg Ms	45	32	100	45	47
Mercure (Hg)	mg/kg Ms	0,15	0,12	0,38	0,28	0,26
Molybdène (Mo)	mg/kg Ms	<1,0	<1,0	<1,0	<1,0	<1,0
Nickel (Ni)	mg/kg Ms	17	18	24	13	20
Plomb (Pb)	mg/kg Ms	130	49	190	100	180
Sélénium (Se)	mg/kg Ms	<1,0	<1,0	<1,0	<1,0	<1,0
Zinc (Zn)	mg/kg Ms	120	120	300	180	260
HAP						
Acénaphtylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Fluorène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Pyrène	mg/kg Ms	0,27	0,21	0,61	0,37	0,50
Benzo(b)fluoranthène	mg/kg Ms	0,25	0,15	0,50	0,33	0,45
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Anthracène	mg/kg Ms	<0,050	<0,050	0,075	<0,050	0,067
Benzo(a)anthracène	mg/kg Ms	0,19	0,12	0,45	0,27	0,33
Benzo(a)pyrène	mg/kg Ms	0,20	0,12	0,40	0,29	0,32
Benzo(g,h,i)pérylène	mg/kg Ms	0,11	0,087	0,28	0,22	0,23
Benzo(k)fluoranthène	mg/kg Ms	0,11	0,075	0,23	0,16	0,22
Chrysène	mg/kg Ms	0,20	0,13	0,43	0,26	0,33

page 3 de 23

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 591767 Solide / Eluat

N° échant.	Prélèvement	Nom d'échantillon
614958	13.06.2016 11:59	MOY SC15
614959	13.06.2016 11:59	MOY SC16
614960	13.06.2016 11:59	MOY SC17
614961	13.06.2016 11:59	MOY SC18
614962	13.06.2016 11:59	MOY SC19

	Unité	614958 MOY SC15	614959 MOY SC16	614960 MOY SC17	614961 MOY SC18	614962 MOY SC19
Prétraitement des échantillons	s					
Matière sèche	%	81,4	82,3	81,4	82,2	80,7
Lixiviation						
Lixiviation (EN 12457-2)		++	++	++	++	++
Analyses Physico-chimiques						
pH-H2O		7,8	8,6	8,5	8,6	8,5
COT Carbone Organique Total	mg/kg Ms	71000	21000	16000	9800	77000
Prétraitement pour analyses des i	métaux					
Minéralisation à l'eau régale		++	++	++	++	++
Métaux						
Antimoine (Sb)	mg/kg Ms	1,0	1,4	<0,5	<0,5	<2,0°e)
Arsenic (As)	mg/kg Ms	8,3	8,3	3,5	6,3	7,8
Baryum (Ba)	mg/kg Ms	200	110	48	130	140
Cadmium (Cd)	mg/kg Ms	0,4	0,4	0,1	0,3	0,3
Chrome (Cr)	mg/kg Ms	24	29	10	16	19
Cuivre (Cu)	mg/kg Ms	72	32	14	27	71
Mercure (Hg)	mg/kg Ms	0,52	0,18	0,12	0,62	0,32
Molybdène (Mo)	mg/kg Ms	<1,0	<1,0	<1,0	<1,0	<1,0
Nickel (Ni)	mg/kg Ms	21	23	7,3	14	16
Plomb (Pb)	mg/kg Ms	180	78	42	150	140
Sélénium (Se)	mg/kg Ms	<1,0	<1,0	<1,0	<1,0	<1,0
Zinc (Zn)	mg/kg Ms	200	120	54	96	100
HAP						
Acénaphtylène	mg/kg Ms	<0,050	0,067	<0,050	<0,050	<0,050
Acénaphtène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Fluorène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Pyrène	mg/kg Ms	0,38	0,53	0,12	0,18	0,25
Benzo(b)fluoranthène	mg/kg Ms	0,33	0,41	0,14	0,13	0,24
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracène	mg/kg Ms	0,27	0,32	0,10	0,12	0,21
Benzo(a)pyrène	mg/kg Ms	0,23	0,32	0,12	0,11	0,20
Benzo(g,h,i)pérylène	mg/kg Ms	0,15	0,21	0,076	0,069	0,12
Benzo(k)fluoranthène	mg/kg Ms	0,16	0,19	0,061	0,064	0,12
Chrysène	mg/kg Ms	0,27	0,32	0,097	0,12	0,21
			·		·	

page 4 de 23

TESTING RVA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 591767 Solide / Eluat

N° échant.	Prélèvement	Nom d'échantillon
614963	13.06.2016 11:59	MOY SC20
614964	13.06.2016 11:59	MOY SC21
614965	14.06.2016 11:59	MOY T4
614966	14.06.2016 11:59	MOY T3
614967	14.06.2016 11:59	MOY S5 - A
614966		

	Unité	614963 MOY SC20	614964 MOY SC21	614965 MOY T4	614966 MOY T3	614967 MOY S5 - A
Prétraitement des échantillons	5					
Matière sèche	%	82,7	83,2	82,6	83,6	83,2
Lixiviation						
Lixiviation (EN 12457-2)		++	++	++	++	++
Analyses Physico-chimiques						
pH-H2O		8,6	8,4	8,6	8,8	8,5
COT Carbone Organique Total	mg/kg Ms	19000	18000	23000	3300	20000
Prétraitement pour analyses des i	métaux					
Minéralisation à l'eau régale		++	++	++	++	++
Métaux						
Antimoine (Sb)	mg/kg Ms	<0,5	<0,5	<0,5	0,6	<0,5
Arsenic (As)	mg/kg Ms	5,8	9,1	6,8	7,0	11
Baryum (Ba)	mg/kg Ms	65	180	68	58	260
Cadmium (Cd)	mg/kg Ms	0,2	1,0	0,2	<0,1	0,2
Chrome (Cr)	mg/kg Ms	16	31	20	25	25
Cuivre (Cu)	mg/kg Ms	18	33	22	11	40
Mercure (Hg)	mg/kg Ms	0,10	0,12	0,13	<0,05	0,13
Molybdène (Mo)	mg/kg Ms	<1,0	<1,0	<1,0	<1,0	<1,0
Nickel (Ni)	mg/kg Ms	13	21	15	18	19
Plomb (Pb)	mg/kg Ms	720	160	41	13	130
Sélénium (Se)	mg/kg Ms	<1,0	<1,0	<1,0	<1,0	<1,0
Zinc (Zn)	mg/kg Ms	66	260	62	36	170
HAP						
Acénaphtylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Fluorène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Pyrène	mg/kg Ms	0,27	1,3	0,22	<0,050	0,29
Benzo(b)fluoranthène	mg/kg Ms	0,25	0,85	0,23	0,068	0,19
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,094	<0,050	<0,050	<0,050
Anthracène	mg/kg Ms	<0,050	0,20	<0,050	<0,050	<0,050
Benzo(a)anthracène	mg/kg Ms	0,23	0,84	0,19	<0,050	0,18
Benzo(a)pyrène	mg/kg Ms	0,22	0,79	0,18	<0,050	0,16
Benzo(g,h,i)pérylène	mg/kg Ms	0,13	0,53	0,097	<0,050	0,16
Benzo(k)fluoranthène	mg/kg Ms	0,12	0,43	0,10	<0,050	0,11
Chrysène	mg/kg Ms	0,22	0,69	0,19	<0,050	0,17

page 5 de 23

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 591767 Solide / Eluat

N° échant.	Prélèvement	Nom d'échantillon
614968	14.06.2016 11:59	MOY S5 - B

	Unité	614968 MOY S5 - B
Prétraitement des échantillons		
Matière sèche	%	82,4
Lixiviation		
Lixiviation (EN 12457-2)		++
Analyses Physico-chimiques		
pH-H2O		9,0
COT Carbone Organique Total	mg/kg Ms	52000
Prétraitement pour analyses des n	nétaux	
Minéralisation à l'eau régale		++
Métaux		
Antimoine (Sb)	mg/kg Ms	<0,5
Arsenic (As)	mg/kg Ms	9,0
Baryum (Ba)	mg/kg Ms	490
Cadmium (Cd)	mg/kg Ms	0,3
Chrome (Cr)	mg/kg Ms	29
Cuivre (Cu)	mg/kg Ms	86
Mercure (Hg)	mg/kg Ms	0,29
Molybdène (Mo)	mg/kg Ms	3,7
Nickel (Ni)	mg/kg Ms	53
Plomb (Pb)	mg/kg Ms	110
Sélénium (Se)	mg/kg Ms	<1,0
Zinc (Zn)	mg/kg Ms	110
HAP		
Acénaphtylène	mg/kg Ms	<0,050
Acénaphtène	mg/kg Ms	0,19
Fluorène	mg/kg Ms	0,24
Pyrène	mg/kg Ms	1,7
Benzo(b)fluoranthène	mg/kg Ms	1,3
Dibenzo(a,h)anthracène	mg/kg Ms	0,15
Anthracène	mg/kg Ms	0,51
Benzo(a)anthracène	mg/kg Ms	1,5
Benzo(a)pyrène	mg/kg Ms	1,2
Benzo(g,h,i)pérylène	mg/kg Ms	0,45
Benzo(k)fluoranthène	mg/kg Ms	0,67
Chrysène	mg/kg Ms	1,3

Kamer van Koophandel Nr. 08110898 VAT/BTW-ID-Nr.: NL 811132559 B01

Kamer van Koophandel Nr. 08110898 VAT/BTW-ID-Nr.: NL 811132559 B01

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 591767 Solide / Eluat

	Unité	614948 MOY SC1	614949 MOY SC2	614950 MOY SC3	614951 MOY SC4	614952 MOY SC6
HAP						
Fluoranthène	mg/kg Ms	0,21	0,19	1,3	0,36	0,35
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,10	0,094	0,44	0,13	0,12
Naphtalène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Phénanthrène	mg/kg Ms	0,073	<0,050	0,45	0,16	0,13
HAP (6 Borneff) - somme	mg/kg Ms	0,61 ^{x)}	0,54 ×)	3,5	0,96	0,97
Somme HAP (VROM)	mg/kg Ms	0,75 ×)	0,62 ×)	4,6 ×)	1,3 ^{x)}	1,3 ^{x)}
HAP (EPA) - somme	mg/kg Ms	1,0 ×)	0,89 ^{x)}	6,2 ×)	1,7 ×)	1,7 ×)
Composés aromatiques	0 0					
Benzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Toluène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Ethylbenzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
o-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
BTX total	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
СОНУ	<u> </u>					
Chlorure de Vinyle	mg/kg Ms	<0,02	<0,02	<0,02	<0,02	<0,02
Dichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
1,2-Dichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
Hydrocarbures totaux						
Hydrocarbures totaux C10-C40	mg/kg Ms	<20	<20	<20	<20	<20
Fraction C10-C12	mg/kg Ms	<4	<4	<4	<4	<4
Fraction C12-C16	mg/kg Ms	<4	<4	<4	<4	<4
Fraction C16-C20	mg/kg Ms	<2	<2	5	3	<2
Fraction C20-C24	mg/kg Ms	3	<2	6	3	3
Fraction C24-C28	mg/kg Ms	5	<2	5	5	5
Fraction C28-C32	mg/kg Ms	5	<2	4	5	5
Fraction C32-C36	mg/kg Ms	3	<2	<2	3	3
Fraction C36-C40	mg/kg Ms	<2	<2	<2	<2	<2

page 7 de 23

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 591767 Solide / Eluat

	Unité	614953 MOY SC7	614954 MOY SC9	614955 MOY SC10	614956 MOY SC12	614957 MOY SC14
HAP						
Fluoranthène	mg/kg Ms	0,47	0,29	1,0	0,56	0,73
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,20	0,11	0,40	0,29	0,33
Naphtalène	mg/kg Ms	0,091	<0,050	<0,050	0,12	<0,050
Phénanthrène	mg/kg Ms	0,20	0,11	0,45	0,22	0,34
HAP (6 Borneff) - somme	mg/kg Ms	1,3	0,83	2,8	1,9	2,3
Somme HAP (VROM)	mg/kg Ms	1,8 ^{x)}	1,0 ^{x)}	3,7 ^{x)}	2,4 ^{x)}	2,9 ×)
HAP (EPA) - somme	mg/kg Ms	2,3 ^{x)}	1,4 ^{x)}	4,8 ^{x)}	3,1 ^{x)}	3,8 ^{x)}
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Toluène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Ethylbenzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
o-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d
BTX total	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d
сону						
Chlorure de Vinyle	mg/kg Ms	<0,02	<0,02	<0,02	<0,02	<0,02
Dichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
1,2-Dichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d
Hydrocarbures totaux						
Hydrocarbures totaux C10-C40	mg/kg Ms	42	<20	45	34	32
Fraction C10-C12	mg/kg Ms	<4	<4	<4	<4	<4
Fraction C12-C16	mg/kg Ms	<4	<4	<4	<4	<4
Fraction C16-C20	mg/kg Ms	5	<2	5	4	
Fraction C20-C24	mg/kg Ms	6	<2	8	5	(
Fraction C24-C28	mg/kg Ms	10	3	12	8	7
Fraction C28-C32	mg/kg Ms	11	3	11	8	7
Fraction C32-C36	mg/kg Ms	5	<2	5	6	4
Fraction C36-C40	mg/kg Ms	<2	<2	<2	3	<2

page 8 de 23

TESTING RVA L 005

Kamer van Koophandel Nr. 08110898 VAT/BTW-ID-Nr.: NL 811132559 B01

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

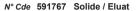
N° Cde 591767 Solide / Eluat

	Unité	614958 MOY SC15	614959 MOY SC16	614960 MOY SC17	614961 MOY SC18	614962 MOY SC19
HAP						
Fluoranthène	mg/kg Ms	0,58	0,79	0,20	0,28	0,37
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,25	0,30	0,11	0,11	0,19
Naphtalène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Phénanthrène	mg/kg Ms	0,32	0,39	0,070	0,13	0,17
HAP (6 Borneff) - somme	mg/kg Ms	1,7	2,2	0,71	0,76	1,2
Somme HAP (VROM)	mg/kg Ms	2,2 ×)	2,8 ×)	0,83 ^{x)}	1,0 ×)	1,6 ^{x)}
HAP (EPA) - somme	mg/kg Ms	2,9 ^{x)}	3,8 ×)	1,1 ×)	1,3 ×)	2,1 ^{x)}
Composés aromatiques			·	-	-	
Benzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Toluène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Ethylbenzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
o-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
BTX total	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	<0,02	<0,02	<0,02	<0,02
Dichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0.05
1,1-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
1,2-Dichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
cis-1.2-Dichloroéthène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
Hydrocarbures totaux						
Hydrocarbures totaux C10-C40	mg/kg Ms	55	35	<20	<20	26
Fraction C10-C12	mg/kg Ms	<4	<4	<4	<4	<4
Fraction C12-C16	mg/kg Ms	<4	<4	<4	<4	<4
Fraction C16-C20	mg/kg Ms	6	4	<2	<2	3
Fraction C20-C24	mg/kg Ms	10	6	<2	<2	5
Fraction C24-C28	mg/kg Ms	14	8	3	3	6
Fraction C28-C32	mg/kg Ms	12	9	3	3	6
Fraction C32-C36	mg/kg Ms	7	5	<2	<2	3
Fraction C36-C40	mg/kg Ms	4	3	<2	<2	<2

page 9 de 23

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 591767 Solide / Eluat


Your labs. Your service.

	Unité	614963 MOY SC20	614964 MOY SC21	614965 MOY T4	614966 MOY T3	614967 MOY S5 - A
HAP						
Fluoranthène	mg/kg Ms	0,44	2,2	0,39	<0,050	0,47
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,21	0,83	0,16	<0,050	0,17
Naphtalène	mg/kg Ms	<0,050	<0,050	0,097	<0,050	<0,050
Phénanthrène	mg/kg Ms	0,16	0,99	0,23	<0,050	0,31
HAP (6 Borneff) - somme	mg/kg Ms	1,4	5,6	1,2	0,07 ×)	1,3
Somme HAP (VROM)	mg/kg Ms	1,7 ×)	7,5 ^{x)}	1,6 ^{x)}	n.d.	1,7 ×)
HAP (EPA) - somme	mg/kg Ms	2,3 ^{x)}	9,7 ×)	2,1 ^{x)}	0,07 ^{x)}	2,2 ×)
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Toluène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Ethylbenzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
o-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
BTX total	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	<0,02	<0,02	<0,02	<0,02
Dichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
1,2-Dichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
Hydrocarbures totaux						
Hydrocarbures totaux C10-C40	mg/kg Ms	<20	55	<20	<20	83
Fraction C10-C12	mg/kg Ms	<4	<4	<4	<4	<4
Fraction C12-C16	mg/kg Ms	<4	<4	<4	<4	10
Fraction C16-C20	mg/kg Ms	2	6	4	<2	26
Fraction C20-C24	mg/kg Ms	3	8	4	<2	24
Fraction C24-C28	mg/kg Ms	4	12	4	<2	12
Fraction C28-C32	mg/kg Ms	4	13	4	<2	7
Fraction C32-C36	mg/kg Ms	<2	10	<2	<2	3
Fraction C36-C40	mg/kg Ms	<2	5	<2	<2	<2

page 10 de 23

Kamer van Koophandel Nr. 08110898 Directeur VAT/BTW-ID-Nr.: pa. Elly van Bakergem Dr. Paul Wimmer

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

	Unité	614968 MOY S5 - B
HAP		
Fluoranthène	mg/kg Ms	3,4
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,90
Naphtalène	mg/kg Ms	0,086
Phénanthrène	mg/kg Ms	1,9
HAP (6 Borneff) - somme	mg/kg Ms	7,9
Somme HAP (VROM)	mg/kg Ms	12
HAP (EPA) - somme	mg/kg Ms	15 ^{x)}
Composés aromatiques		
Benzène	mg/kg Ms	<0,050
Toluène	mg/kg Ms	<0,050
Ethylbenzène	mg/kg Ms	<0,050
m,p-Xylène	mg/kg Ms	<0,10
o-Xylène	mg/kg Ms	<0,050
Somme Xylènes	mg/kg Ms	n.d.
BTX total	mg/kg Ms	n.d.
сону		
Chlorure de Vinyle	mg/kg Ms	<0,02
Dichlorométhane	mg/kg Ms	<0,05
Trichlorométhane	mg/kg Ms	<0,05
Tétrachlorométhane	mg/kg Ms	<0,05
Trichloroéthylène	mg/kg Ms	<0,05
Tétrachloroéthylène	mg/kg Ms	<0,05
1,1,1-Trichloroéthane	mg/kg Ms	<0,05
1,1,2-Trichloroéthane	mg/kg Ms	<0,05
1,1-Dichloroéthane	mg/kg Ms	<0,10
1,2-Dichloroéthane	mg/kg Ms	<0,05
1,1-Dichloroéthylène	mg/kg Ms	<0,10
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.
Hydrocarbures totaux		
Hydrocarbures totaux C10-C40	mg/kg Ms	2010
Fraction C10-C12	mg/kg Ms	<4
Fraction C12-C16	mg/kg Ms	24
Fraction C16-C20	mg/kg Ms	120
Fraction C20-C24	mg/kg Ms	240
Fraction C24-C28	mg/kg Ms	490
Fraction C28-C32	mg/kg Ms	560
Fraction C32-C36	mg/kg Ms	400
Fraction C36-C40	mg/kg Ms	180

page 11 de 23 RIM. TESTING RVA L DOS Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: inflo@al-west.nl, www.al-west.nl

N° Cde 591767 Solide / Eluat

AL-West B.V.

