

CITALLIOS

CHATENAY-MALABRY (92)

rue Francis de Pressencé

DOSSIER N°G220360-001A

Diagnostic environnemental initial Mission INFOS DIAG

	CLIENT
	CITALLIOS
Coordonnées:	65, rue des Trois Fontanot
	92 024 NANTERRE CEDEX
Contact et fonction :	M. BOUVIER, chef de projet

	ZONE D'ETUDE
Adresse:	rue Francis de Pressencé 92 Châtenay-Malabry
Activité :	logements collectifs, jardins, terrains boisés
Contact et fonction :	_/_

	AFFAIRE
Prestation:	INFOS DIAG
Référence devis :	D220516A du 25/03/2022
Référence rapport :	G220360-001A
Nombre de pages de rapport :	52
Nombre d'annexes :	10

	EQUIPE PROJET GEOLIA
Auteur / Chef de	Laurent REVEL
projet:	laurent.revel@geolia-conseil.com
Superviseur:	Franck BERTHOU
	franck.berthou@geolia-conseil.com

	REVISION	N DU DOCUMENT
Version n°	Date	Détail des révisions
A	21/06/2022	Première diffusion

SYNTHESE NON TECHNIQUE

Dans le cadre d'un projet d'aménagement immobilier sur deux ilots de la cité jardin de la Butte Rouge à Chatenay-Malabry (92), CITALLIOS a missionné GEOLIA pour la réalisation d'un diagnostic environnemental initial.

La cité jardin de la Butte Rouge a été construite dans les années 1930. Elle est composée de plusieurs bâtiments de logements et de jardins et espaces boisés. Aucune source ou activité potentiellement polluante n'a été identifiée à l'issue des études historiques et documentaires.

Afin d'obtenir un premier aperçu de la qualité des sols superficiels et semi-profonds, des reconnaissances sur les sols ont été réalisées sur les deux ilots. Les sondages ont montré la présence de terrains superficiels pouvant correspondre, pour partie, à des remblais et/ou à des terrains remaniés. Les analyses de ces sols ont montré, très localement, des anomalies en métaux et en hydrocarbures. Concernant les tests d'acceptation en décharge de déchets inertes, on observe localement des dépassements des seuils règlementaires sur la lixiviation.

Afin de caractériser les milieux plus en profondeur, des reconnaissances sur les gaz des sols ont été réalisées. Elles n'ont pas montré d'anomalie.

Les caractéristiques exactes du projet ne sont pas connues à ce stade. Des reconnaissances ciblées pourront être nécessaires afin de préciser les éventuelles mesures de gestion à adopter pour supprimer les risques sanitaires et pour préciser les filières d'évacuation des déblais (volumes et surcouts).