	Unité	614948 MOY SC1	614949 MOY SC2	614950 MOY SC3	614951 MOY SC4	614952 MOY SCI
Polychlorobiphényles						
PCB (28)	mg/kg Ms	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
PCB (52)	mg/kg Ms	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
PCB (101)	mg/kg Ms	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
PCB (118)	mg/kg Ms	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
PCB (138)	mg/kg Ms	<0,0010	<0,0010	<0,0010	0,0014	<0,0010
PCB (153)	mg/kg Ms	<0,0010	<0,0010	<0,0010	0,0014	<0,0010
PCB (180)	mg/kg Ms	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	n.d.	n.d.	0,003 ^{x)}	n.d
Somme PCB (STI) (ASE)	mg/kg Ms	n.d.	n.d.	n.d.	0,003 ^{x)}	n.d
Analyses sur éluat après lixiviation	1					
L/S cumulé	ml/g	10,0	10,0	10,0	10,0	10,0
Conductivité électrique	μS/cm	180	77,5	79,7	110	93,0
Température	°C	19,9	20,2	20,0	20,2	20,0
рН		8,1	9,0	8,4	8,2	8,2
Analyses Physico-chimiques sur é	luats					
Résidu à sec	mg/l	170	2900	<100	<100	<100
Indice phénol	mg/l	<0,010	<0,010	<0,010	<0,010	<0,010
Chlorures (CI)	mg/l	11	2,1	2,0	2,0	2,1
Sulfates (SO4)	mg/l	10	<5,0	<5,0	<5,0	<5,0
СОТ	mg/l	3,1	18	1,6	1,2	1,€
Fluorures (F)	mg/l	0,8	0,7	0,6	0,6	0,5
Metaux sur éluats						
Antimoine (Sb)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Arsenic (As)	μg/l	<5,0	10	<5,0	<5,0	<5,0
Baryum (Ba)	μg/l	12	280	<10	17	10
Cadmium (Cd)	μg/l	<0,1	0,4	<0,1	0,1	<0,1
Chrome (Cr)	μg/l	41	8,6	<2,0	<2,0	<2,0
Cuivre (Cu)	μg/l	11	68	5,7	9,9	7,8
Mercure (Hg)	μg/l	<0,03	0,42	<0,03	<0,03	<0,03
Molybdène (Mo)	μg/l	7,1	<5,0	<5,0	7,0	<5,0
Nickel (Ni)	μg/l	<5,0	6,5	<5,0	<5,0	<5,0
Plomb (Pb)	μg/l	<5,0	150	<5,0	5,6	<5,0
Sélénium (Se)	μg/l	<5,0	7,5	<5,0	<5,0	<5,0
Zinc (Zn)	μg/l	3,2	130	5,5	11	4,9
Autres analyses						
Antimoine cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Arsenic cumulé (var. L/S - A)	mg/kg Ms	0 - 0,05	0,10	0 - 0,05	0 - 0,05	0 - 0,05
Baryum cumulé (var. L/S- A)	mg/kg Ms	0,12	2,8	0 - 0,1	0,17	0,10
COT cumulé (var. L/S- A)	mg/kg Ms	31	180	16	12	16
Cadmium cumulé (var. L/S- A)	mg/kg Ms	0 - 0,001	0,004	0 - 0,001	0,001	0 - 0,001

page 12 de 23

Kamer van Koophandel Nr. 08110898 Directeur VAT/BTW-ID-Nr.: pa. Elly van Bakergem Dr. Paul Wimmer

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 591767 Solide / Eluat

PCB 101		Unité	614953	614954	614955	614956	614957
PCB (28) mg/kg Ms <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,002 n.d. <0,0010 <0,0010 <0,002 n.d. <0,002 n.d.			MOY SC7	MOY SC9	MOY SC10	MOY SC12	MOY SC14
PCB (52) mg/kg Ms							
PCB (101) mg/kg Ms	<u> </u>					· · · · · · · · · · · · · · · · · · ·	
PCB (116) mg/kg Ms	PCB (52)	mg/kg Ms		-,	-,	-,	-,
PCB (138) mg/kg Ms 0,0026 0,0026 0,0036 0,0017 <0,0010 PCB (153) mg/kg Ms 0,0024 0,0021 0,0030 <0,0010 <0,0010 PCB (153) mg/kg Ms 0,0024 0,0021 0,0030 <0,0010 <0,0010 PCB (180) mg/kg Ms 0,0006 0,0010 0,0019 <0,0010 <0,0010 Somme 7 PCB (Ballschmiter) mg/kg Ms 0,006 0,006 0,006 0,0010 0,002 0 n.d. Somme PCB (STI) (ASE) mg/kg Ms 0,006 0,006 0,006 0,0010 0,002 0 n.d. Somme PCB (STI) (ASE) mg/kg Ms 0,006 0,006 0,006 0,0010 0,002 0 n.d. Somme PCB (STI) (ASE) mg/kg Ms 0,006 0,006 0,000 0 0,000 0,002 0 n.d. Somme PCB (STI) (ASE) mg/kg Ms 0,006 0,006 0,000 0 0,001 0 0,002 0 n.d. Somme PCB (STI) (ASE) mg/kg Ms 0,006 0,006 0,000 0 0,000 0 0,002 0 n.d. Somme PCB (STI) (ASE) mg/kg Ms 0,006 0,006 0,000 0 0,000 0 0,002 0 n.d. Somme PCB (STI) (ASE) mg/kg Ms 0,006 0,006 0 0,000 0	PCB (101)	mg/kg Ms	<0,0010	<0,0010	0,0018	<0,0010	<0,0010
PCB (153) mg/kg Ms 0,0024 0,0021 0,0030 <0,0010 <0,0010 PCB (180) mg/kg Ms 0,0014 <0,0010 0,0019 <0,0010 <0,0010 <0,0010	PCB (118)	mg/kg Ms	<0,0010	0,0012	<0,0010	<0,0010	<0,0010
PCB (180) mg/kg Ms 0,0014 <0,0010 0,0019 <0,0010 <0,0010 Somme PCB (STI) (ASE) mg/kg Ms 0,006 ° 0,006 ° 0,010 ° 0,002 ° n.d. Analyses sur éluta après lixiviation ml/g 10,0<	PCB (138)	mg/kg Ms	0,0026	0,0026	0,0036	0,0017	<0,0010
Somme 7 PCB (Ballschmiter) mg/kg Ms 0,006 d 0,006 d 0,010 d 0,002 d 0,0	PCB (153)	mg/kg Ms	0,0024	0,0021	0,0030	<0,0010	<0,0010
Somme PCB (STI) (ASE) mg/kg Ms 0,006 " 0,006" 0,010 " 0,002" n.d.	PCB (180)	mg/kg Ms	0,0014	<0,0010	0,0019	<0,0010	<0,0010
Analyses sur éluat après lixivation L/S cumulé ml/g 10,0	Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,006 ^{x)}	0,006 ^{x)}	0,010 ^{x)}	0,002 ×)	n.d.
LLS cumulé mil/g 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,	Somme PCB (STI) (ASE)	mg/kg Ms	0,006 ^{x)}	0,006 ^{x)}	0,010 ^{x)}	0,002 ×)	n.d.
Conductivité électrique µS/cm 150 110 170 110 180	Analyses sur éluat après lixiviation	n					
Température	L/S cumulé	ml/g	10,0	10,0	10,0	10,0	10,0
Section Sect	Conductivité électrique	μS/cm	150	110	170	110	180
Analyses Physico-chimiques sur étuats Résidu à sec mg/l 130 <100 <100 840 <100 Indice phénol mg/l <0,010	Température	°C	20,0	20,0	20,0	19,8	20,3
Résidu à sec mg/l 130 <100 <100 840 <100 Indice phénol mg/l <0,010	pН		8,1	8,1	10,0	8,3	8,2
Indice phénol mg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 Chlorures (Cl) mg/l 2,8 2,7 4,9 1,9 3,6 Sulfates (SO4) mg/l <5,0 <5,0 5,9 <5,0 36 COT mg/l 3,5 2,2 1,7 14 1,6 Fluorures (F) mg/l 0,8 0,5 1,2 0,8 0,6 Metaux sur éluats Antimoine (Sb) µg/l <5,0 <5,0 5,0 5,6 <5,0 5,0 5,0 5,4 Arsenic (As) µg/l <11 1 19 270 18 Cadmium (Cd) µg/l <0,1 1 9,4 15 96 9,5 Mercure (Hg) µg/l <0,03 <0,03 <0,03 0,73 <0,03 Molybdène (Mo) µg/l <5,0 <5,0 <5,0 \$5,0 \$5,0 \$5,0 \$5,0 \$5,0 \$6 \$6 \$6,5 \$6 \$6 \$6,5 \$6 \$6 \$6,5 \$6 \$6 \$6,5 \$6 \$6,5 \$6 \$6 \$6,5 \$6 \$6,5 \$6 \$6 \$6,5 \$6 \$6 \$6,5 \$6 \$6 \$6,5 \$6 \$6,5 \$6 \$6 \$6,5 \$6 \$6 \$6,5 \$6 \$6,5 \$6 \$6 \$6,5 \$6 \$6 \$6,5 \$6 \$6,5 \$6 \$6,5 \$6 \$6 \$6,5 \$6 \$6,5 \$6 \$6,5 \$6 \$6,5 \$6 \$6,5 \$6 \$6,5 \$6 \$6,5 \$6 \$6,5 \$6,5	Analyses Physico-chimiques sur é	luats					
Chlorures (CI) mg/I 2,8 2,7 4,9 1,9 3,6 Sulfates (SO4) mg/I <5,0	Résidu à sec	mg/l	130	<100	<100	840	<100
Sulfates (SO4) mg/l <5,0 <5,0 5,9 <5,0 36 COT mg/l 3,5 2,2 1,7 14 1,6 Fluorures (F) mg/l 0,8 0,5 1,2 0,8 0,6 Metaux sur éluats Antimoine (Sb) µg/l <5,0 <5,0 5,6 <5,0 5,4 Arsenic (As) µg/l <5,0 <5,0 <5,0 9,0 <5,0 9,0 <5,0 Baryum (Ba) µg/l 17 11 19 270 18 Cadmium (Cd) µg/l <0,1 <0,1 0,2 0,4 <0,1 Chrome (Cr) µg/l <2,0 <2,0 2,2 6,4 <2,0 Cuivre (Cu) µg/l 11 9,4 15 96 9,5 Mercure (Hg) µg/l <5,0 <5,0 <5,0 8,7 <5,0 \$5,0 Mercure (Hg) µg/l <5,0 <5,0 <5,0 8,7 <5,0 \$5,0 Mercure (Hg) µg/l <5,0 <5,0 <5,0 8,7 <5,0 \$5,0 Plomb (Pb) µg/l <5,0 <5,0 <5,0 <5,0 <5,0 \$5,0 \$5,0 Assenic Camium (Se) µg/l <5,0 <5,0 5,0 <5,0 \$5,0 \$5,0 \$5,0 \$5,0 \$5,0 \$5,0 \$5,0 \$	Indice phénol	mg/l	<0,010	<0,010	<0,010	<0,010	<0,010
COT mg/l 3,5 2,2 1,7 14 1,6 Fluorures (F) mg/l 0,8 0,5 1,2 0,8 0,6 Metaux sur éluats Antimoine (Sb) μg/l <5,0	Chlorures (CI)	mg/l	2,8	2,7	4,9	1,9	3,6
Fluorures (F) mg/l 0,8 0,5 1,2 0,8 0,6 Metaux sur éluats Antimoine (Sb) µg/l <5,0 <5,0 5,6 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 <5,0 9,0 9,0 <5,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9	Sulfates (SO4)	mg/l	<5,0	<5,0	5,9	<5,0	36
Metaux sur éluats μg/l < 5,0 < 5,0 5,6 < 5,0 5,4 Arsenic (As) μg/l < 5,0	сот	mg/l	3,5	2,2	1,7	14	1,6
Antimoine (Sb)	Fluorures (F)	mg/l	0,8	0,5	1,2	0,8	0,6
Arsenic (As) μg/l < 5,0 < 5,0 < 5,0 9,0 < 5,0 8aryum (Ba) μg/l 17 11 19 270 18 Cadmium (Cd) μg/l < 0,1 < 0,1 0,2 0,4 < 0,1 Chrome (Cr) μg/l < 2,0 < 2,0 2,2 6,4 < 2,0 Cuivre (Cu) μg/l < 11 9,4 15 96 9,5 Mercure (Hg) μg/l < 5,0 < 5,0 < 5,0 & 3,7 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 <	Metaux sur éluats						
Baryum (Ba) μg/l 17 11 19 270 18 Cadmium (Cd) μg/l <0,1	Antimoine (Sb)	μg/l	<5,0	<5,0	5,6	<5,0	5,4
Cadmium (Cd)	Arsenic (As)	μg/l	<5,0	<5,0	<5,0	9,0	<5,0
Chrome (Cr) μg/l <2,0 <2,0 2,2 6,4 <2,0 Cuivre (Cu) μg/l 11 9,4 15 96 9,5 Mercure (Hg) μg/l <0,03	Baryum (Ba)	μg/l	17	11	19	270	18
Cuivre (Cu) µg/l 11 9,4 15 96 9,5 Mercure (Hg) µg/l < 0,03 < 0,03 < 0,03 0,73 < 0,03 Molybdene (Mo) µg/l < 5,0 < 5,0 8,7 < 5,0 5,1 Nickel (Ni) µg/l < 55,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 Plomb (Pb) µg/l < 55,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 < 5,0 Zinc (Zn) µg/l & 8,7 5,6 9,7 310 16 Autres analyses Antimoine cumulé (var. L/S- A) mg/kg Ms 0 - 0,05 0 - 0,05 0 - 0,05 0,09 0 - 0,05 Baryum cumulé (var. L/S- A) mg/kg Ms 0,17 0,11 0,19 2,7 0,18 COT cumulé (var. L/S- A) mg/kg Ms 35 22 17 140 16	Cadmium (Cd)	μg/l	<0,1	<0,1	0,2	0,4	<0,1
Mercure (Hg) μg/l <0,03 <0,03 0,73 <0,03 Molybdehe (Mo) μg/l <5,0	Chrome (Cr)	μg/l	<2,0	<2,0	2,2	6,4	<2,0
Molybdène (Mo) μg/l <5,0 <5,0 8,7 <5,0 5,1 Nickel (Ni) μg/l <55,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,	Cuivre (Cu)	μg/l	11	9,4	15	96	9,5
Nickel (Ni)	Mercure (Hg)	μg/l	<0,03	<0,03	<0,03	0,73	<0,03
Plomb (Pb)	Molybdène (Mo)	μg/l	<5,0	<5,0	8,7	<5,0	5,1
Sélénium (Se) µg/l <5,0 <5,0 6,5 <5,0 <5,0 Zinc (Zn) µg/l 8,7 5,6 9,7 310 16 Autres analyses Antimoine cumulé (var. L/S- A) mg/kg Ms 0 - 0,05 0 - 0,05 0,06 0 - 0,05 0,05 Arsenic cumulé (var. L/S- A) mg/kg Ms 0 - 0,05 0 - 0,05 0 - 0,05 0,09 0 - 0,05 Baryum cumulé (var. L/S- A) mg/kg Ms 0,17 0,11 0,19 2,7 0,18 COT cumulé (var. L/S- A) mg/kg Ms 35 22 17 140 16	Nickel (Ni)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Sélénium (Se) µg/l <5,0 <5,0 6,5 <5,0 <5,0 Zinc (Zn) µg/l 8,7 5,6 9,7 310 16 Autres analyses Antimoine cumulé (var. L/S- A) mg/kg Ms 0 - 0,05 0 - 0,05 0,06 0 - 0,05 0,05 Arsenic cumulé (var. L/S- A) mg/kg Ms 0 - 0,05 0 - 0,05 0 - 0,05 0,09 0 - 0,05 Baryum cumulé (var. L/S- A) mg/kg Ms 0,17 0,11 0,19 2,7 0,18 COT cumulé (var. L/S- A) mg/kg Ms 35 22 17 140 16	Plomb (Pb)		<5,0	<5,0	7,8	360	7,7
Autres analyses Mattres analyses Antimoine cumulé (var. L/S- A) mg/kg Ms 0 - 0,05 0 - 0,05 0,06 0 - 0,05 0,05 Arsenic cumulé (var. L/S - A) mg/kg Ms 0 - 0,05 0 - 0,05 0 - 0,05 0,09 0 - 0,05 Baryum cumulé (var. L/S- A) mg/kg Ms 0,17 0,11 0,19 2,7 0,18 COT cumulé (var. L/S- A) mg/kg Ms 35 22 17 140 16	Sélénium (Se)		<5,0	<5,0	6,5	<5,0	<5,0
Antimoine cumulé (var. L/S-A) mg/kg Ms 0 - 0,05 0 - 0,05 0,06 0 - 0,05 0,05 Arsenic cumulé (var. L/S-A) mg/kg Ms 0 - 0,05 0 - 0,05 0 - 0,05 0 - 0,05 0,09 0 - 0,05 Baryum cumulé (var. L/S-A) mg/kg Ms 0,17 0,11 0,19 2,7 0,18 COT cumulé (var. L/S-A) mg/kg Ms 35 22 17 140 16	Zinc (Zn)	μg/l	8,7	5,6	9,7	310	16
Antimoine cumulé (var. L/S-A) mg/kg Ms 0 - 0,05 0 - 0,05 0,06 0 - 0,05 0,05 Arsenic cumulé (var. L/S-A) mg/kg Ms 0 - 0,05 0 - 0,05 0 - 0,05 0 - 0,05 0,09 0 - 0,05 Baryum cumulé (var. L/S-A) mg/kg Ms 0,17 0,11 0,19 2,7 0,18 COT cumulé (var. L/S-A) mg/kg Ms 35 22 17 140 16	Autres analyses		,	,	•		
Arsenic cumulé (var. L/S - A) mg/kg Ms 0 - 0,05 0 - 0,05 0 - 0,05 0,09 0 - 0,05 Baryum cumulé (var. L/S- A) mg/kg Ms 0,17 0,11 0,19 2,7 0,18 COT cumulé (var. L/S- A) mg/kg Ms 35 22 17 140 16	Antimoine cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0,06	0 - 0,05	0,05
Baryum cumulé (var. L/S- A) mg/kg Ms 0,17 0,11 0,19 2,7 0,18 COT cumulé (var. L/S- A) mg/kg Ms 35 22 17 140 16	Arsenic cumulé (var. L/S - A)		0 - 0,05	0 - 0,05	0 - 0,05	0,09	0 - 0,05
COT cumulé (var. L/S- A) mg/kg Ms 35 22 17 140 16	Baryum cumulé (var. L/S- A)						
	COT cumulé (var. L/S- A)	<u> </u>	35	22		140	
Saaman saman (van. 25 77 mg/ng 193 0 - 0,001 0 - 0,001 0,002 0.004 0 - 0.001	Cadmium cumulé (var. L/S- A)	mg/kg Ms	0 - 0,001	0 - 0,001	0,002	0,004	0 - 0,001

page 13 de 23

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 591767 Solide / Eluat

	Unité	614958 MOY SC15	614959 MOY SC16	614960 MOY SC17	614961 MOY SC18	614962 MOY SC19
Polychlorobiphényles						
PCB (28)	mg/kg Ms	<0,0010	<0,0010	<0,0010	<0,0010	<0.0010
PCB (52)	mg/kg Ms	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
PCB (101)	mg/kg Ms	0,0026	<0,0010	<0,0010	<0,0010	<0,0010
PCB (118)	mg/kg Ms	0,0023	0,0012	<0,0010	<0,0010	<0,0010
PCB (138)	mg/kg Ms	0,0064	0,0044	<0,0010	<0,0010	<0,0010
PCB (153)	mg/kg Ms	0,0054	0,0028	<0,0010	<0,0010	<0,0010
PCB (180)	mg/kg Ms	0,0026	<0,0010	<0,0010	<0,0010	<0,0010
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,019 ^{x)}	0,008 x)	n.d.	n.d.	n.d.
Somme PCB (STI) (ASE)	mg/kg Ms	0,019 ^{x)}	0,008 ×)	n.d.	n.d.	n.d.
Analyses sur éluat après lixiviation	on					
L/S cumulé	ml/g	10,0	10,0	10,0	10,0	10,0
Conductivité électrique	μS/cm	980	100	110	110	150
Température	°C	20,1	19,9	20,2	20,3	20,3
рН		7,6	8,2	7,5	8,4	8,1
Analyses Physico-chimiques sur	éluats					
Résidu à sec	mg/l	840	<100	<100	130	<100
Indice phénol	mg/l	<0,010	<0,010	<0,010	<0,010	<0,010
Chlorures (CI)	mg/l	1,3	1,6	3,4	4,6	3,2
Sulfates (SO4)	mg/l	500	<5,0	<5,0	6,5	<5,0
COT	mg/l	1,2	2,1	2,1	1,6	2,2
Fluorures (F)	mg/l	0,4	0,7	0,6	0,7	0,8
Metaux sur éluats						
Antimoine (Sb)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Arsenic (As)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Baryum (Ba)	μg/l	61	<10	13	20	31
Cadmium (Cd)	μg/l	<0,1	<0,1	<0,1	<0,1	<0,1
Chrome (Cr)	μg/l	10	<2,0	<2,0	<2,0	3,7
Cuivre (Cu)	μg/l	5,2	9,1	9,8	9,7	15
Mercure (Hg)	μg/l	<0,03	<0,03	<0,03	<0,03	<0,03
Molybdène (Mo)	μg/l	6,0	<5,0	<5,0	5,3	12
Nickel (Ni)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Plomb (Pb)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Sélénium (Se)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Zinc (Zn)	μg/l	10	6,0	5,4	5,6	4,8
Autres analyses						
Antimoine cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Arsenic cumulé (var. L/S - A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Baryum cumulé (var. L/S- A)	mg/kg Ms	0,61	0 - 0,1	0,13	0,20	0,31
COT cumulé (var. L/S- A)	mg/kg Ms	12	21	21	16	22
Cadmium cumulé (var. L/S- A)	mg/kg Ms	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001

page 14 de 23

Kamer van Koophandel Nr. 08110898 VAT/BTW-ID-Nr.: NL 811132559 B01

N° Cde 591767 Solide / Eluat

	Unité	614963 MOY SC20	614964 MOY SC21	614965 MOY T4	614966 MOY T3	614967 MOY S5 - A
Polychlorobiphényles						
PCB (28)	mg/kg Ms	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
PCB (52)	mg/kg Ms	0,0040	0,0014	<0,0010	<0,0010	<0,0010
PCB (101)	mg/kg Ms	0,0062	0,0059	<0,0010	<0,0010	<0,0010
PCB (118)	mg/kg Ms	0,0065	0,0038	<0,0010	<0,0010	<0,0010
PCB (138)	mg/kg Ms	0,0058	0,013	0,0018	<0,0010	<0,0010
PCB (153)	mg/kg Ms	0,0041	0,012	0,0017	<0,0010	<0,0010
PCB (180)	mg/kg Ms	<0,0010	0,0088	<0,0010	<0,0010	<0,0010
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,027 ^{x)}	0,045 ^{x)}	0,004 ^{x)}	n.d.	n.d.
Somme PCB (STI) (ASE)	mg/kg Ms	0,027 ^{x)}	0,045 ^{x)}	0,004 ^{x)}	n.d.	n.d.
Analyses sur éluat après lixiviation	n					
L/S cumulé	ml/g	10,0	10,0	10,0	10,0	10,0
Conductivité électrique	μS/cm	100	130	100	67,2	120
Température	°C	20,0	20,2	20,0	20,3	20,3
рН		7,5	8,0	8,5	9,2	8,3
Analyses Physico-chimiques sur	eluats					
Résidu à sec	mg/l	<100	670	<100	<100	<100
Indice phénol	mg/l	<0,010	<0,010	<0,010	<0,010	<0,010
Chlorures (CI)	mg/l	1,7	6,2	2,5	0,6	1,5
Sulfates (SO4)	mg/l	<5,0	41	9,7	6,0	8,2
сот	mg/l	2,0	11	1,2	<1,0	1,5
Fluorures (F)	mg/l	0,5	0,9	0,8	0,7	0,8
Metaux sur éluats						
Antimoine (Sb)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Arsenic (As)	μg/l	<5,0	6,1	<5,0	<5,0	<5,0
Baryum (Ba)	μg/l	15	140	<10	<10	13
Cadmium (Cd)	μg/l	<0,1	0,5	<0,1	<0,1	<0,1
Chrome (Cr)	μg/l	<2,0	3,0	<2,0	2,2	2,1
Cuivre (Cu)	μg/l	8,7	29	5,1	<2,0	4,9
Mercure (Hg)	μg/l	<0,03	0,16	<0,03	<0,03	<0,03
Molybdène (Mo)	μg/l	<5,0	<5,0	<5,0	<5,0	6,2
Nickel (Ni)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Plomb (Pb)	μg/l	<5,0	130	<5,0	<5,0	<5,0
Sélénium (Se)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Zinc (Zn)	μg/l	19	240	6,2	<2,0	5,8
Autres analyses						
Antimoine cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Arsenic cumulé (var. L/S - A)	mg/kg Ms	0 - 0,05	0,06	0 - 0,05	0 - 0,05	0 - 0,05
Baryum cumulé (var. L/S- A)	mg/kg Ms	0,15	1,4	0 - 0,1	0 - 0,1	0,13
COT cumulé (var. L/S- A)	mg/kg Ms	20	110	12	0 - 10	15
Cadmium cumulé (var. L/S- A)	mg/kg Ms	0 - 0,001	0,005	0 - 0,001	0 - 0,001	0 - 0,001

page 15 de 23

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 591767 Solide / Eluat

	Unité	614968 MOY S5 - B
Polychlorobiphényles		
PCB (28)	mg/kg Ms	0,038
PCB (52)	mg/kg Ms	0,083
PCB (101)	mg/kg Ms	0,059
PCB (118)	mg/kg Ms	0,032
PCB (138)	mg/kg Ms	0,078
PCB (153)	mg/kg Ms	0,076
PCB (180)	mg/kg Ms	0,062
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,43
Somme PCB (STI) (ASE)	mg/kg Ms	0,43
Analyses sur éluat après lixiviation	ı	
L/S cumulé	ml/g	10,0
Conductivité électrique	μS/cm	240
Température	°C	19,7
pH		9,3
Analyses Physico-chimiques sur é	luats	
Résidu à sec	mg/l	170
Indice phénol	mg/l	<0,010
Chlorures (CI)	mg/l	12
Sulfates (SO4)	mg/l	69
СОТ	mg/l	10
Fluorures (F)	mg/l	0,6
Metaux sur éluats		
Antimoine (Sb)	μg/l	14
Arsenic (As)	μg/l	13
Baryum (Ba)	μg/l	22
Cadmium (Cd)	μg/l	<0,1
Chrome (Cr)	μg/l	<2,0
Cuivre (Cu)	μg/l	16
Mercure (Hg)	μg/l	<0,03
Molybdène (Mo)	μg/l	32
Nickel (Ni)	μg/l	<5,0
Plomb (Pb)	μg/l	<5,0
Sélénium (Se)	μg/l	<5,0
Zinc (Zn)	μg/l	5,6
Autres analyses		
Antimoine cumulé (var. L/S- A)	mg/kg Ms	0,14
Arsenic cumulé (var. L/S - A)	mg/kg Ms	0,13
Baryum cumulé (var. L/S- A)	mg/kg Ms	0,22
COT cumulé (var. L/S- A)	mg/kg Ms	100
Cadmium cumulé (var. L/S- A)	mg/kg Ms	0 - 0,001

page 16 de 23

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 591767 Solide / Eluat

	Unité	614948 MOY SC1	614949 MOY SC2	614950 MOY SC3	614951 MOY SC4	614952 MOY SC6
Autres analyses						
Chlorures cumulé (var. L/S - A)	mg/kg Ms	110	21	20	20	21
Chrome cumulé (var. L/S - A)	mg/kg Ms	0,41	0,09	0 - 0,02	0 - 0,02	0 - 0,02
Cuivre cumulé (var. L/S- A)	mg/kg Ms	0,11	0,68	0,06	0,10	0,08
Fluorures cumulé (var. L/S- A)	mg/kg Ms	8,0	7,0	6,0	6,0	5,0
Fraction soluble cumulé (var. L/S- A)	mg/kg Ms	1700	29000	0 - 1000	0 - 1000	0 - 1000
Indice phénol cumulé (var. L/S- A)	mg/kg Ms	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1
Masse échantillon total < 2 kg	kg	0,66	0,81	0,76	0,71	0,81
Mercure cumulé (var. L/S- A)	mg/kg Ms	0 - 0,0003	0,0042	0 - 0,0003	0 - 0,0003	0 - 0,0003
Molybdène cumulé (var. L/S- A)	mg/kg Ms	0,07	0 - 0,05	0 - 0,05	0,07	0 - 0,05
Nickel cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0,07	0 - 0,05	0 - 0,05	0 - 0,05
Plomb cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	1,5	0 - 0,05	0,06	0 - 0,05
Sulfates cumulé (var. L/S- A)	mg/kg Ms	100	0 - 50	0 - 50	0 - 50	0 - 50
Sélénium cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0,08	0 - 0,05	0 - 0,05	0 - 0,05
Zinc cumulé (var. L/S- A)	mg/kg Ms	0,03	1,3	0,06	0,11	0,05

page 17 de 23

N° Cde 591767 Solide / Eluat

Unité	614953 MOY SC7	614954 MOY SC9	614955 MOY SC10	614956 MOY SC12	614957 MOY SC14
mg/kg Ms	28	27	49	19	36
mg/kg Ms	0 - 0,02	0 - 0,02	0,02	0,06	0 - 0,02
mg/kg Ms	0,11	0,09	0,15	0,96	0,10
mg/kg Ms	8,0	5,0	12	8,0	6,0
mg/kg Ms	1300	0 - 1000	0 - 1000	8400	0 - 1000
mg/kg Ms	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1
kg	0,72	0,72	0,74	0,81	0,77
mg/kg Ms	0 - 0,0003	0 - 0,0003	0 - 0,0003	0,0073	0 - 0,0003
mg/kg Ms	0 - 0,05	0 - 0,05	0,09	0 - 0,05	0,05
mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
mg/kg Ms	0 - 0,05	0 - 0,05	0,08	3,6	0,08
mg/kg Ms	0 - 50	0 - 50	59	0 - 50	360
mg/kg Ms	0 - 0,05	0 - 0,05	0,07	0 - 0,05	0 - 0,05
mg/kg Ms	0,09	0,06	0,10	3,1	0,16
	mg/kg Ms	mg/kg Ms 28 mg/kg Ms 0 - 0,02 mg/kg Ms 0,11 mg/kg Ms 0,11 mg/kg Ms 8,0 mg/kg Ms 0 - 0,1 kg 0,72 mg/kg Ms 0 - 0,003 mg/kg Ms 0 - 0,05 mg/kg Ms 0 - 0,05 mg/kg Ms 0 - 0,05 mg/kg Ms 0 - 50 mg/kg Ms 0 - 50 mg/kg Ms 0 - 0,05	mg/kg Ms 28 27 mg/kg Ms 0 - 0,02 0 - 0,02 mg/kg Ms 0,11 0,09 mg/kg Ms 0,11 0,09 mg/kg Ms 1300 0 - 1000 mg/kg Ms 0 - 0,1 0 - 0,1 kg 0,72 0,72 mg/kg Ms 0 - 0,003 0 - 0,003 mg/kg Ms 0 - 0,05 0 - 0,05 mg/kg Ms 0 - 0,05 0 - 0,05 mg/kg Ms 0 - 0,05 0 - 0,05 mg/kg Ms 0 - 50 0 - 50 mg/kg Ms 0 - 50 0 - 50 mg/kg Ms 0 - 0,05 0 - 0,05	mg/kg Ms 28 27 49 mg/kg Ms 0 - 0,02 0 - 0,02 0,02 mg/kg Ms 0,11 0,09 0,15 mg/kg Ms 8,0 5,0 12 mg/kg Ms 1300 0 - 1000 0 - 1000 mg/kg Ms 0 - 0,1 0 - 0,1 0 - 0,1 kg 0,72 0,74 0,72 0,74 mg/kg Ms 0 - 0,003 0 - 0,003 0 - 0,003 0 - 0,0003 mg/kg Ms 0 - 0,05 0 - 0,05 0,09 0,05 0 - 0,05 0 - 0,05 mg/kg Ms 0 - 0,05 0 - 0,05 0 - 0,05 0,08 0,08 mg/kg Ms 0 - 50 0 - 50 59 0,07 0,07 0,07	mg/kg Ms 28 27 49 19 mg/kg Ms 0 - 0,02 0 - 0,02 0,02 0,06 mg/kg Ms 0 - 1,02 0 - 0,02 0,02 0,06 mg/kg Ms 0,11 0,09 0,15 0,96 mg/kg Ms 8,0 5,0 12 8,0 mg/kg Ms 1300 0 - 1000 0 - 1000 8400 mg/kg Ms 0 - 0,1 0 - 0,1 0 - 0,1 0 - 0,1 kg 0,72 0,72 0,74 0,81 mg/kg Ms 0 - 0,003 0 - 0,003 0 - 0,003 0,0073 mg/kg Ms 0 - 0,05 0 - 0,05 0,09 0 - 0,05 mg/kg Ms 0 - 0,05 0 - 0,05 0 - 0,05 0 - 0,05 mg/kg Ms 0 - 0,05 0 - 0,05 0,08 3,6 mg/kg Ms 0 - 50 0 - 50 59 0 - 50 mg/kg Ms 0 - 0,05 0 - 0,05 0,07 0 - 0,05

page 18 de 23

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 591767 Solide / Eluat

	Unité	614958 MOY SC15	614959 MOY SC16	614960 MOY SC17	614961 MOY SC18	614962 MOY SC19
Autres analyses						
Chlorures cumulé (var. L/S - A)	mg/kg Ms	13	16	34	46	32
Chrome cumulé (var. L/S - A)	mg/kg Ms	0,10	0 - 0,02	0 - 0,02	0 - 0,02	0,04
Cuivre cumulé (var. L/S- A)	mg/kg Ms	0,05	0,09	0,10	0,10	0,15
Fluorures cumulé (var. L/S- A)	mg/kg Ms	4,0	7,0	6,0	7,0	8,0
Fraction soluble cumulé (var. L/S- A)	mg/kg Ms	8400	0 - 1000	0 - 1000	1300	0 - 1000
Indice phénol cumulé (var. L/S- A)	mg/kg Ms	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1
Masse échantillon total < 2 kg	kg	0,76	0,79	0,78	0,75	0,73
Mercure cumulé (var. L/S- A)	mg/kg Ms	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003
Molybdène cumulé (var. L/S- A)	mg/kg Ms	0,06	0 - 0,05	0 - 0,05	0,05	0,12
Nickel cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Plomb cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Sulfates cumulé (var. L/S- A)	mg/kg Ms	5000	0 - 50	0 - 50	65	0 - 50
Sélénium cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Zinc cumulé (var. L/S- A)	mg/kg Ms	0,10	0,06	0,05	0,06	0,05

page 19 de 23

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 591767 Solide / Eluat

	Unité	614963 MOY SC20	614964 MOY SC21	614965 MOY T4	614966 MOY T3	614967 MOY S5 - A
Autres analyses						
Chlorures cumulé (var. L/S - A)	mg/kg Ms	17	62	25	<10	15
Chrome cumulé (var. L/S - A)	mg/kg Ms	0 - 0,02	0,03	0 - 0,02	0,02	0,02
Cuivre cumulé (var. L/S- A)	mg/kg Ms	0,09	0,29	0,05	0 - 0,02	0,05
Fluorures cumulé (var. L/S- A)	mg/kg Ms	5,0	9,0	8,0	7,0	8,0
Fraction soluble cumulé (var. L/S- A)	mg/kg Ms	0 - 1000	6700	0 - 1000	0 - 1000	0 - 1000
Indice phénol cumulé (var. L/S- A)	mg/kg Ms	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1
Masse échantillon total < 2 kg	kg	0,76	0,78	0,80	0,78	0,79
Mercure cumulé (var. L/S- A)	mg/kg Ms	0 - 0,0003	0,0016	0 - 0,0003	0 - 0,0003	0 - 0,0003
Molybdène cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0,06
Nickel cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Plomb cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	1,3	0 - 0,05	0 - 0,05	0 - 0,05
Sulfates cumulé (var. L/S- A)	mg/kg Ms	0 - 50	410	97	60	82
Sélénium cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Zinc cumulé (var. L/S- A)	mg/kg Ms	0,19	2,4	0,06	0 - 0,02	0,06

page 20 de 23

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl. www.al-west.nl

N° Cde 591767 Solide / Eluat

		MOY S5 - B
Autres analyses		
Chlorures cumulé (var. L/S - A)	mg/kg Ms	120
Chrome cumulé (var. L/S - A)	mg/kg Ms	0 - 0,02
Cuivre cumulé (var. L/S- A)	mg/kg Ms	0,16
Fluorures cumulé (var. L/S- A)	mg/kg Ms	6,0
Fraction soluble cumulé (var. L/S- A)	mg/kg Ms	1700
Indice phénol cumulé (var. L/S- A)	mg/kg Ms	0 - 0,1
Masse échantillon total < 2 kg	kg	0,77
Mercure cumulé (var. L/S- A)	mg/kg Ms	0 - 0,0003
Molybdène cumulé (var. L/S- A)	mg/kg Ms	0,32
Nickel cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05
Plomb cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05
Sulfates cumulé (var. L/S- A)	mg/kg Ms	690
Sélénium cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05
Zinc cumulé (var. L/S- A)	mg/kg Ms	0,06

Unité

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

pe) Etant donné l'influence perturbatrice de l'échantillon, une dilution de l'échantillon a occasionnée une augmentation des limites de quantification

614968

Il existe une différence observée avec le guide méthodologique : le poids de l'échantillon est inférieur à 2 kg.

Début des analyses: 15.06.2016 Fin des analyses: 22.06.2016

Les résultats d'analyses ne concement que ces échantillons soumis à essai. La qualité du résultat rendu est contrôlée et validée, mais la pertinence en est difficilement vérifiable car le laboratoire n'a pas connaissance du contexte du site, de l'historique de l'échantillon.

AL-West B.V. M. Claude Gautheron, Tel. +33/380680143 Chargé relation clientèle

Ce rapport transmis électroniquement a été vérifié et validé Ceci est en accord avec les prescriptions de la NF EN ISO/IEC 17025:2005 pour les rapports simplifiés. Il est valide avec la signature digitale.