SYNTHESE TECHNIQUE

Client	CITALLIOS - rue Francis de Pressencé - Châtenay-Malabry 92
Description du site	Les terrains étudiés correspondent aux ilots 1 et 2 de la cité jardin de la Butte Rouge à Chatenay-Malabry (92). Ils s'étendent sur une surface respective de 1,5 ha et de 1,7 ha. Ils sont occupés par des bâtiments de logements, par des jardins et des espaces boisés. Aucune source ou activité potentiellement polluante n'a été identifiée à l'issue des études historiques et documentaires.
Projet d'aménagement	Le projet d'aménagement prévoit la construction de nouveaux bâtiments de logements avec des sous-sol, la réhabilitation d'une partie des bâtiments existants et l'aménagement d'espaces extérieurs (espaces verts, voies,). Les caractéristiques exactes du projet ne sont pas connues à ce stade.
Contexte de l'étude	Afin d'obtenir un premier aperçu de la qualité des sols superficiels et semi-profonds, 16 sondages, descendus à 2 et 4 m de profondeur, ont été répartis sur les deux ilots. Afin de caractériser les milieux plus en profondeur, des reconnaissances sur les gaz des sols ont été réalisées à partir de 4 piézairs (2 sur chaque ilot).
Résultats des investigations	Les sondages de sols ont mis en évidence des terrains superficiels jusqu'à environ 0,5 à 1 m de profondeur pouvant correspondre à des remblais et/ou des terrains remaniés. Les analyses ont montré, ponctuellement dans les terrains superficiels, la présence d'anomalies en métaux et en HAP. Les tests de lixiviation ont mis en évidence des teneurs en fluorures (en 4 points au droit de l'ilot 1) supérieures aux seuils des ISDI et en un point au droit de l'ilot 2 pour la fraction soluble et les sulfates. Les investigations sur les gaz des sols n'ont pas montré d'anomalie.
Schéma conceptuel et analyse des risques	Les terrains superficiels au droit des jardins sur pleine terre sont susceptibles d'induire des risques pour les futurs occupants par la voie ingestion de sol ou de végétaux comestibles autoproduits. En fonction des aménagements prévus, des mesures simples de gestion pourront être à prévoir (recouvrement, substitution).
Gestion des terres à excaver	En fonction des futurs terrassements, une partie des déblais devra être orientée vers des filières adaptées (ISDI+, carrière sulfatée).
Suite à donner	Des reconnaissances ciblées pourront être nécessaires afin de préciser les éventuelles mesures de gestion à adopter pour supprimer les risques sanitaires et pour préciser les filières d'évacuation des déblais (volumes et surcouts).

G220360-001A	CITALLIOS	4
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	4

SOMMAIRE

	Page
1. PRESENTATION GENERALE - DEFINITION DE LA MISSI	ON11
2. PRESENTATION DU SITE ET DESCRIPTION DU PROJET	13
2.1. Localisation et identification du site	13
2.2. Présentation du projet	16
3. ETUDES HISTORIQUES, DOCUMENTAIRES ET ME (PRESTATIONS A100 ET A110)	
3.1. Visite du site	17
3.2. Visite des abords de la zone d'étude (rayon de 150 m minimun	
3.3. Installations classées pour la protection de l'environnement3.3.1. Préfecture et Archives Départementales	18
3.4. Informations recueillies d'après les photographies aériennes	21
4. ETUDE DE LA VULNERABILITE DES MILIEUX (PRESTA	TION A120)22
4.1. Contexte géologique et lithologique	22
4.2. Contexte hydrogéologique	24
4.3. Contexte hydrologique	25
4.4. Contexte météorologique	26
4.5. Les milieux naturels	27
5. CONCLUSION DE L'ETUDE HISTORIQUE ET DOCUMELABORATION D'UN PROGRAMME D'INVESTIGATIONS (14.120)	PRESTATION
5.1. Données issues de l'étude historique et mémorielle	
5.2. Schéma conceptuel	
5.3. Stratégie d'investigations vis-à-vis de la recherche de pollutio	
sanitaires	
5.4. Stratégie d'investigations vis-à-vis des terres excavées	29
6. RECONNAISSANCES SUR LE MILIEU « SOL » (PRESTATIA260)	
6.1. Nature des investigations	
6.2. Méthode d'investigation	31

G220360-001A	CITALLIOS	_
INFOS DIAG	rue Francis de Pressencé– CHÂTENAY-MALABRY (92)	3

6.2.1. Sondages pour les prélèvements de sols	
6.3. Résultats des investigations sur site	
6.4. Programme des analyses	32
6.5. Limite de la méthode	43
7. RECONNAISSANCES COMPLEMENTAIRES SUR LE MILIEU SOL (PRESETATION A230)	
7.1. Nature des investigations	44
7.2. Méthode d'investigation	44
7.3. Programme des analyses de gaz des sols	45
7.4. Résultats des analyses chimiques en laboratoire	46
8. INTERPRETATION DES RESULTATS ET SCHEMA CONC (PRESTATION A270)	
8.1. Synthèse des résultats de l'ensemble des investigations	48
8.2. Elaboration du schéma conceptuel	48
9. CONCLUSIONS ET PRECONISATIONS	50
9.1. Contexte environnemental	50
9.2. Evaluation des risques	50
9.3. Gestion des terres des sous-sols	51
9.4. Recommandations pour la suite du projet	51
10. LIMITATIONS DU RAPPORT	52