Kamer van Koophandel Nr. 08110898 Directeur ppa. Elly van Bakergem VAT/BTW-IID-Nr.: NL 811132559 B01 Dr. Paul Wimmer

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 591767 Solide / Eluat

Liste des méthodes

Eluat

conforme EN 16192: COT

Conforme ISO 10359-1et conforme NEN-EN 16192: Fluorures (F)

Conforme NEN-EN-ISO 17924-2: Cadmium (Cd) Nickel (Ni) Plomb (Pb) Arsenic (As) Antimoine (Sb) Molybdène (Mo) Sélénium (Se)

Cuivre (Cu) Chrome (Cr) Zinc (Zn) Baryum (Ba)

EN 16192: Mercure (Hg)
EN-ISO 16192: Indice phénol

Équivalent à EN-ISO 10304-1, équivalent à EN-ISO 15682: Chlorures (CI)

Équivalent à ISO 22743: Sulfates (SO4) Equivalent à NF EN ISO 15216: Résidu à sec

selon norme lixiviation: L/S cumulé Conductivité électrique Température pH

Matière solide

Cf. NEN-ISO 10390 (sol uniquement): pH-H2O

Conform 6961 /NF-EN 16174: Minéralisation à l'eau régale conforme ISO 10694: COT Carbone Organique Total

EN 12457: Lixiviation (EN 12457-2)

EN-ISO 11885: Chrome (Cr) Sélénium (Se) Nickel (Ni) Plomb (Pb) Zinc (Zn) Cuivre (Cu) Arsenic (As) Antimoine (Sb)

Baryum (Ba) Cadmium (Cd) Molybdène (Mo)

ISO 16772: Mercure (Hg)

ISO 22155: Somme Xylènes Chlorure de Vinyle Dichlorométhane Trichlorométhane Tétrachlorométhane Trichlorométhane Trichloromét

Tétrachloroéthylène 1,1,1-Trichloroéthane 1,1,2-Trichloroéthane 1,1-Dichloroéthane 1,2-Dichloroéthane

1,1-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes

ISO 22155: n) BTX total ISO11465: EN12880: Matière sèche

méthode interne: Hydrocarbures totaux C10-C40 HAP (6 Borneff) - somme Somme HAP (VROM) HAP (EPA) - somme

Somme 7 PCB (Ballschmiter) Somme PCB (STI) (ASE)

méthode interne: n) Fraction C10-C12 Fraction C12-C16 Fraction C16-C20 Fraction C20-C24 Fraction C24-C28 Fraction C28-C32

Fraction C32-C36 Fraction C36-C40

Sans objet: Masse échantillon total < 2 kg

Sans objet: n) Chrome cumulé (var. L/S - A) Baryum cumulé (var. L/S- A) Indice phénol cumulé (var. L/S- A)

 $S\'{e}l\'{e}nium\ cumul\'{e}\ (var.\ L/S-\ A) \\ Nickel\ cumul\'{e}\ (var.\ L/S-\ A) \\ Antimoine\ cumul\'{e}\ (var.\ L/S-\ A) \\ Cuivre\ cumul\'{e}\ (var.\ L/S-\ A)$

Arsenic cumulé (var. L/S - A) COT cumulé (var. L/S- A) Zinc cumulé (var. L/S- A) Cadmium cumulé (var. L/S- A)

Mercure cumulé (var. L/S- A) Fluorures cumulé (var. L/S- A) Sulfates cumulé (var. L/S- A) Fraction soluble cumulé (var. L/S- A) Plomb cumulé (var. L/S- A) Chlorures cumulé (var. L/S - A)

Molybdène cumulé (var. L/S- A)

n) Non accrédité

page 22 de 23

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Annexe de N° commande 591767

CONSERVATION, TEMPS DE CONSERVATION ET FLACONNAGE

Le délai de conservation des échantillons est expiré pour les analyses suivantes :

pH	614948, 614949, 614950, 614951, 614952, 614953, 614954, 614955, 614956, 614957, 614958,
	614050 614060 614061 614062 614063 614064 614065 614066 614067 614068

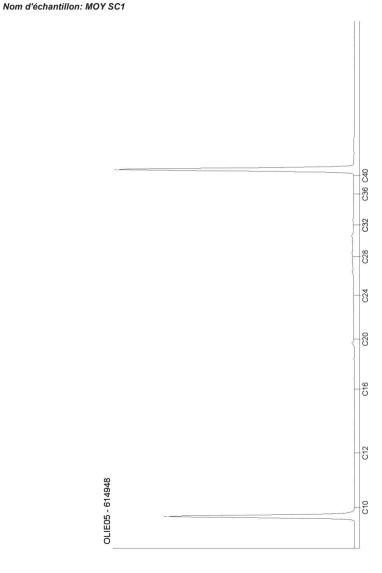
Température	614948, 614949, 6	614950, 614951, 614952,	614953, 614954, 614955	, 614956, 614957, 614958,
	614959, 614960, 6	614961, 614962, 614963,	614964, 614965, 614966	, 614967, 614968

		/	,			,	,	,		,	
Conductivité	6149	48 61	14949	614950	614951	614952	614953	614954	614955 6	14956	614957 614958

électrique	614959 614960	614961 614962	. 614963. 614964	614965 6	314966 614967	614968
------------	---------------	---------------	------------------	----------	---------------	--------

TESTING RVA L 005

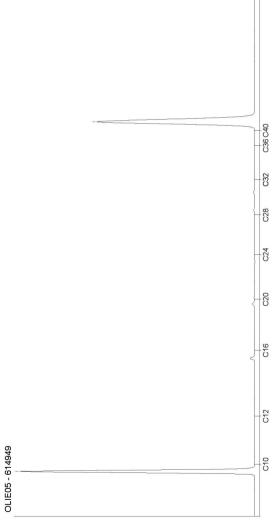
page 23 de 23



AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 591767, Analysis No. 614948, created at 20.06.2016 07:11:26

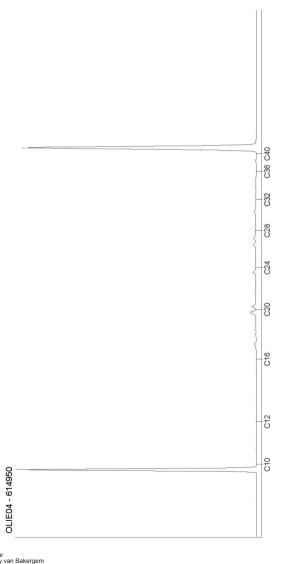


page 1 de 21

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

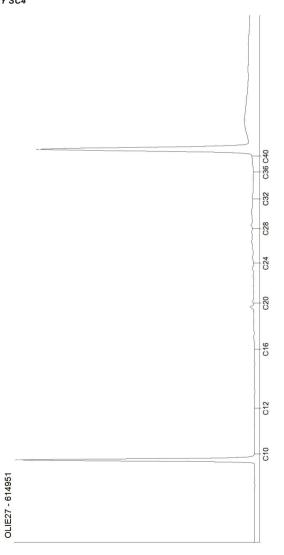
Chromatogram for Order No. 591767, Analysis No. 614949, created at 20.06.2016 07:11:26 Nom d'échantillon: MOY SC2

page 2 de 21


AL-West B.V.

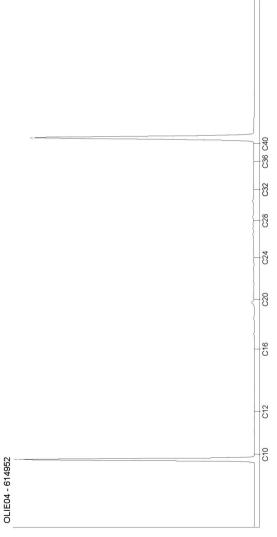
Dortmundstraat 168, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 591767, Analysis No. 614950, created at 20.06.2016 07:26:15


Nom d'échantillon: MOY SC3

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

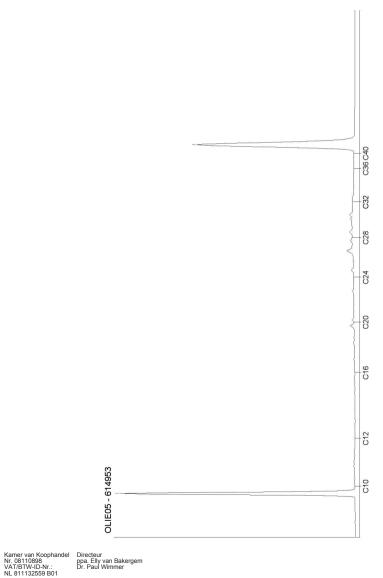
Chromatogram for Order No. 591767, Analysis No. 614951, created at 20.06.2016 06:31:04 Nom d'échantillon: MOY SC4



page 4 de 21

Chromatogram for Order No. 591767, Analysis No. 614952, created at 20.06.2016 07:26:15 Nom d'échantillon: MOY SC6

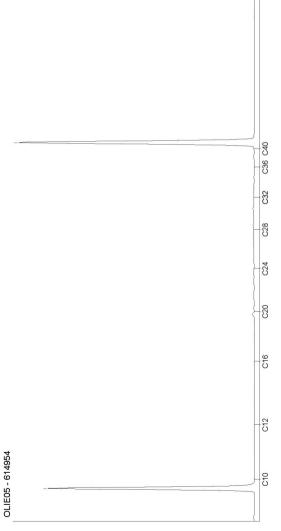
Kamer van Koophandel Nr. 08110898 Driecteur VAT/BTW-ID-Nr.: Driecteur NL 811132559 B01 Dr. Paul Wimmer


Kamer van Koophandel Nr. 08110898 Directeur VAT/BTW-ID-Nr.: ppa. Elly van Bakergem Dr. Paul Wimmer NL 811132559 B01

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 591767, Analysis No. 614953, created at 20.06.2016 07:11:26

Nom d'échantillon: MOY SC7


AL-West B.V.

Dortmundstraat 168, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 591767, Analysis No. 614954, created at 20.06.2016 07:11:27

Nom d'échantillon: MOY SC9

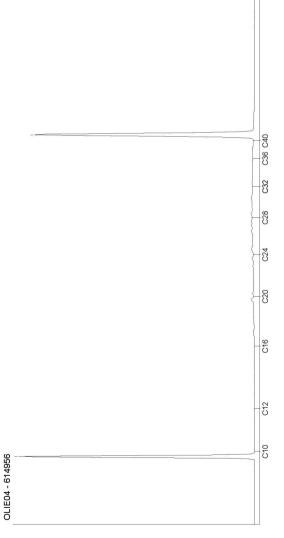
page 6 de 21

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 591767, Analysis No. 614955, created at 20.06.2016 07:26:15 Nom d'échantillon: MOY SC10

C12

page 8 de 21

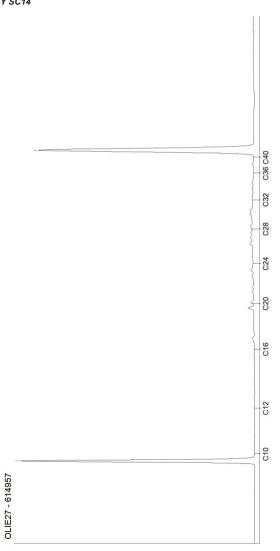

AL-West B.V.

Dortmundstraat 168, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 591767, Analysis No. 614956, created at 20.06.2016 07:26:16

Nom d'échantillon: MOY SC12

Kamer van Koophandel Nr. 08110898 Driecteur VAT/BTW-ID-Nr.: Driecteur NL 811132559 B01 Dr. Paul Wimmer

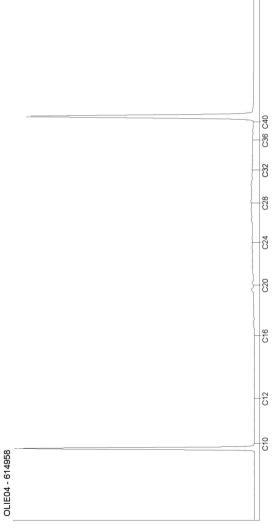

OLIE04 - 614955

page 9 de 21

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 591767, Analysis No. 614957, created at 20.06.2016 06:34:09 Nom d'échantillon: MOY SC14

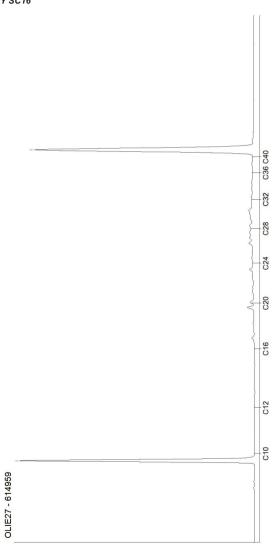
page 10 de 21


AL-West B.V.

Dortmundstraat 168, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 591767, Analysis No. 614958, created at 20.06.2016 07:26:16

Nom d'échantillon: MOY SC15

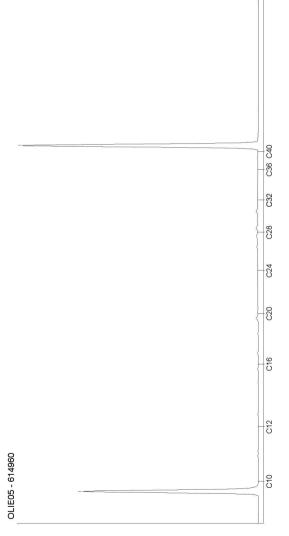


Kamer van Koophandel Nr. 08110898 Driecteur VAT/BTW-ID-Nr.: Driecteur NL 811132559 B01 Dr. Paul Wimmer

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 591767, Analysis No. 614959, created at 20.06.2016 06:34:09 Nom d'échantillon: MOY SC16

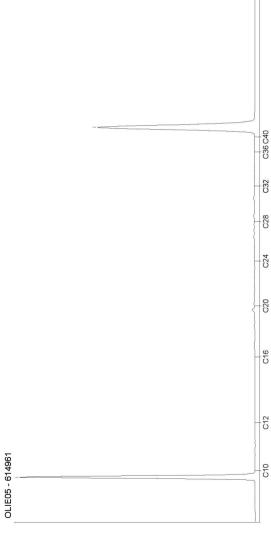
page 12 de 21


AL-West B.V.

Dortmundstraat 168, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 591767, Analysis No. 614960, created at 20.06.2016 07:11:27

Nom d'échantillon: MOY SC17

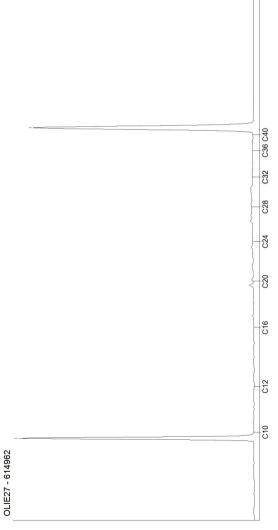


Kamer van Koophandel Nr. 08110898 Driecteur VAT/BTW-ID-Nr.: Driecteur NL 811132559 B01 Dr. Paul Wimmer

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 591767, Analysis No. 614961, created at 20.06.2016 07:11:27 Nom d'échantillon: MOY SC18

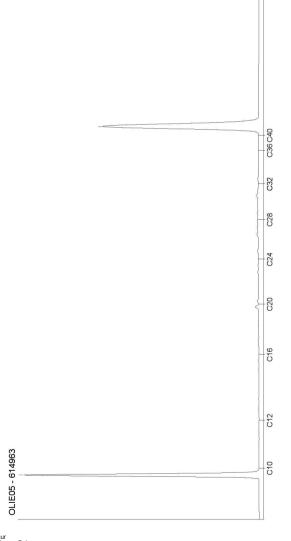
page 14 de 21


AL-West B.V.

Dortmundstraat 168, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 591767, Analysis No. 614962, created at 20.06.2016 06:34:09

Nom d'échantillon: MOY SC19

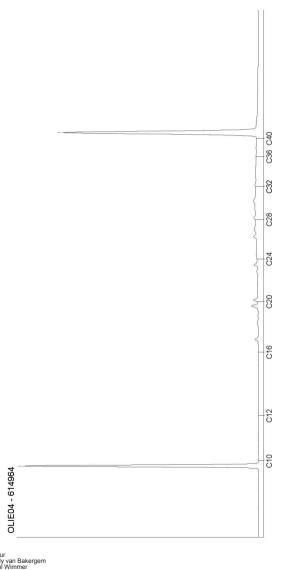

Kamer van Koophandel Nr. 08110898 Driecteur VAT/BTW-ID-Nr.: Driecteur NL 811132559 B01 Dr. Paul Wimmer

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 591767, Analysis No. 614963, created at 20.06.2016 07:11:27

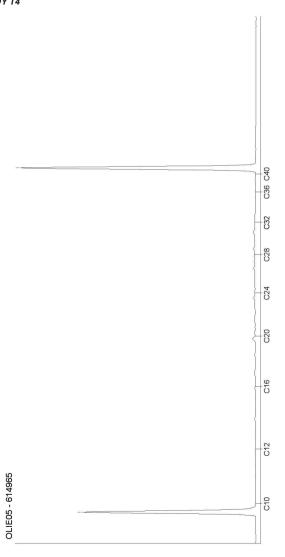
Nom d'échantillon: MOY SC20

page 16 de 21


AL-West B.V.

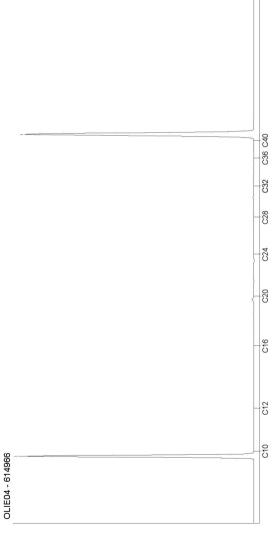
Dortmundstraat 168, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 591767, Analysis No. 614964, created at 20.06.2016 07:26:16


Nom d'échantillon: MOY SC21

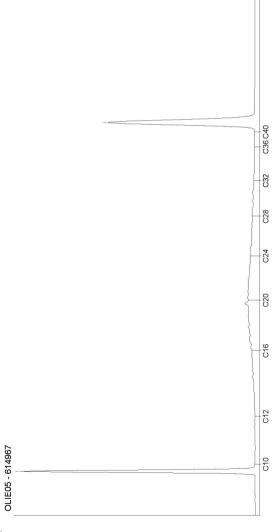
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 591767, Analysis No. 614965, created at 20.06.2016 07:11:27 Nom d'échantillon: MOY T4


page 18 de 21

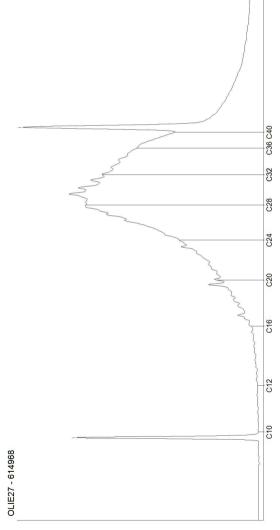
AL-West B.V.

Dortmundstraat 168, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl


Chromatogram for Order No. 591767, Analysis No. 614966, created at 20.06.2016 07:26:16 Nom d'échantillon: MOY T3

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 591767, Analysis No. 614967, created at 20.06.2016 07:11:27 Nom d'échantillon: MOY S5 - A


page 20 de 21

AL-West B.V.

Dortmundstraat 168, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 591767, Analysis No. 614968, created at 20.06.2016 06:34:09 Nom d'échantillon: MOY S5 - B

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

ARCADIS ESG AGENCE NORD 240 RUE DE L'ALBECK BP4204 ZI DE PETITE-SYNTHE 59378 DUNKERQUE CEDEX 1 FRANCE

 Date
 24.06.2016

 N° Client
 35004727

 N° commande
 592480

RAPPORT D'ANALYSES

N° Cde 592480 Solide / Eluat

 Client
 35004727 ARCADIS ESG AGENCE NORD

 Référence
 FR0152 / E. MOUSSAY / 9338608 / 16-0176 Q

Date de validation 17.06.16 Prélèvement par: Client (0)

Madame, Monsieur

Nous avons le plaisir de vous adresser ci-joint le rapport définitif des analyses chimiques provenant du laboratoire pour votre dossier en référence.

Sauf avis contraire, les analyses accréditées selon la norme EN ISO CEI 17025 ont été effectuées conformément aux méthodes de recherche citées dans les versions les plus actuelles de nos listes de prestations des Comités d'Accréditation Néerlandais (RVA), reconnus Cofrac, sous les numéro L005.

Si vous désirez recevoir de plus amples informations concernant le degré d'incertitudes d'une méthode de mesure déterminée, nous pouvons vous les fournir sur demande.

Nous signalons que le certificat d'analyses ne pourra être reproduit que dans sa totalité.

Nous vous informons que seules les conditions générales de AL-West, déposées à la Chambre du Commerce et de l'Industrie de Deventer, sont en vigueur.

Au cas où vous souhaiteriez recevoir des renseignements complémentaires, nous vous prions de prendre contact avec le service après-vente.

En vous remerciant pour la confiance que vous nous témoignez, nous vous prions d'agréer, Madame, Monsieur l'expression de nos sincères salutations.