FIGURES

Figure 1 : Plan de localisation de la zone d'étude	13
Figure 2 : Photographie aérienne du site	14
Figure 3 : Plan cadastral de la zone d'étude	15
Figure 4 : Esquisse du projet de mars 2022	16
Figure 5 : Emplacement des sites BASIAS	19
Figure 6 : Localisation de la zone d'étude sur la carte géologique de Paris	23
Figure 7 : Localisation des points d'eau dans les environs du site	24
Figure 8 : Localisation du réseau hydrographique le plus proche	26
Figure 9 : Schéma conceptuel (projet)	49

TABLEAUX

Tableau 1 : Liste des sites BASIAS à proximité de la zone d'étude
Tableau 2 : Liste des photographies aériennes de l'IGN consultées
Tableau 3 : Description des points d'eau situés à proximité de la zone d'étude (rayon < 1 km)
Tableau 4 : Stratégie d'investigation, sondages et analyses prévisionnelles 29
Tableau 5 : Investigations réalisées
Tableau 6 : Programme analytique (Ilot 1)
Tableau 7 : Programme analytique (Ilot 2)
Tableau 8 : Teneurs en éléments traces dans les sols retenues par GEOLIA 35
Tableau 9 : Valeurs limites à respecter pour Déchets Inertes Admissibles dans des Installations de Stockage de Déchets Inertes selon l'Arrêté du 12 décembre 2014 et dans des Installations de Stockage pour Déchets Non Dangereux selon la décision n°2003 du 19 décembre 2002
Tableau 10 : Résultats des analyses sur les sols (Ilot 1)
Tableau 11 : Résultats des analyses sur les sols (Ilot 2)
Tableau 12 : Résultats des analyses sur les sols (agressivité vis-à-vis des bétons) 42
Tableau 13 : Prélèvement des gaz du sol
Tableau 14 : Concentrations en μg/m³ mesurées dans les piézairs

ANNEXES

Annexe 1 : Réglementation et normes relatives aux sites et sols pollués

Annexe 2 : Fiche de visite de site

Annexe 3: Reportage photographique

Annexe 4 : Photographies aériennes

Annexe 5 : Plan d'implantation des sondages

Annexe 6 : Coupes lithologiques des sondages

Annexe 7 : Bordereau des analyses de sol en laboratoire

Annexe 8: Coupes des piezairs

Annexe 9 : Fiches de prélèvement de l'air des sols

Annexe 10 : Bordereau des analyses de l'air des sols

9

GLOSSAIRE

AEP: Alimentation en Eau Potable

ARS: Agence Régionale de Santé

ARR : Analyse de Risques Résiduels

BASIAS: Base des Anciens Sites Industriels et Activités de Service

BASOL : Base de données sur les sites pollués, ou potentiellement pollués, qui

appellent une action de l'administration

BTEX: Benzène, Toluène, Ethylbenzène et Xylènes

CAV: Composés Aromatiques Volatils

COHV: Composés Organo-Halogénés Volatils

COT: Carbones Organiques Totaux

DRIEAT : Direction Régionale et Interdépartementale de l'Environnement et de

l'aménagement et des transports

DREAL: Direction Régionale de l'Environnement, de l'Aménagement et du

Logement

HCT: Hydrocarbures Totaux

HAP: Hydrocarbures Aromatiques Polycycliques

IGN: Institut Géographique National

ISDI : Installation de Stockage de Déchets Inertes

ISDND : Installation de Stockage de Déchets Non Dangereux

NGF: Nivellement Général de la France

PCB: Polychlorobiphényles

ZNIEFF: Zone Naturelle d'Intérêt Ecologique, Faunistique et Floristique

8 Métaux et métalloïdes : Arsenic (As), Cadmium (Cd), Chrome (Cr), Cuivre

(Cu), Mercure (Hg), Nickel (Ni), Plomb (Pb), Zinc (Zn)

1. PRESENTATION GENERALE - DEFINITION DE LA MISSION

CITALLIOS a missionné la société GEOLIA pour réaliser un diagnostic environnemental initial sur des terrains situés avenue Francis de Pressencé à Chatenay-Malabry – (92).

Selon la politique nationale de gestion des Sites et Sols Pollués (SSP) décrite par les circulaires du 19/04/17 et les guides méthodologiques associés, la première étape d'une étude de sol consiste à réaliser une visite de site et une étude historique, documentaire et de vulnérabilité des milieux.

Son objectif est multiple:

- localiser les éventuels foyers potentiels de pollution des milieux liés aux activités passées et présentes du site ;
- d'identifier, à travers l'histoire des pratiques industrielles, les substances susceptibles d'impacter le sous-sol ;
- définir le contexte environnemental du site, prendre connaissance des usages des sols et des contraintes qui seraient imposées par le biais de restriction d'usage, sur la base les recherches documentaires.

A l'issue de l'étude historique, documentaire et de vulnérabilité des milieux, si nécessaire, un programme d'investigations sur les différents milieux est élaboré et une stratégie de contrôle des milieux est définie. Ces investigations constituent la deuxième étape du diagnostic et ont pour objectif de définir l'état du milieu, notamment vis-àvis des usages futurs envisagés sur le site.

Plus précisément, il s'agit d'établir un bilan factuel de l'état du site devant permettre de préciser les relations entre les pollutions, les différents milieux de transferts et leurs caractéristiques, et les enjeux à protéger (populations, milieux naturels, ...).

A l'issue du diagnostic, si une problématique SSP est identifiée et peut être résolue par des actions simples de gestion, celles-ci seront directement proposées. Toutefois, si ces actions n'étaient pas suffisantes pour rétablir la compatibilité sanitaire ou éliminer/réduire les pollutions, des investigations complémentaires et un plan de gestion approfondi pourraient s'avérer nécessaires.

Ce rapport présente l'étude historique et documentaire, une description des reconnaissances réalisées, les résultats des investigations de terrain, l'évaluation des enjeux sanitaires, et les conclusions et recommandations en lien avec la mission.

Il a été établi dans le respect des Normes NFX 31-620-1 et NFX 31-620-2 de décembre 2021 et correspond à des missions INFOS-DIAG. Il intègre les prestations suivantes :

- A100 : visite de site,
- A110 : étude historique, documentaire et mémorielle,
- A120 : étude de vulnérabilité des milieux,
- A130 : élaboration d'un programme d'investigations,
- A200 : prélèvements, mesures, observations et/ou analyses sur les sols,
- A230 : prélèvements, mesures, observations et/ou analyses sur les gaz des sols,
- A260 : prélèvements, mesures, observations et/ou analyses sur les terres excavées,
- A270 : interprétation des résultats, schéma conceptuel.

Le descriptif de la réglementation et des normes relatives aux sites et sols pollués figure en *Annexe 1*.

2. PRESENTATION DU SITE ET DESCRIPTION DU PROJET

2.1. Localisation et identification du site

La zone d'étude, qui comprend deux ilots distincts, est localisée dans le secteur résidentiel de la Butte Rouge, à l'ouest Chatenay-Malabry, commune située au sud de Paris, dans le département des Hauts-de-Seine (92).

L'ilot 1, situé à l'ouest de l'avenue Francis de Pressencé, occupe une surface de l'ordre de 1,5 ha. L'ilot 2, localisé à l'est de l'avenue, occupe une surface de l'ordre de 1,7 ha.