Respectueusement,

Jan Alexan

AL-West B.V. M. Claude Gautheron, Tel. +33/380680143 Chargé relation clientèle

page 1 de 19

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 592480 Solide / Eluat

N° échant.	Prélèvement	Nom d'échantillon
618789	16.06.2016	MOY S1-A
618790	16.06.2016	MOY S1-B
618791	16.06.2016	MOY S2-A
618792	16.06.2016	MOY S2-B
618793	16.06.2016	MOY S3-A

	Unité	618789 MOY S1-A	618790 MOY S1-B	618791 MOY S2-A	618792 MOY S2-B	618793 MOY S3-A
Prétraitement des échantille	ons					
Matière sèche	%	84,0	84,4	85,1	85,3	84,2
Lixiviation						
Lixiviation (EN 12457-2)		++	++	++	++	++
Analyses Physico-chimique	es					
pH-H2O		8,5	8,5	8,6	8,3	8,4
COT Carbone Organique Tota	al mg/kg Ms	18000	14000	11000	10000	39000
Prétraitement pour analyses de	es métaux					
Minéralisation à l'eau régale		++	++	++	++	++
Métaux						
Antimoine (Sb)	mg/kg Ms	<0,5	<0,5	<0,5	<0,5	3,9
Arsenic (As)	mg/kg Ms	6,9	6,1	3,7	4,9	8,1
Baryum (Ba)	mg/kg Ms	94	90	28	52	190
Cadmium (Cd)	mg/kg Ms	0,3	0,3	0,1	0,2	0,7
Chrome (Cr)	mg/kg Ms	24	20	17	20	23
Cuivre (Cu)	mg/kg Ms	33	35	7,5	19	180
Mercure (Hg)	mg/kg Ms	0,20	0,18	<0,05	0,08	0,36
Molybdène (Mo)	mg/kg Ms	<1,0	<1,0	<1,0	<1,0	<1,0
Nickel (Ni)	mg/kg Ms	16	14	10	14	19
Plomb (Pb)	mg/kg Ms	82	110	12	25	210
Sélénium (Se)	mg/kg Ms	<1,0	<1,0	<1,0	<1,0	<1,0
Zinc (Zn)	mg/kg Ms	93	100	26	42	250
HAP						
Acénaphtylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtène	mg/kg Ms	<0,050	0,20	0,11	<0,050	0,17
Fluorène	mg/kg Ms	<0,050	0,26	0,33	<0,050	0,13
Pyrène	mg/kg Ms	0,20	1,8	1,0	0,12	1,7
Benzo(b)fluoranthène	mg/kg Ms	0,15	1,1	0,53	0,13	1,1
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,11	0,081	<0,050	0,095
Anthracène	mg/kg Ms	<0,050	0,46	0,36	<0,050	0,40
Benzo(a)anthracène	mg/kg Ms	0,17	1,2	0,52	0,097	0,91
Benzo(a)pyrène	mg/kg Ms	0,13	1,0	0,36	0,097	1,0
Benzo(g,h,i)pérylène	mg/kg Ms	0,073	0,46	0,21	0,086	0,63
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,52	0,21	<0,050	0,50
Chrysène	mg/kg Ms	0,14	1,0	0,42	0,084	0,93
•						

Kamer van Koophandel Nr. 08110898 pp. Elly VAT/BTW-ID-Nr.: Dr. Paul V

el Directeur ppa. Elly van Bakergem Dr. Paul Wimmer page 2 de 19

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 592480 Solide / Eluat

N° échant.	Prélèvement	Nom d'échantillon
618794	16.06.2016	MOY S3-B
618795	16.06.2016	MOY S4-A
618796	16.06.2016	MOY S4-B
618797	15.06.2016	MOY S6-A
618798	15.06.2016	MOY S6-B

	Unité	618794 MOY S3-B	618795 MOY S4-A	618796 MOY S4-B	618797 MOY S6-A	618798 MOY S6-B
Prétraitement des échantillons						
Matière sèche	%	80,0	83,3	83,1	82,2	82,7
Lixiviation						
Lixiviation (EN 12457-2)		++	++	++	++	++
Analyses Physico-chimiques						
pH-H2O		8,4	8,5	8,4	8,5	8,0
COT Carbone Organique Total	mg/kg Ms	88000	8200	64000	12000	72000
Prétraitement pour analyses des m	étaux					
Minéralisation à l'eau régale		++	++	++	++	++
Métaux						
Antimoine (Sb)	mg/kg Ms	2,8	<0,5	19	<0,5	5,1
Arsenic (As)	mg/kg Ms	13	6,0	12	5,9	13
Baryum (Ba)	mg/kg Ms	370	38	250	67	470
Cadmium (Cd)	mg/kg Ms	0,5	0,2	0,7	0,2	0,7
Chrome (Cr)	mg/kg Ms	26	19	24	19	27
Cuivre (Cu)	mg/kg Ms	510	12	1000	20	140
Mercure (Hg)	mg/kg Ms	0,64	<0,05	0,32	0,12	0,88
Molybdène (Mo)	mg/kg Ms	1,6	<1,0	1,3	<1,0	2,0
Nickel (Ni)	mg/kg Ms	29	15	21	15	26
Plomb (Pb)	mg/kg Ms	330	44	560	37	580
Sélénium (Se)	mg/kg Ms	<1,0	<1,0	<1,0	<1,0	<1,0
Zinc (Zn)	mg/kg Ms	510	49	550	57	490
HAP						
Acénaphtylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtène	mg/kg Ms	<0,050	<0,050	0,22	<0,050	<0,050
Fluorène	mg/kg Ms	0,20	<0,050	0,34	<0,050	0,079
Pyrène	mg/kg Ms	1,8	0,14	1,9	0,63	1,5
Benzo(b)fluoranthène	mg/kg Ms	1,0	0,080	1,0	0,47	1,3
Dibenzo(a,h)anthracène	mg/kg Ms	0,12	<0,050	0,094	<0,050	0,15
Anthracène	mg/kg Ms	0,40	<0,050	0,42	0,091	0,24
Benzo(a)anthracène	mg/kg Ms	0,89	0,091	1,0	0,45	1,2
Benzo(a)pyrène	mg/kg Ms	0,83	0,080	0,99	0,44	1,1
Benzo(g,h,i)pérylène	mg/kg Ms	0,55	<0,050	0,54	0,27	0,68
Benzo(k)fluoranthène	mg/kg Ms	0,46	<0,050	0,48	0,24	0,63
Chrysène	mg/kg Ms	0,78	0,091	0,96	0,40	1,1

page 3 de 19

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 592480 Solide / Eluat

N° échant.	Prélèvement	Nom d'échantillon
618799	15.06.2016	MOY S7-A
618800	15.06.2016	MOY S7-B
618801	15.06.2016	MOY S8-A
618802	15.06.2016	MOY S8-B
618803	15.06.2016	MOY T1

	Unité	618799 MOY S7-A	618800 MOY S7-B	618801 MOY S8-A	618802 MOY S8-B	618803 MOY T1
Prétraitement des échantillon	s					
Matière sèche	%	85,5	82,7	82,8	83,5	82,9
Lixiviation						
Lixiviation (EN 12457-2)		++	++	++	++	++
Analyses Physico-chimiques						
pH-H2O		8,6	8,4	8,3	8,3	9,2
COT Carbone Organique Total	mg/kg Ms	7300	19000	35000	18000	7200
Prétraitement pour analyses des	métaux					
Minéralisation à l'eau régale		++	++	++	++	++
Métaux						
Antimoine (Sb)	mg/kg Ms	1,0	2,5	1,1	2,4	<0,5
Arsenic (As)	mg/kg Ms	4,6	8,5	7,0	6,9	4,0
Baryum (Ba)	mg/kg Ms	50	130	120	180	42
Cadmium (Cd)	mg/kg Ms	0,2	0,4	0,6	0,7	0,2
Chrome (Cr)	mg/kg Ms	14	22	24	17	12
Cuivre (Cu)	mg/kg Ms	29	120	88	150	7,7
Mercure (Hg)	mg/kg Ms	0,08	0,17	0,25	0,47	<0,05
Molybdène (Mo)	mg/kg Ms	<1,0	<1,0	<1,0	<1,0	<1,0
Nickel (Ni)	mg/kg Ms	10	16	16	14	9,4
Plomb (Pb)	mg/kg Ms	43	150	420	230	11
Sélénium (Se)	mg/kg Ms	<1,0	<1,0	<1,0	<1,0	<1,0
Zinc (Zn)	mg/kg Ms	60	180	160	240	24
HAP						
Acénaphtylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Fluorène	mg/kg Ms	<0,050	0,063	0,088	<0,050	<0,050
Pyrène	mg/kg Ms	0,14	0,81	1,4	0,53	<0,050
Benzo(b)fluoranthène	mg/kg Ms	0,13	0,60	1,2	0,41	<0,050
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,068	0,12	<0,050	<0,050
Anthracène	mg/kg Ms	<0,050	0,12	0,18	0,061	<0,050
Benzo(a)anthracène	mg/kg Ms	0,099	0,54	1,0	0,35	<0,050
Benzo(a)pyrène	mg/kg Ms	0,11	0,52	0,86	0,37	<0,050
Benzo(g,h,i)pérylène	mg/kg Ms	0,074	0,35	0,59	0,28	<0,050
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,30	0,56	0,22	<0,050
Chrysène	mg/kg Ms	0,10	0,53	1,0	0,35	<0,050

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 592480 Solide / Eluat

N° échant.	Prélèvement	Nom d'échantillon
618804	15.06.2016	MOY T2
618805	16.06.2016	MOY SC5
618806	16.06.2016	MOY SC8
618807	15.06.2016	MOY SC11
618808	15.06.2016	MOY SC13

		MOY T2	MOY SC5	MOY SC8	MOY SC11	MOY SC13
Prétraitement des échantillons						
Matière sèche	%	83,9	82,6	81,6	81,8	81,8
Lixiviation						
Lixiviation (EN 12457-2)		++	++	++	++	++
Analyses Physico-chimiques						
pH-H2O		8,6	8,5	8,4	8,4	8,5
COT Carbone Organique Total	mg/kg Ms	16000	17000	24000	28000	12000
Prétraitement pour analyses des m	nétaux					
Minéralisation à l'eau régale		++	++	++	++	++
Métaux						
Antimoine (Sb)	mg/kg Ms	0,7	1,0	<0,5	4,1	0,8
Arsenic (As)	mg/kg Ms	8,3	8,1	6,9	6,5	6,3
Baryum (Ba)	mg/kg Ms	84	130	120	82	89
Cadmium (Cd)	mg/kg Ms	0,3	0,4	0,4	0,4	0,3
Chrome (Cr)	mg/kg Ms	26	25	22	21	19
Cuivre (Cu)	mg/kg Ms	19	49	37	45	26
Mercure (Hg)	mg/kg Ms	<0,05	0,12	0,19	0,14	0,27
Molybdène (Mo)	mg/kg Ms	<1,0	<1,0	<1,0	<1,0	<1,0
Nickel (Ni)	mg/kg Ms	23	19	16	15	15
Plomb (Pb)	mg/kg Ms	23	140	87	71	57
Sélénium (Se)	mg/kg Ms	<1,0	<1,0	<1,0	<1,0	<1,0
Zinc (Zn)	mg/kg Ms	57	170	98	110	89
HAP						
Acénaphtylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	0,16
Fluorène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	0,11
Pyrène	mg/kg Ms	<0,050	0,82	0,25	0,62	1,6
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,45	0,20	0,33	0,88
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,062	<0,050	<0,050	0,088
Anthracène	mg/kg Ms	<0,050	0,24	<0,050	0,087	0,27
Benzo(a)anthracène	mg/kg Ms	<0,050	0,45	0,13	0,28	0,93
Benzo(a)pyrène	mg/kg Ms	<0,050	0,44	0,17	0,28	0,87
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,30	0,097	0,23	0,40
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,25	0,085	0,15	0,44
Chrysène	mg/kg Ms	<0,050	0,40	0,17	0,26	0,82

page 5 de 19

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 592480 Solide / Eluat

AGROLAB	GROUP
Your labs. Your service.	

	Unité	618789 MOY S1-A	618790 MOY S1-B	618791 MOY S2-A	618792 MOY S2-B	618793 MOY S3-A
HAP						
Fluoranthène	mg/kg Ms	0,35	2,8	1,5	0,20	2,5
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,13	0,72	0,31	0,096	0,81
Naphtalène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	0,084
Phénanthrène	mg/kg Ms	0,26	1,9	1,3	0,13	1,7
HAP (6 Borneff) - somme	mg/kg Ms	0,83 ^{x)}	6,6	3,1	0,61 ^{x)}	6,5
Somme HAP (VROM)	mg/kg Ms	1,3 ^{x)}	10 ^{x)}	5,2 ^{x)}	0,79 ^{x)}	9,5
HAP (EPA) - somme	mg/kg Ms	1,6 ^{x)}	14 ^{x)}	7,2 ^{x)}	1,0 ^{x)}	13 ^{x)}
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	<0,050	0,069	<0,050	<0,050
Toluène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Ethylbenzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
o-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
BTX total	mg/kg Ms	n.d.	n.d.	0,069 ^{x)}	n.d.	n.d.
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	<0,02	<0,02	<0,02	<0,02
Dichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
1,2-Dichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
Hydrocarbures totaux						
Hydrocarbures totaux C10-C40	mg/kg Ms	<20	95	402	278	156
Fraction C10-C12	mg/kg Ms	<4	<4	<4	<4	<4
Fraction C12-C16	mg/kg Ms	<4	<4	<4	<4	<4
Fraction C16-C20	mg/kg Ms	6	14	8	8	13
Fraction C20-C24	mg/kg Ms	4	15	14	13	23
Fraction C24-C28	mg/kg Ms	4	15	46	29	38
Fraction C28-C32	mg/kg Ms	4	18	100	69	39
Fraction C32-C36	mg/kg Ms	3	17	140	94	26
Fraction C36-C40	mg/kg Ms	<2	10	92	61	13

Kamer van Koophandel Nr. 08110898 VAT/BTW-ID-Nr.: NL 811132559 B01

Your labs. Your service.

N° Cde 592480 Solide / Eluat

	Unité	618794 моу sз-в	618795 MOY S4-A	618796 MOY S4-B	618797 MOY S6-A	618798 MOY S6-B
HAP						
Fluoranthène	mg/kg Ms	2,3	0,24	2,9	0,97	2,4
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,78	0,088	0,73	0,40	1,0
Naphtalène	mg/kg Ms	<0,050	<0,050	0,22	<0,050	0,10
Phénanthrène	mg/kg Ms	1,5	0,13	2,3	0,43	0,93
HAP (6 Borneff) - somme	mg/kg Ms	5,9	0,49 ×)	6,6	2,8	7,1
Somme HAP (VROM)	mg/kg Ms	8,5 ^{x)}	0,72 ×)	11	3,7 ×)	9,4
HAP (EPA) - somme	mg/kg Ms	12 ^{x)}	0,94×)	14 ^{x)}	4,8 ^{x)}	12 ^{x)}
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Toluène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Ethylbenzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
o-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
BTX total	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
СОНУ	0 0					
Chlorure de Vinyle	mg/kg Ms	<0,02	<0,02	<0,02	<0,02	<0,02
Dichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1.1-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
1,2-Dichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
cis-1.2-Dichloroéthène	mg/kg Ms	<0,025	<0.025	<0,025	<0.025	<0,025
Trans-1.2-Dichloroéthylène	mg/kg Ms	<0.025	<0.025	<0.025	<0,025	<0.025
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
Hydrocarbures totaux						
Hydrocarbures totaux C10-C40	mg/kg Ms	131	28	177	32	210
Fraction C10-C12	mg/kg Ms	<4	<4	<4	<4	<4
Fraction C12-C16	mg/kg Ms	<4	<4	<4	<4	<4
Fraction C16-C20	mg/kg Ms	14	4	14	3	17
Fraction C20-C24	mg/kg Ms	21	4	23	6	36
Fraction C24-C28	mg/kg Ms	29	5	39	8	54
Fraction C28-C32	mg/kg Ms	30	6	47	8	56
Fraction C32-C36	mg/kg Ms	21	5	34	5	30
Fraction C36-C40	mg/kg Ms	11	<2	18	<2	13

page 7 de 19

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 592480 Solide / Eluat

	Unité	618799 MOY S7-A	618800 MOY S7-B	618801 MOY S8-A	618802 MOY S8-B	618803 MOY T1
HAP						
Fluoranthène	mg/kg Ms	0,20	1,3	2,4	0,79	<0,050
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,11	0,50	0,91	0,42	<0,050
Naphtalène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Phénanthrène	mg/kg Ms	0,076	0,80	1,2	0,43	<0,050
HAP (6 Borneff) - somme	mg/kg Ms	0,62 ^{x)}	3,6	6,5	2,5	n.d.
Somme HAP (VROM)	mg/kg Ms	0,77 ^{x)}	5,0 ^{x)}	8,7 ^{x)}	3,3 ^{x)}	n.d.
HAP (EPA) - somme	mg/kg Ms	1,0 ^{x)}	6,5 ^{x)}	12 ^{x)}	4,2 x)	n.d.
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Toluène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Ethylbenzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
o-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
BTX total	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
сону						
Chlorure de Vinyle	mg/kg Ms	<0,02	<0,02	<0,02	<0,02	<0,02
Dichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
1,2-Dichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
Hydrocarbures totaux						
Hydrocarbures totaux C10-C40	mg/kg Ms	<20	59	91	44	<20
Fraction C10-C12	mg/kg Ms	<4	<4	<4	<4	<4
Fraction C12-C16	mg/kg Ms	<4	<4	<4	<4	<4
Fraction C16-C20	mg/kg Ms	<2	8	7	4	<2
Fraction C20-C24	mg/kg Ms	<2	11	16	8	<2
Fraction C24-C28	mg/kg Ms	<2	13	23	10	<2
Fraction C28-C32	mg/kg Ms	<2	13	23	10	<2
Fraction C32-C36	mg/kg Ms	<2	9	14	7	<2
Fraction C36-C40	mg/kg Ms	<2	3	7	4	<2

N° Cde 592480 Solide / Eluat

Phénanthrène mg/kg Ms <0,050		Unité	618804 MOY T2	618805 MOY SC5	618806 MOY SC8	618807 MOY SC11	618808 MOY SC13
Indehno(1,2,3-cd)pyreine	HAP						
Naphtaleine	Fluoranthène	mg/kg Ms	0,061	1,2	0,34	0,94	2,3
Phénanthrène mg/kg Ms <0,050 0,48 0,23 0,81 HAP (6 Borneff) - somme mg/kg Ms 0,06° 3,1 1,0 2,2 Somme HAP (VROM) mg/kg Ms 0,06° 3,1 1,0 2,2 Somme HAP (VROM) mg/kg Ms 0,06° 4,2° 1,4° 3,3° HAP (EPA) - somme mg/kg Ms 0,050 <0,050	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,42	0,15	0,29	0,62
HAP (6 Borneff) - somme	Naphtalène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Somme HAP (VROM) mg/kg Ms 0,06 ° 4,2 ° 1,4 ° 3,3 ° HAP (EPA) - somme mg/kg Ms 0,06 ° 5,5 ° 1,8 ° 4,3 ° Composés aromatiques	Phénanthrène	mg/kg Ms	<0,050	0,48	0,23	0,81	1,3
HAP (EPA) - somme	HAP (6 Borneff) - somme	mg/kg Ms	0,06 ^{x)}	3,1	1,0	2,2	5,5
Denzene	Somme HAP (VROM)	mg/kg Ms	0,06 ^{x)}	4,2 ^{x)}	1,4 ^{x)}	3,3 ^{x)}	8,0 ^{x)}
Benzéne	HAP (EPA) - somme	mg/kg Ms	0,06 ^{x)}	5,5 ^{x)}	1,8 ^{x)}	4,3 ^{x)}	11 ×)
Toluène	Composés aromatiques						
Ethylbenzène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <th< td=""><td>Benzène</td><td>mg/kg Ms</td><td><0,050</td><td><0,050</td><td><0,050</td><td><0,050</td><td><0,050</td></th<>	Benzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
mp-Xylène mg/kg Ms <0,10 <0,10 <0,10 <0,10 o-Xylène mg/kg Ms <0,050	Toluène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
o-Xylene mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0 <0,050 <0 <0 <0,050 <0,050 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <th< td=""><td>Ethylbenzène</td><td>mg/kg Ms</td><td><0,050</td><td><0,050</td><td><0,050</td><td><0,050</td><td><0,050</td></th<>	Ethylbenzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Somme Xylènes mg/kg Ms n.d. n	m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
BTX total mg/kg Ms n.d. n.d. n.d. n.d. n.d. n.d.	o-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
COHV Chlorure de Vinyle	Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
Chlorure de Vinyle mg/kg Ms <0,02 <0,02 <0,02 <0,02 Dichlorométhane mg/kg Ms <0,05	BTX total	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
Dichlorométhane	COHV						
Trichlorométhane mg/kg Ms < 0,05 < 0,05 < 0,05 < 0,05 Tétrachlorométhane mg/kg Ms < 0,05	Chlorure de Vinyle	mg/kg Ms	<0,02	<0,02	<0,02	<0,02	<0,02
Tétrachlorométhane mg/kg Ms <0,05 <0,05 <0,05 <0,05 Trichloroéthylène mg/kg Ms <0,05	Dichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichloroéthylène mg/kg Ms <0,05 <0,05 <0,05 <0,05 Tétrachloroéthylène mg/kg Ms <0,05	Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachloroéthylène mg/kg Ms < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05	Tétrachlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,1-Trichloroéthane mg/kg Ms <0,05	Trichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,2-Trichloroéthane mg/kg Ms <0,05	Tétrachloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-Dichloroéthane mg/kg Ms <0,10 <0,10 <0,10 <0,10 1,2-Dichloroéthane mg/kg Ms <0,05	1,1,1-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,2-Dichloroéthane mg/kg Ms <0,05	1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-Dichloroéthylène mg/kg Ms <0,10	1,1-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
cis-1,2-Dichloroéthène mg/kg Ms <0,025 <0,025 <0,025 <0,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025 <1,025	1,2-Dichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trans-1,2-Dichloroéthylène mg/kg Ms <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <0,025 <td>1,1-Dichloroéthylène</td> <td>mg/kg Ms</td> <td><0,10</td> <td><0,10</td> <td><0,10</td> <td><0,10</td> <td><0,10</td>	1,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
Somme cis/trans-1,2- mg/kg Ms n.d. n.d. n.d. n.d. n.d.	cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
Dichloroéthylènes Hydrocarbures totaux Hydrocarbures totaux C10-C40 mg/kg Ms <20	Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
Hydrocarbures totaux C10-C40 mg/kg Ms <20 <20 <20 28 Fraction C10-C12 mg/kg Ms <4		mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
Fraction C10-C12 mg/kg Ms <4	Hydrocarbures totaux						
Fraction C12-C16 mg/kg Ms <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4<	Hydrocarbures totaux C10-C40	mg/kg Ms	<20	<20	<20	28	31
Fraction C16-C20 mg/kg Ms <2 <2 <2 6 Fraction C20-C24 mg/kg Ms <2 <2 <2 7 Fraction C24-C28 mg/kg Ms <2 <2 3 6 Fraction C24-C28 mg/kg Ms <2 <2 3 6 Fraction C28-C32 mg/kg Ms <2 <2 3 5 Fraction C32-C36 mg/kg Ms <2 <2 <2 <2 <2 <2	Fraction C10-C12	mg/kg Ms	<4	<4	<4	<4	<4
Fraction C20-C24 mg/kg Ms <2 <2 <2 <7 Fraction C24-C28 mg/kg Ms <2	Fraction C12-C16	mg/kg Ms	<4	<4	<4	<4	<4
Fraction C24-C28 mg/kg Ms <2 <2 3 6 Fraction C28-C32 mg/kg Ms <2	Fraction C16-C20	mg/kg Ms	<2	<2	<2	6	6
Fraction C28-C32 mg/kg Ms <2 <2 3 5 Fraction C32-C36 mg/kg Ms <2	Fraction C20-C24	mg/kg Ms	<2	<2	<2	7	8
Fraction C32-C36 mg/kg Ms <2 <2 <2 <2	Fraction C24-C28	mg/kg Ms	<2	<2	3	6	7
mg-ng-max = = = = = =	Fraction C28-C32	mg/kg Ms	<2	<2	3	5	5
Fraction C36-C40 mg/kg Ms <2 <2 <2 <2	Fraction C32-C36	mg/kg Ms	<2	<2	<2	<2	<2
· · ·	Fraction C36-C40	mg/kg Ms	<2	<2	<2	<2	<2

page 9 de 19

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

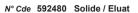
N° Cde 592480 Solide / Eluat

	Unité	618789 MOY S1-A	618790 MOY S1-B	618791 MOY S2-A	618792 MOY S2-B	618793 MOY S3-A
Polychlorobiphényles						
PCB (28)	mg/kg Ms	<0,0010	<0.0010	<0,0010	<0.0010	<0.0010
PCB (52)	mg/kg Ms	<0,0010	0,0023	<0,0010	<0,0010	0,0099
PCB (101)	mg/kg Ms	<0,0010	0.0043	<0,0010	<0.0010	0,014
PCB (118)	mg/kg Ms	<0,0010	0,0033	<0,0010	<0,0010	0,0075
PCB (138)	mg/kg Ms	<0,0010	0,0043	<0,0010	<0,0010	0,0091
PCB (153)	mg/kg Ms	<0,0010	0,0038	<0,0010	<0.0010	0.0072
PCB (180)	mg/kg Ms	<0,0010	0,0019	<0,0010	<0,0010	0,0046
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	0,020 x)	n.d.	n.d.	0,052 x)
Somme PCB (STI) (ASE)	mg/kg Ms	n.d.	0.020 ^{x)}	n.d.	n.d.	0,052 x)
Analyses sur éluat après lixiviation			-,			-,
L/S cumulé	ml/g	10,0	10,0	10,0	10,0	10,0
Conductivité électrique	μS/cm	150	180	130	190	160
Température	°C	20.2	20.0	20.7	19.9	20,2
pH		8.3	8.5	8.4	8.2	8,2
Analyses Physico-chimiques sur é	éluats		-,-			-,
Résidu à sec	mg/l	110	420	<100	140	100
Indice phénol	mg/l	<0,010	<0,010	<0,010	<0,010	<0,010
Chlorures (CI)	mg/l	6,6	8,1	3,8	1,7	4,6
Sulfates (SO4)	mg/l	8,1	25	8,4	46	15
СОТ	mg/l	3,0	6,8	2,1	1,2	2,8
Fluorures (F)	mg/l	0,6	0,7	0,5	0,7	0,8
Metaux sur éluats		,				
Antimoine (Sb)	μg/l	7,9	9,7	5,4	<5,0	8,4
Arsenic (As)	μg/l	<5,0	7,7	<5,0	<5,0	<5,0
Baryum (Ba)	μg/l	15	78	14	<10	29
Cadmium (Cd)	μg/l	<0,1	0,2	<0,1	<0,1	<0,1
Chrome (Cr)	μg/l	<2,0	10	<2,0	2,4	<2,0
Cuivre (Cu)	μg/l	14	25	7,2	3,2	18
Mercure (Hg)	μg/l	<0,03	0,13	<0,03	<0,03	<0,03
Molybdène (Mo)	μg/l	8,0	11	5,5	8,5	9,8
Nickel (Ni)	μg/l	<5,0	18	<5,0	<5,0	<5,0
Plomb (Pb)	μg/l	<5,0	88	<5,0	<5,0	<5,0
Sélénium (Se)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Zinc (Zn)	μg/l	2,6	63	<2,0	6,6	4,0
Autres analyses	. v			-		
Antimoine cumulé (var. L/S- A)	mg/kg Ms	0,08	0,10	0,05	0 - 0,05	0,08
Arsenic cumulé (var. L/S - A)	mg/kg Ms	0 - 0,05	0,08	0 - 0,05	0 - 0,05	0 - 0,05
Baryum cumulé (var. L/S- A)	mg/kg Ms	0,15	0,78	0,14	0 - 0,1	0,29
COT cumulé (var. L/S- A)	mg/kg Ms	30	68	21	12	28
Cadmium cumulé (var. L/S- A)	mg/kg Ms	0 - 0,001	0,002	0 - 0,001	0 - 0,001	0 - 0,001
			-		-	

page 10 de 19

TESTING RVA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl


N° Cde 592480 Solide / Eluat

	Unité	618794 MOY S3-B	618795 MOY S4-A	618796 MOY S4-B	618797 MOY S6-A	618798 MOY S6-B
Polychlorobiphényles						
PCB (28)	mg/kg Ms	<0,0010	<0,0010	<0,0010	0,0018	0,0017
PCB (52)	mg/kg Ms	0,0075	<0,0010	0,0026	0,0036	0,0051
PCB (101)	mg/kg Ms	0,014	<0,0010	0,0058	0,0022	0,0071
PCB (118)	mg/kg Ms	0,0073	<0,0010	0,0031	0,0013	0,0036
PCB (138)	mg/kg Ms	0,0096	0,0014	0,0055	0,0017	0,0088
PCB (153)	mg/kg Ms	0,0075	0,0013	0,0045	0,0013	0,0080
PCB (180)	mg/kg Ms	0,0030	<0,0010	0,0020	<0,0010	0,0054
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,049 ×)	0,003 ^{x)}	0,024 ×)	0,012 ×)	0,040
Somme PCB (STI) (ASE)	mg/kg Ms	0,049 ×)	0,003 ^{x)}	0,024 ^{x)}	0,012 ×)	0,040
Analyses sur éluat après lixiviation	1					
L/S cumulé	ml/g	10,0	10,0	10,0	10,0	10,0
Conductivité électrique	μS/cm	200	110	220	130	300
Température	°C	20,2	20,5	20,2	19,8	19,8
рН		8,4	8,3	8,4	8,1	8,1
Analyses Physico-chimiques sur é	luats					
Résidu à sec	mg/l	120	<100	150	100	190
Indice phénol	mg/l	<0,010	<0,010	<0,010	<0,010	<0,010
Chlorures (CI)	mg/l	3,8	2,3	14	5,5	2,7
Sulfates (SO4)	mg/l	15	9,4	27	5,2	88
СОТ	mg/l	5,4	1,4	6,2	2,1	2,6
Fluorures (F)	mg/l	0,9	0,7	0,7	0,6	0,5
Metaux sur éluats						
Antimoine (Sb)	μg/l	17	5,2	51	<5,0	10
Arsenic (As)	μg/l	<5,0	<5,0	7,1	<5,0	<5,0
Baryum (Ba)	μg/l	56	14	35	13	53
Cadmium (Cd)	μg/l	<0,1	<0,1	<0,1	<0,1	<0,1
Chrome (Cr)	μg/l	<2,0	<2,0	<2,0	<2,0	<2,0
Cuivre (Cu)	μg/l	54	7,8	75	11	18
Mercure (Hg)	μg/l	<0,03	<0,03	<0,03	<0,03	<0,03
Molybdène (Mo)	μg/l	19	<5,0	26	5,6	20
Nickel (Ni)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Plomb (Pb)	μg/l	<5,0	<5,0	5,3	<5,0	<5,0
Sélénium (Se)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Zinc (Zn)	μg/l	13	3,9	9,9	13	12
Autres analyses						
Antimoine cumulé (var. L/S- A)	mg/kg Ms	0,17	0,05	0,51	0 - 0,05	0,10
Arsenic cumulé (var. L/S - A)	mg/kg Ms	0 - 0,05	0 - 0,05	0,07	0 - 0,05	0 - 0,05
Baryum cumulé (var. L/S- A)	mg/kg Ms	0,56	0,14	0,35	0,13	0,53
COT cumulé (var. L/S- A)	mg/kg Ms	54	14	62	21	26
Cadmium cumulé (var. L/S- A)	mg/kg Ms	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001

page 11 de 19

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

Polychlorobiphényles PCB (28) mg/kg Ms <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0011 <0,0010 <0,0011 <0,0011 <0,0010 <0,0011 <0,0010 <0,0011 <0,0010 <0,0011 <0,0010 <0,0011 <0,0010 <0,0011 <0,0010 <0,0011 <0,0010 <0,0011 <0,0010 <0,0011 <0,0010 <0,0011 <0,0010 <0,0011 <0,0010 <0,0011 <0,0010 <0,0011 <0,0010 <0,0011 <0,0010 <0,0011 <0,0010 <0,0011 <0,0010 <0,0011 <0,0010 <0,0014 <0,0031 <0,0010 <0,0014 <0,0031 <0,0010 <0,0014 <0,0031 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010 <0,0010		Unité	618799 MOY S7-A	618800 MOY S7-B	618801 MOY S8-A	618802 MOY S8-B	618803 MOY T1
PCB (52) mg/kg Ms <0,0010 0,0027 0,0094 0,0041 <0,0010 PCB (101) mg/kg Ms <0,0010 0,0054 0,023 0,0089 <0,0010 PCB (118) mg/kg Ms <0,0010 0,0046 0,019 0,0072 <0,0010 PCB (139) mg/kg Ms <0,0010 0,0070 0,029 0,0089 <0,0010 PCB (153) mg/kg Ms <0,0010 0,0060 0,024 0,0071 <0,0010 PCB (180) mg/kg Ms <0,0010 0,0030 0,014 0,0039° n.d. Somme PCB (STI) (ASE) mg/kg Ms n.d. 0,029° 0,12° 0,039° n.d. Somme PCB (STI) (ASE) mg/kg Ms n.d. 0,029° 0,12° 0,039° n.d. Local cuttivité électrique µ5/cm 94,9 150 140 170 72.2 Température °C 20,0 20,6 20,6 19,9 20,4 pH C 20,0 20,0 20,0	Polychlorobiphényles						
PCB (101) mg/kg Ms <0,0010 0,0054 0,023 0,0089 <0,0010	PCB (28)	mg/kg Ms	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
PCB (118) mg/kg Ms <0,0010 0,0046 0,019 0,0072 <0,0010 PCB (138) mg/kg Ms <0,0010	PCB (52)	mg/kg Ms	<0,0010	0,0027	0,0094	0,0041	<0,0010
PCB (138) mg/kg Ms <0,0010 0,0070 0,029 0,0089 <0,0010 PCB (153) mg/kg Ms <0,0010 0,0060 0,024 0,0071 <0,0010 PCB (153) mg/kg Ms <0,0010 0,0060 0,024 0,0071 <0,0010 PCB (180) mg/kg Ms <0,0010 0,0030 0,014 0,0031 <0,0010 0,0060 0,024 0,0071 <0,0010 0,0060 0,024 0,0071 <0,0010 0,0060 0,024 0,0071 <0,0010 0,0060 0,024 0,0071 <0,0010 0,0060 0,025 0,12 % 0,039 % n.d. 0,029 % 0,000 %	PCB (101)	mg/kg Ms	<0,0010	0,0054	0,023	0,0089	<0,0010
PCB (153) mg/kg Ms <0,0010 0,0060 0,024 0,0071 <0,0010 PCB (180) mg/kg Ms <0,0010 0,0030 0,014 0,0031 <0,0010 Somme P CB (Ballschmiter) mg/kg Ms n.d. 0,029 0,12 0,039 n.d. 0,039 n.	PCB (118)	mg/kg Ms	<0,0010	0,0046	0,019	0,0072	<0,0010
PCB (180) mg/kg Ms	PCB (138)	mg/kg Ms	<0,0010	0,0070	0,029	0,0089	<0,0010
Somme 7 PCB (Ballschmiter) mg/kg Ms n.d. 0,029 d 0,12 d 0,039 d n.d.	PCB (153)	mg/kg Ms	<0,0010	0,0060	0,024	0,0071	<0,0010
Somme PCB (STI) (ASE) mg/kg Ms n.d. 0,029 do 0,12 do 0,039 do n.d.	PCB (180)	mg/kg Ms	<0,0010	0,0030	0,014	0,0031	<0,0010
Analyses sur éluat après lixiviation L/S cumulé ml/g 10,0 10,0 10,0 10,0 10,0 10,0 Conductivité électrique µS/cm 94,9 150 140 170 72,2 Température °C 20,0 20,6 20,6 19,9 20,4 pH 8,3 8,3 8,3 8,3 8,2 9,5 Analyses Physico-chimiques sur éluats Résidu à sec mg/l <100 <100 <100 110 <110 <100 Indice phénol mg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 Indice phénol mg/l 6,0 26 15 32 <5,0 COT mg/l 1,5 <1,0 1,8 1,2 1,1 Fluorures (F) mg/l 0,8 0,9 0,8 0,8 0,8 0,6 Metaux sur éluats Antimoine (Sb) µg/l <5,0 <5,0 6,2 <5,0 <5,0 Arsenic (As) µg/l <0,01 <0,01 <0,01 <0,01 <0,01 Cadmium (Cd) µg/l <0,01 <0,01 <0,01 <0,01 Cadmium (Cd) µg/l <0,01 <0,01 <0,01 <0,01 Chrome (Cr) µg/l <0,01 <0,01 <0,01 <0,01 Chrome (Cr) µg/l <0,01 <0,01 <0,01 <0,01 Chrome (Ch) µg/l <0,03 <0,03 <0,03 <0,03 <0,03 Molybdène (Mo) µg/l <5,0 <5,0 5,0 <5,0 <5,0 <5,0 <5,0 <5,0	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	0,029 x)	0,12 ^{x)}	0,039 ^{x)}	n.d.
L/S cumulé ml/g 10,0 10,0 10,0 10,0 10,0 10,0 10,0 Conductivité électrique μS/cm 94,9 150 140 170 72,2 Température °C 20,0 20,6 20,6 19,9 20,4 pH 8,3 8,3 8,3 8,2 9,5 Analyses Physico-chimiques sur éluats Résidu à sec mg/l <100 <100 <100 110 <100 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,01	Somme PCB (STI) (ASE)	mg/kg Ms	n.d.	0,029 x)	0,12 ^{x)}	0,039 ^{x)}	n.d.
Conductivité électrique µS/cm 94,9 150 140 170 72,2 Température °C 20,0 20,6 20,6 19,9 20,4 pH 8,3 8,3 8,3 8,3 8,2 9,5 Analyses Physico-chimiques sur éluats Résidu à sec mg/l <100 <100 <100 <100 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0	Analyses sur éluat après lixiviation	n					
Température °C 20,0 20,6 20,6 19,9 20,4 pH 8,3 8,3 8,3 8,3 8,2 9,5 Analyses Physico-chimiques sur étuats Résidu à sec mg/l <100	L/S cumulé	ml/g	10,0	10,0	10,0	10,0	10,0
Phase Physico-chimiques sur éluats Résidu à sec mg/l <100 <100 <100 <100 <100 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,0	Conductivité électrique	μS/cm	94,9	150	140	170	72,2
Analyses Physico-chimiques sur étuats Résidu à sec mg/l <100 <100 <100 110 <100 Indice phénol mg/l <0,010	Température	°C	20,0	20,6	20,6	19,9	20,4
Résidu à sec mg/l <100 <100 <100 110 <100 Indice phénol mg/l <0,010	pH		8,3	8,3	8,3	8,2	9,5
Indice phénol mg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 Chlorures (Cl) mg/l 1,8 2,5 2,5 1,9 3,5 Sulfates (SO4) mg/l 6,0 26 15 32 <5,0 COT mg/l 1,5 <1,0 1,8 1,2 1,1 Fluorures (F) mg/l 0,8 0,9 0,8 0,8 0,8 0,6 Metaux sur éluats Antimoine (Sb) µg/l <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0	Analyses Physico-chimiques sur é	luats					
Chlorures (CI) mg/I 1,8 2,5 2,5 1,9 3,5 Sulfates (SO4) mg/I 6,0 26 15 32 <5,0	Résidu à sec	mg/l	<100	<100	<100	110	<100
Sulfates (SO4) mg/l 6,0 26 15 32 <5,0 COT mg/l 1,5 <1,0	Indice phénol	mg/l	<0,010	<0,010	<0,010	<0,010	<0,010
COT mg/l 1,5 < 1,0 1,8 1,2 1,1 Fluorures (F) mg/l 0,8 0,9 0,8 0,8 0,8 0,6 Metaux sur éluats Antimoine (Sb) µg/l <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0	Chlorures (CI)	mg/l	1,8	2,5	2,5	1,9	3,5
Fluorures (F) mg/l 0,8 0,9 0,8 0,8 0,8 0,6 Metaux sur éluats Antimoine (Sb) µg/l <5,0 <5,0 6,2 <5,0 <5,0 <5,0 Arsenic (As) µg/l <10 22 25 34 <10 Argum (Ba) µg/l <2,0 <2,0 2,0 2,9 2,7 <2,0 Cuivre (Cu) µg/l <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,	Sulfates (SO4)	mg/l	6,0	26	15	32	<5,0
Metaux sur éluats Antimoine (Sb) µg/l <5,0	СОТ	mg/l	1,5	<1,0	1,8	1,2	1,1
Antimoine (Sb) μg/l <5,0 <5,0 6,2 <5,0 <5,0 Arsenic (As) μg/l <5,0	Fluorures (F)	mg/l	0,8	0,9	0,8	0,8	0,6
Arsenic (As) μg/l <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0	Metaux sur éluats						
Baryum (Ba) μg/l <10 22 25 34 <10 Cadmium (Cd) μg/l <0,1	Antimoine (Sb)	μg/l	<5,0	<5,0	6,2	<5,0	<5,0
Cadmium (Cd) µg/l <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,2 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0 <0,0	Arsenic (As)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Chrome (Cr)	Baryum (Ba)	μg/l	<10	22	25	34	<10
Cuivre (Cu) µg/I 6,9 6,8 17 8,7 3,9 Mercure (Hg) µg/I <0,03	Cadmium (Cd)	μg/l	<0,1	<0,1	<0,1	<0,1	<0,1
Mercure (Hg) μg/l <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03	Chrome (Cr)	μg/l	<2,0	<2,0	2,9	2,7	<2,0
Molybdehe (Mo) μg/l <5,0 5,4 5,5 <5,0 <5,0 <5,0 Nickel (Ni) μg/l <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0	Cuivre (Cu)	μg/l	6,9	6,8	17	8,7	3,9
Nickel (Ni) μg/l <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <0,0 <0 <0 <0 <0 <0 <0 <0<	Mercure (Hg)	μg/l	<0,03	<0,03	<0,03	<0,03	<0,03
Plomb (Pb) μg/l <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <0,0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0	Molybdène (Mo)	μg/l	<5,0	5,4	5,5	<5,0	<5,0
Sélénium (Se) µg/l <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0	Nickel (Ni)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Zinc (Zn) µg/l 3,5 3,7 9,7 3,4 <2,0 Autres analyses Antimoine cumulé (var. L/S- A) mg/kg Ms 0 - 0,05 0 - 0,05 0 - 0,05 0 - 0,05 0 - 0,05 Arsenic cumulé (var. L/S - A) mg/kg Ms 0 - 0,05 0 - 0,05 0 - 0,05 0 - 0,05 0 - 0,05 Baryum cumulé (var. L/S - A) mg/kg Ms 0 - 0,1 0,22 0,25 0,34 0 - 0,1 COT cumulé (var. L/S - A) mg/kg Ms 15 0 - 10 18 12 11	Plomb (Pb)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Autres analyses Antimoine cumulé (var. L/S-A) mg/kg Ms 0 - 0,05 0 - 0,05 0,06 0 - 0,05 0 - 0,05 Arsenic cumulé (var. L/S-A) mg/kg Ms 0 - 0,05 <td>Sélénium (Se)</td> <td>μg/l</td> <td><5,0</td> <td><5,0</td> <td><5,0</td> <td><5,0</td> <td><5,0</td>	Sélénium (Se)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Antimoine cumulé (var. L/S-A) mg/kg Ms 0 - 0,05 0 - 0,05 0,06 0 - 0,05 0 - 0,05 Arsenic cumulé (var. L/S-A) mg/kg Ms 0 - 0,05	Zinc (Zn)	μg/l	3,5	3,7	9,7	3,4	<2,0
Arsenic cumulé (var. L/S - A) mg/kg Ms 0 - 0,05	Autres analyses						
Baryum cumulé (var. L/S- A) mg/kg Ms 0 - 0,1 0,22 0,25 0,34 0 - 0,1 COT cumulé (var. L/S- A) mg/kg Ms 15 0 - 10 18 12 11	Antimoine cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0,06	0 - 0,05	0 - 0,05
COT cumulé (var. L/S- A) mg/kg Ms 15 0 - 10 18 12 11	Arsenic cumulé (var. L/S - A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
3 3 4 4 4 4 4 7	Baryum cumulé (var. L/S- A)	mg/kg Ms	0 - 0,1	0,22	0,25	0,34	0 - 0,1
Cadmium cumulé (var. L/S- A) mg/kg Ms 0 - 0,001 0 - 0,001 0 - 0,001 0 - 0,001 0 - 0,001	COT cumulé (var. L/S- A)	mg/kg Ms	15	0 - 10	18	12	11
	Cadmium cumulé (var. L/S- A)	mg/kg Ms	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001

page 12 de 19

TESTING RVA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 592480 Solide / Eluat

	Unité	618804 MOY T2	618805 MOY SC5	618806 MOY SC8	618807 MOY SC11	618808 MOY SC13
Polychlorobiphényles						
PCB (28)	mg/kg Ms	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
PCB (52)	mg/kg Ms	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
PCB (101)	mg/kg Ms	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
PCB (118)	mg/kg Ms	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
PCB (138)	mg/kg Ms	<0,0010	0,0016	<0,0010	<0,0010	0,0017
PCB (153)	mg/kg Ms	<0,0010	0,0013	<0,0010	<0,0010	<0,0010
PCB (180)	mg/kg Ms	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	0,003 ^{x)}	n.d.	n.d.	0,002 x)
Somme PCB (STI) (ASE)	mg/kg Ms	n.d.	0.003 ^{x)}	n.d.	n.d.	0,002 x)
Analyses sur éluat après lixiviation	n		,			· · · · · · · · · · · · · · · · · · ·
L/S cumulé	ml/g	10,0	10,0	10,0	10,0	10,0
Conductivité électrique	μS/cm	96,1	93,3	89,0	140	92,7
Température	°C	20,0	19,9	20,2	20,0	20,5
pH		7,6	8,4	8,2	8,2	8,6
Analyses Physico-chimiques sur é	luats					
Résidu à sec	mg/l	<100	<100	<100	120	<100
Indice phénol	mg/l	<0,010	<0,010	<0,010	<0,010	<0,010
Chlorures (CI)	mg/l	2,0	2,0	2,3	6,7	2,9
Sulfates (SO4)	mg/l	<5,0	<5,0	<5,0	<5,0	<5,0
СОТ	mg/l	1,2	2,4	2,4	2,5	1,9
Fluorures (F)	mg/l	0,6	0,7	0,5	0,5	0,6
Metaux sur éluats						
Antimoine (Sb)	μg/l	<5,0	5,8	<5,0	5,5	<5,0
Arsenic (As)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Baryum (Ba)	μg/l	<10	10	11	18	13
Cadmium (Cd)	μg/l	<0,1	<0,1	<0,1	<0,1	<0,1
Chrome (Cr)	μg/l	<2,0	<2,0	<2,0	<2,0	<2,0
Cuivre (Cu)	μg/l	2,9	12	10	12	6,3
Mercure (Hg)	μg/l	<0,03	<0,03	<0,03	<0,03	<0,03
Molybdène (Mo)	μg/l	<5,0	<5,0	<5,0	11	<5,0
Nickel (Ni)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Plomb (Pb)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Sélénium (Se)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Zinc (Zn)	μg/l	2,0	6,3	3,1	6,6	4,5
Autres analyses						
Antimoine cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0,06	0 - 0,05	0,06	0 - 0,05
Arsenic cumulé (var. L/S - A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Baryum cumulé (var. L/S- A)	mg/kg Ms	0 - 0,1	0,10	0,11	0,18	0,13
COT cumulé (var. L/S- A)	mg/kg Ms	12	24	24	25	19
Cadmium cumulé (var. L/S- A)	mg/kg Ms	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001

page 13 de 19

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 592480 Solide / Eluat

	Unité	618789 MOY S1-A	618790 MOY S1-B	618791 MOY S2-A	618792 MOY S2-B	618793 MOY S3-A
Autres analyses						
Chlorures cumulé (var. L/S - A)	mg/kg Ms	66	81	38	17	46
Chrome cumulé (var. L/S - A)	mg/kg Ms	0 - 0,02	0,10	0 - 0,02	0,02	0 - 0,02
Cuivre cumulé (var. L/S- A)	mg/kg Ms	0,14	0,25	0,07	0,03	0,18
Fluorures cumulé (var. L/S- A)	mg/kg Ms	6,0	7,0	5,0	7,0	8,0
Fraction soluble cumulé (var. L/S- A)	mg/kg Ms	1100	4200	0 - 1000	1400	1000
Indice phénol cumulé (var. L/S- A)	mg/kg Ms	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1
Masse échantillon total < 2 kg	kg	0,71	0,67	0,76	0,74	0,71
Mercure cumulé (var. L/S- A)	mg/kg Ms	0 - 0,0003	0,0013	0 - 0,0003	0 - 0,0003	0 - 0,0003
Molybdène cumulé (var. L/S- A)	mg/kg Ms	0,08	0,11	0,06	0,09	0,10
Nickel cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0,18	0 - 0,05	0 - 0,05	0 - 0,05
Plomb cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0,88	0 - 0,05	0 - 0,05	0 - 0,05
Sulfates cumulé (var. L/S- A)	mg/kg Ms	81	250	84	460	150
Sélénium cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Zinc cumulé (var. L/S- A)	ma/ka Ms	0.03	0.63	0 - 0.02	0.07	0.04

page 14 de 19

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

N° Cde 592480 Solide / Eluat

	Unité	618794 моу sз-в	618795 MOY S4-A	618796 MOY S4-B	618797 MOY S6-A	618798 MOY S6-B
Autres analyses						
Chlorures cumulé (var. L/S - A)	mg/kg Ms	38	23	140	55	27
Chrome cumulé (var. L/S - A)	mg/kg Ms	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02
Cuivre cumulé (var. L/S- A)	mg/kg Ms	0,54	0,08	0,75	0,11	0,18
Fluorures cumulé (var. L/S- A)	mg/kg Ms	9,0	7,0	7,0	6,0	5,0
Fraction soluble cumulé (var. L/S- A)	mg/kg Ms	1200	0 - 1000	1500	1000	1900
Indice phénol cumulé (var. L/S- A)	mg/kg Ms	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1
Masse échantillon total < 2 kg	kg	0,70	0,73	0,64	0,73	0,74
Mercure cumulé (var. L/S- A)	mg/kg Ms	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003
Molybdène cumulé (var. L/S- A)	mg/kg Ms	0,19	0 - 0,05	0,26	0,06	0,20
Nickel cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Plomb cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0,05	0 - 0,05	0 - 0,05
Sulfates cumulé (var. L/S- A)	mg/kg Ms	150	94	270	52	880
Sélénium cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Zinc cumulé (var. L/S- A)	mg/kg Ms	0,13	0,04	0,10	0,13	0,12



N° Cde 592480 Solide / Eluat

	Unité	618799 MOY S7-A	618800 MOY 87-B	618801 MOY S8-A	618802 MOY S8-B	618803 MOY T1
Autres analyses						
Chlorures cumulé (var. L/S - A)	mg/kg Ms	18	25	25	19	35
Chrome cumulé (var. L/S - A)	mg/kg Ms	0 - 0,02	0 - 0,02	0,03	0,03	0 - 0,02
Cuivre cumulé (var. L/S- A)	mg/kg Ms	0,07	0,07	0,17	0,09	0,04
Fluorures cumulé (var. L/S- A)	mg/kg Ms	8,0	9,0	8,0	8,0	6,0
Fraction soluble cumulé (var. L/S- A)	mg/kg Ms	0 - 1000	0 - 1000	0 - 1000	1100	0 - 1000
Indice phénol cumulé (var. L/S- A)	mg/kg Ms	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1
Masse échantillon total < 2 kg	kg	0,76	0,79	0,71	0,73	0,71
Mercure cumulé (var. L/S- A)	mg/kg Ms	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003
Molybdène cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0,05	0,06	0 - 0,05	0 - 0,05
Nickel cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Plomb cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Sulfates cumulé (var. L/S- A)	mg/kg Ms	60	260	150	320	0 - 50
Sélénium cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Zinc cumulé (var. L/S- A)	mg/kg Ms	0,04	0,04	0,10	0,03	0 - 0,02

page 16 de 19

N° Cde 592480 Solide / Eluat

	Unité	618804 MOY T2	618805 MOY SC5	618806 MOY SC8	618807 MOY SC11	618808 MOY SC13
Autres analyses						
Chlorures cumulé (var. L/S - A)	mg/kg Ms	20	20	23	67	29
Chrome cumulé (var. L/S - A)	mg/kg Ms	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02
Cuivre cumulé (var. L/S- A)	mg/kg Ms	0,03	0,12	0,10	0,12	0,06
Fluorures cumulé (var. L/S- A)	mg/kg Ms	6,0	7,0	5,0	5,0	6,0
Fraction soluble cumulé (var. L/S- A)	mg/kg Ms	0 - 1000	0 - 1000	0 - 1000	1200	0 - 1000
Indice phénol cumulé (var. L/S- A)	mg/kg Ms	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1
Masse échantillon total < 2 kg	kg	0,69	0,69	0,71	0,66	0,71
Mercure cumulé (var. L/S- A)	mg/kg Ms	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003
Molybdène cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0,11	0 - 0,05
Nickel cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Plomb cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Sulfates cumulé (var. L/S- A)	mg/kg Ms	0 - 50	0 - 50	0 - 50	0 - 50	0 - 50
Sélénium cumulé (var. L/S- A)	mg/kg Ms	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Zinc cumulé (var. L/S- A)	mg/kg Ms	0,02	0,06	0,03	0,07	0,05

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Il existe une différence observée avec le quide méthodologique : le poids de l'échantillon est inférieur à 2 kg.

Début des analyses: 18.06.2016 Fin des analyses: 24.06.2016

Les résultats d'analyses ne concernent que ces échantillons soumis à essai. La qualité du résultat rendu est contrôlée et validée, mais la pertinence en est difficilement vérifiable car le laboratoire n'a pas connaissance du contexte du site, de l'historique de l'échantillon.

AL-West B.V. M. Claude Gautheron, Tel. +33/380680143 Chargé relation clientèle

Ce rapport transmis électroniquement a été vérifié et validé Ceci est en accord avec les prescriptions de la NF EN ISO/IEC 17025:2005 pour les rapports simplifiés. Il est valide avec la signature digitale.

Kamer van Koophandel Directeur ppa. Elly van Bakergem Dr. Paul Wimmer Nr. 08110898 VAT/RTW-ID-Nr NL 811132559 B01

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl. www.al-west.nl

N° Cde 592480 Solide / Eluat

Liste des méthodes

Eluat

Conforme à ISO 10359-1, conforme à EN 16192: Fluorures (F)

conforme EN 16192: COT

Conforme NEN-EN-ISO 17924-2: Sélénium (Se) Chrome (Cr) Arsenic (As) Zinc (Zn) Cuivre (Cu) Nickel (Ni) Molybdène (Mo)

Cadmium (Cd) Antimoine (Sb) Plomb (Pb) Baryum (Ba)

EN 16192: Mercure (Ha) EN-ISO 16192: Indice phénol

Équivalent à EN-ISO 10304-1, équivalent à EN-ISO 15682: Chlorures (CI)

Équivalent à ISO 22743: Sulfates (SO4) Equivalent à NF EN ISO 15216: Résidu à sec

selon norme lixiviation: L/S cumulé Température pH Conductivité électrique

Matière solide

Cf. NEN-ISO 10390 (sol uniquement): pH-H2O

Conform 6961 /NF-EN 16174: Minéralisation à l'eau régale

conforme ISO 10694: COT Carbone Organique Total

EN-ISO 11885: Arsenic (As) Cadmium (Cd) Zinc (Zn) Sélénium (Se) Antimoine (Sb) Nickel (Ni) Chrome (Cr) Molybdène (Mo)

Baryum (Ba) Cuivre (Cu) Plomb (Pb)

ISO 16772: Mercure (Ha)

ISO 22155: Somme Xylènes Chlorure de Vinyle Dichlorométhane Trichlorométhane Tétrachlorométhane Trichlorométhane Trichl

Tétrachloroéthylène 1,1,1-Trichloroéthane 1,1,2-Trichloroéthane 1,1-Dichloroéthane 1,2-Dichloroéthane

1,1-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes

ISO 22155: n) BTX total ISO11465; EN12880: Matière sèche

Hydrocarbures totaux C10-C40 HAP (6 Borneff) - somme Somme HAP (VROM) HAP (EPA) - somme méthode interne:

méthode interne: n) Fraction C10-C12 Fraction C12-C16 Fraction C16-C20 Fraction C20-C24 Fraction C24-C28 Fraction C28-C32

Fraction C32-C36 Fraction C36-C40

Somme 7 PCB (Ballschmiter) Somme PCB (STI) (ASE) Méthode interne:

NF EN 12457-2: Lixiviation (EN 12457-2) Masse échantillon total < 2 kg Sans objet:

Indice phénol cumulé (var. L/S-A) Chrome cumulé (var. L/S - A) Sélénium cumulé (var. L/S-A) Sans objet: n)

> Zinc cumulé (var. L/S- A) Molybdène cumulé (var. L/S- A) Antimoine cumulé (var. L/S- A) Chlorures cumulé (var. L/S - A) Mercure cumulé (var. L/S- A) Cadmium cumulé (var. L/S- A) Baryum cumulé (var. L/S- A) Sulfates cumulé (var. L/S- A) Plomb cumulé (var. L/S- A) Fraction soluble cumulé (var. L/S- A) Nickel cumulé (var. L/S- A) Cuivre cumulé (var. L/S- A)

Arsenic cumulé (var. L/S - A)

selon norme lixiviation: n) Fluorures cumulé (var. L/S-A) COT cumulé (var. L/S-A)

n) Non accrédité

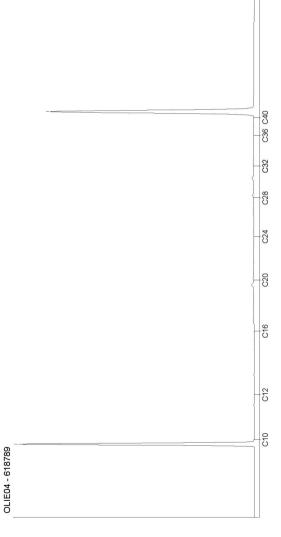
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Annexe de N° commande 592480

CONSERVATION, TEMPS DE CONSERVATION ET FLACONNAGE

Le délai de conservation	n des échantillons est expiré pour les analyses suivantes :
o-Xylène	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808
Somme Xylènes	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808
Conductivité	618789, 618790, 618791, 618792, 618793, 618794, 618795, 618796, 618797, 618798, 618799,
électrique	618800, 618801, 618802, 618803, 618804, 618805, 618806, 618807, 618808
Trichlorométhane	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808
Chlorure de Vinyle	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808
1,1,1-Trichloroéthane	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808
pH	618789, 618790, 618791, 618792, 618793, 618794, 618795, 618796, 618797, 618798, 618799,
	618800, 618801, 618802, 618803, 618804, 618805, 618806, 618807, 618808
Température	618789, 618790, 618791, 618792, 618793, 618794, 618795, 618796, 618797, 618798, 618799,
	618800, 618801, 618802, 618803, 618804, 618805, 618806, 618807, 618808
Toluène	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808
1,1,2-Trichloroéthane	
Tétrachloroéthylène	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808
Benzène	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808
1,1-Dichloroéthane	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808
cis-1,2-	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808
Dichloroéthène	
Somme cis/trans-1,2-	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808
Dichloroéthylènes	040707 040700 040700 040000 040004 040000 040004 040007 040000
Ethylbenzène	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808
Trichloroéthylène	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808
Dichlorométhane	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808
1,1-Dichloroéthylène	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808
1,2-Dichloroéthane	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808
m,p-Xylène	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808
Tétrachlorométhane	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808
Trans-1,2- Dichloroéthylène	618797, 618798, 618799, 618800, 618801, 618802, 618803, 618804, 618807, 618808

page 19 de 19


AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618789, created at 22.06.2016 07:26:15

Nom d'échantillon: MOY S1-A

page 1 de 20

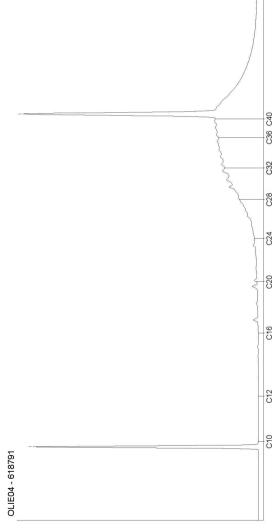
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618790, created at 22.06.2016 07:26:15 Nom d'échantillon: MOY S1-B

C12 OLIE04 - 618790

page 2 de 20

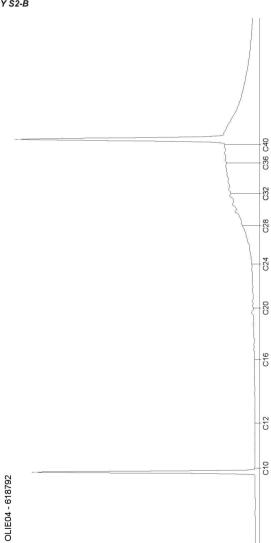
AL-West B.V.



page 3 de 20

Dortmundstraat 168, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

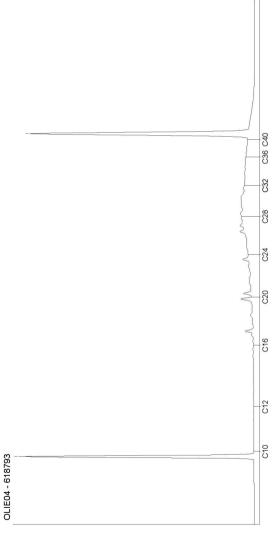
Chromatogram for Order No. 592480, Analysis No. 618791, created at 22.06.2016 07:26:15


Nom d'échantillon: MOY S2-A

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618792, created at 22.06.2016 07:26:15 Nom d'échantillon: MOY S2-B

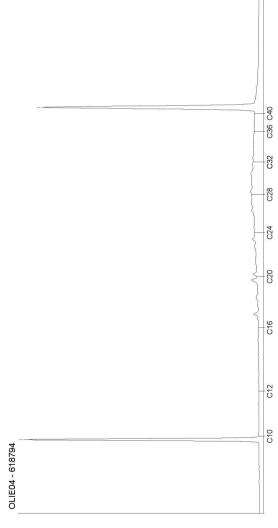
page 4 de 20


AL-West B.V.

Dortmundstraat 168, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618793, created at 22.06.2016 07:26:15

Nom d'échantillon: MOY S3-A

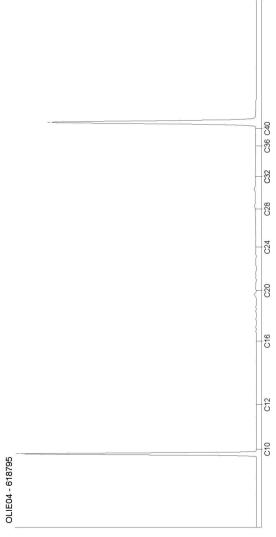


Kamer van Koophandel Nr. 08110898 Dan Elly van Bakergem VAT/BTW-ID-Nr.: Dr. Paul Wimmer NL 811132559 B01

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618794, created at 22.06.2016 07:26:15 Nom d'échantillon: MOY S3-B

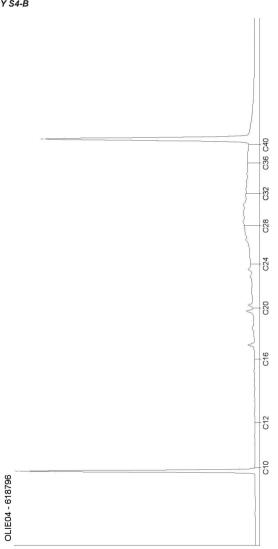
page 6 de 20


AL-West B.V.

Dortmundstraat 168, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618795, created at 22.06.2016 07:26:16

Nom d'échantillon: MOY S4-A

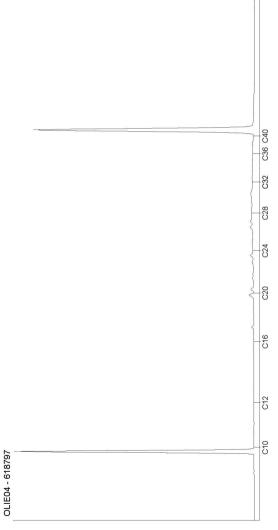


Kamer van Koophandel Nr. 08110898 Dan Elly van Bakergem VAT/BTW-ID-Nr.: Dr. Paul Wimmer NL 811132559 B01

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618796, created at 22.06.2016 07:26:16 Nom d'échantillon: MOY S4-B

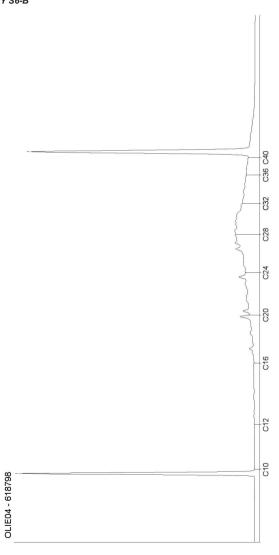
page 8 de 20


AL-West B.V.

Dortmundstraat 168, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618797, created at 22.06.2016 07:26:16

Nom d'échantillon: MOY S6-A

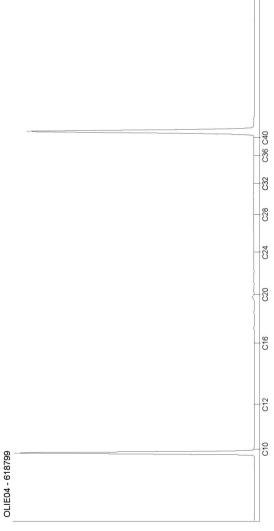


Kamer van Koophandel Nr. 08110898 Dan Elly van Bakergem VAT/BTW-ID-Nr.: Dr. Paul Wimmer NL 811132559 B01

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618798, created at 22.06.2016 07:26:16 Nom d'échantillon: MOY S6-B

page 10 de 20


AL-West B.V.

Dortmundstraat 168, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618799, created at 22.06.2016 07:26:16

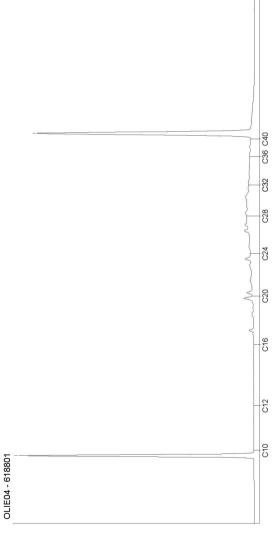
Nom d'échantillon: MOY S7-A

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618800, created at 22.06.2016 08:59:05 Nom d'échantillon: MOY S7-B

> C12 618800 OLIE05 -

> > page 12 de 20


AL-West B.V.

Dortmundstraat 168, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618801, created at 22.06.2016 07:26:16

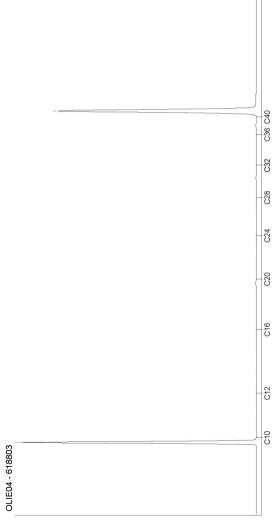
Nom d'échantillon: MOY S8-A

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618802, created at 22.06.2016 07:26:16 Nom d'échantillon: MOY S8-B

C12 OLIE04 - 618802

page 14 de 20


AL-West B.V.

Dortmundstraat 168, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618803, created at 22.06.2016 07:26:17

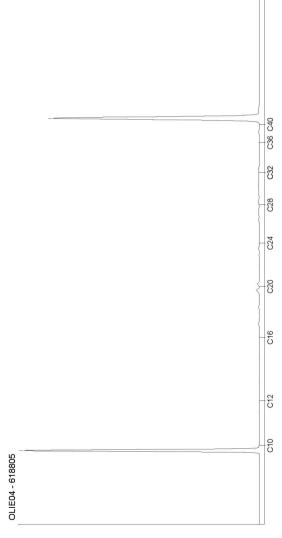
Nom d'échantillon: MOY T1

Kamer van Koophandel Nr. 08110898 Dan Elly van Bakergem VAT/BTW-ID-Nr.: Dr. Paul Wimmer NL 811132559 B01

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618804, created at 22.06.2016 07:26:17 Nom d'échantillon: MOY T2

page 16 de 20


AL-West B.V.

Dortmundstraat 168, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618805, created at 22.06.2016 07:26:17

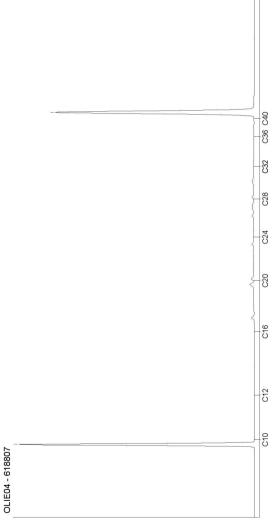
Nom d'échantillon: MOY SC5

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618806, created at 22.06.2016 07:26:17 Nom d'échantillon: MOY SC8

C16 C12

page 18 de 20

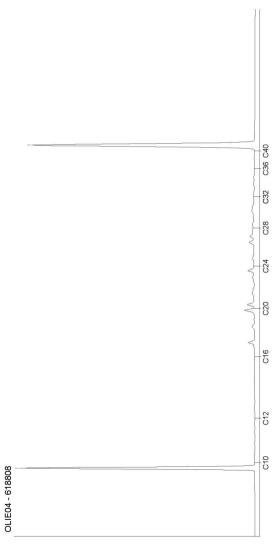

AL-West B.V.

Dortmundstraat 168, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618807, created at 22.06.2016 07:26:17

Nom d'échantillon: MOY SC11

Kamer van Koophandel Nr. 08110898 Dan Elly van Bakergem VAT/BTW-ID-Nr.: Dr. Paul Wimmer NL 811132559 B01


OLIE04 - 618806

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Postbus 693, 7400 AR Deventer Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Chromatogram for Order No. 592480, Analysis No. 618808, created at 22.06.2016 07:26:17

Nom d'échantillon: MOY SC13

Annexe 10 Bordereaux des résultats des analyses agronomiques en laboratoire

ARCADIS 240 RUE DE L ALBECK 59378 DUNKERQUE CEDEX

Réception:

21/06/2016

Date de mise en analyse: 23/06/2016

Edition du rapport :

06/07/2016

Nos références :

Echantillon N°: 2016080245

Code Rapport: RACH-2016080245-13336677

RAPPORT D'ANALYSE

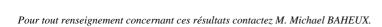
Vos références : S1

DETERMINATION	Résultat	Unité
pH eau	8.32	
NF ISO 10390		
Carbone organique	16.74	g/kg
NF ISO 14235 Matières Organiques	20.06	. /1 .
NF ISO 14235	28.96	g/kg
C/N	10.5	<u> </u>
Calcul du rapport	10.5	
Phosphore méthode Olsen (P2O5)	40	mg/kg
NF ISO 11263		
Sodium échangeable (Na2O)	16	mg/kg
NF X 31-108	177	_
Argile NF X 31-107	175	g/kg
Limons fins	167	a/lsa
NF X 31-107	107	g/kg
Limons grossiers	336	g/kg
NF X 31-107		8 ^m 8
Sables fins	194	g/kg
NF X 31-107		
Sables grossiers	128	g/kg
NFX 31-107	70.6	а
Calcaire total (CaCO3) NF ISO 10693	72.6	g/kg
Azote Dumas	1.59	 a/lsa
NF ISO 13878	1.59	g/kg
Capacité d'Echange Cationique (méthode Metson) (CEC)	12.25	meq/100g
MT-CED (selon NF X 31-130)	12.20	11104 1008
Calcium (CaO) échangeable	8266	mg/kg
Méthode MT-OEB		
Magnésium (MgO) échangeable	101	mg/kg
Méthode MT-OEB Potassium échangeable (K2O)	100	
Méthode MT-OEB	108	mg/kg
Manganèse extractible EDTA (Mn)	13.08	l l mg/kg
NF X 31-120	1 13.00	ing/kg
Fer extractible EDTA (Fe)	19.60	mg/kg
NF. X 31-120	i	i

Pour tout renseignement concernant ces résultats contactez M. Michael BAHEUX.

Référence de l'échantillon: 2016080245

Vos références:


S1

(Suite du RAPPORT D'ANALYSE RACH-2016080245-13336677)

DETERMINATION	Résultat	Unité
Aluminium échangeable (Al)	0.07	cmol+/kg
Méthode Jackson / Dosage par ICP		l

Marie Helene Le Beller

Responsable Laboratoire Sols

ARCADIS 240 RUE DE L ALBECK 59378 DUNKERQUE CEDEX

Réception:

21/06/2016

Date de mise en analyse: 23/06/2016 Edition du rapport :

06/07/2016

Nos références :

Echantillon N°: 2016080246

Code Rapport: RACH-2016080246-13336677

RAPPORT D'ANALYSE

Vos références : S3

DETERMINATION	Résultat	Unité
pH eau	7.78	
NF ISO 10390		
Carbone organique	18.14	g/kg
NF ISO 14235	21.20	
Matières Organiques	31.38	g/kg
NF ISO 14235 C/N	12.3	
Calcul du rapport	12.3	
Phosphore méthode Olsen (P2O5)	63	mg/kg
NF ISO 11263	03	l mg/kg
Sodium échangeable (Na2O)	18	l mg/kg
NF X 31-108		16,6
Argile	182	g/kg
NF X 31-107		
Limons fins	221	g/kg
NF X 31-107		_
Limons grossiers	484	g/kg
NF X 31-107 Sables fins	02	Л
NF X 31-107	82	g/kg
Sables grossiers	32	g/kg
NF X 31-107	32	g/Kg
Calcaire total (CaCO3)	35.6	g/kg
NF ISO 10693		5,55
Azote Dumas	1.47	g/kg
NF ISO 13878		
Capacité d'Echange Cationique (méthode Metson) (CEC)	10.77	meq/100g
MT-CED (selon NF X 31-130)		
Calcium (CaO) échangeable	7893	mg/kg
Méthode MT-OEB Magnésium (MgO) échangeable	130	
Méthode MT-OEB	130	mg/kg
Potassium échangeable (K2O)	93	mg/kg
Méthode MT-OEB	23	l IIIg/Kg
Manganèse extractible EDTA (Mn)	7.57	mg/kg
NF X 31-120	1.57	G
Fer extractible EDTA (Fe)	41.35	mg/kg
NF X 31-120.		

Pour tout renseignement concernant ces résultats contactez M. Michael BAHEUX.

Référence de l'échantillon: 2016080246

Vos références:

S3

(Suite du RAPPORT D'ANALYSE RACH-2016080246-13336677)

DETERMINATION	Résultat	Unité
Aluminium échangeable (Al)	0.06	cmol+/kg
Méthode Jackson / Dosage par ICP		,

Marie Helene Le Beller

Responsable Laboratoire Sols

Pour tout renseignement concernant ces résultats contactez M. Michael BAHEUX.

ARCADIS 240 RUE DE L ALBECK 59378 DUNKERQUE CEDEX

Réception:

21/06/2016

Date de mise en analyse: 23/06/2016 Edition du rapport :

06/07/2016

Nos références :

Echantillon N° : 2016080247

Code Rapport: RACH-2016080247-13336677

RAPPORT D'ANALYSE

Vos références : S5

DETERMINATION	Résultat	Unité
pH eau	8.21	
NF ISO 10390		
Carbone organique	24.88	g/kg
NF ISO 14235	42.07	
Matières Organiques NF ISO 14235	43.05	g/kg
C/N	10.4	
Calcul du rapport	10.4 !	
Phosphore méthode Olsen (P2O5)	35	mg/kg
NF ISO 11263		1115/115
Sodium échangeable (Na2O)	17	mg/kg
NF X 31-108		
Argile	176	g/kg
NF X 31-107 Limons fins	21.5	
	215	g/kg
NF X 31-107 Limons grossiers	402	-/1
NF X 31-107	402	g/kg
Sables fins	99	g/kg
NF X 31-107	//	5/ K 5
Sables grossiers	108	g/kg
NF X 31-107		
Calcaire total (CaCO3)	63.7	g/kg
NF ISO 10693		_
Azote Dumas	2.40	g/kg
NF ISO 13878 Capacité d'Echange Cationique (méthode Metson) (CEC)	12.78	mag/100g
MT-CED (selon NF X 31-130)	12.78	meq/100g
Calcium (CaO) échangeable	8387	mg/kg
Méthode MT-OEB	1 0307	mg/kg
Magnésium (MgO) échangeable	219	mg/kg
Méthode MT-OEB		
Potassium échangeable (K2O)	129	mg/kg
Méthode MT-OEB		_
Manganèse extractible EDTA (Mn)	8.95	mg/kg
NF X 31-120 Fer extractible EDTA (Fe)	1477	 ma/lea
NFX 31-120	14.77	mg/kg

Pour tout renseignement concernant ces résultats contactez M. Michael BAHEUX.

Référence de l'échantillon: 2016080247

Vos références:

S5

(Suite du RAPPORT D'ANALYSE RACH-2016080247-13336677)

DETERMINATION	Résultat	Unité
Aluminium échangeable (Al)	0.06	cmol+/kg
Méthode Jackson / Dosage par ICP		

Marie Helene Le Beller

Responsable Laboratoire Sols

 $Pour \ tout \ renseignement \ concernant \ ces \ r\'esultats \ contactez \ M. \ Michael \ BAHEUX.$

ARCADIS 240 RUE DE L ALBECK 59378 DUNKERQUE CEDEX

Réception:

21/06/2016

Date de mise en analyse: 23/06/2016

Edition du rapport :

06/07/2016

Nos références :

Echantillon N°: 2016080248

Code Rapport: RACH-2016080248-13336677

RAPPORT D'ANALYSE

Vos références : S7

DETERMINATION	Résultat	Unité
pH eau	8.25	
NF ISO 10390	1.00	_
Carbone organique	12.88	g/kg
NF ISO 14235 Matières Organiques	22.28	-/
NF ISO 14235	i 22.20	g/kg
C/N	12.2	
Calcul du rapport	i 	i !
Phosphore méthode Olsen (P2O5)	47	mg/kg
NF ISO 11263		_
Sodium échangeable (Na2O)	16	mg/kg
NF X 31-108 Argile	58	0/150
NF X 31-107	j 30	g/kg
Limons fins	208	g/kg
NF X 31-107	- 200	b'**5
Limons grossiers	467	g/kg
NF X 31-107		
Sables fins	60	g/kg
NF X 31-107	1.6	
Sables grossiers NF X 31-107	16	g/kg
Calcaire total (CaCO3)	190.1	l ¦ g/kg
NF ISO 10693	170.1 	g/Kg
Azote Dumas	1.06	g/kg
NF ISO 13878	! !	
Capacité d'Echange Cationique (méthode Metson) (CEC)	7.27	meq/100g
MT-CED (selon NF X 31-130) Calcium (CaO) échangeable	7676	l mg/kg
Méthode MT-OEB	, 7070 !	i ilig/kg
Magnésium (MgO) échangeable	97	l mg/kg
Méthode MT-OEB		
Potassium échangeable (K2O)	92	mg/kg
Méthode MT-OEB		
Manganèse extractible EDTA (Mn)	9.26	mg/kg
NF X 31-120 Fer extractible EDTA (Fe)	13.34	l mg/kg
NF. X 31-120	13.3 4 	i ilig/kg

Pour tout renseignement concernant ces résultats contactez M. Michael BAHEUX.

Référence de l'échantillon: 2016080248

Vos références:

S7

(Suite du RAPPORT D'ANALYSE RACH-2016080248-13336677)

DETERMINATION	Résultat	Unité
Aluminium échangeable (Al)	0.04	cmol+/kg
Méthode Jackson / Dosage par ICP		i

Marie Helene Le Beller

Responsable Laboratoire Sols

 $Pour \ tout \ renseignement \ concernant \ ces \ r\'esultats \ contactez \ M. \ Michael \ BAHEUX.$