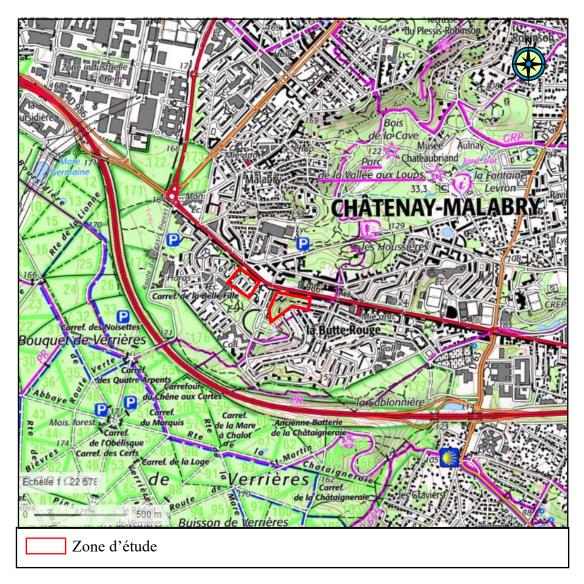


Figure 1 : Plan de localisation de la zone d'étude

Plus précisément, dans un contexte de versant avec une pente descendant vers le sudest, l'ilot 1, est localisé dans une zone sub-horizontale avec des cotes du terrain actuel situées entre 162 et 164 NGF.

L'ilot 2 est beaucoup plus en pente. A l'amont, au nord, le terrain est situé au voisinage de 158 NGF. A l'aval, il est situé au voisinage de la cote 143 NGF.

Globalement, les deux ilots sont occupés par des bâtiments de logements collectifs de type R+2 sur un niveau de sous-sol semi enterré. L'ilot 2 est plus boisé. La partie sud, qui présente le plus de déclivité, est en friche.

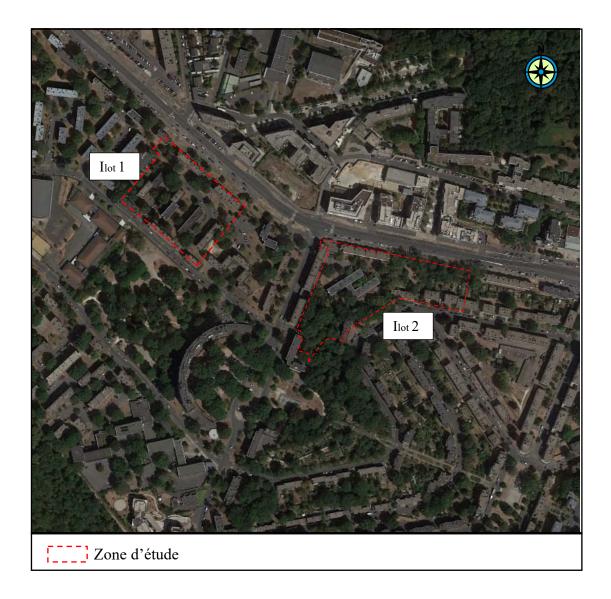


Figure 2 : Photographie aérienne du site

G220360-001A	CITALLIOS	1.4
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	14

La zone d'étude correspond aux parcelles n°33, 71 et 420 des sections cadastrales Q et R.

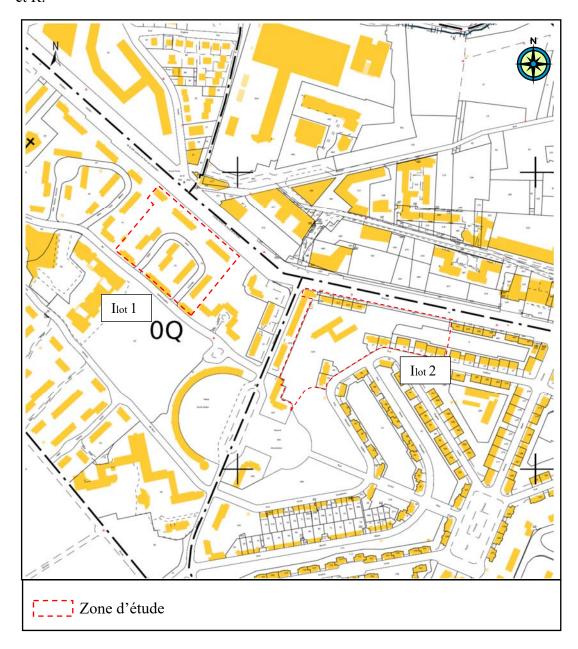


Figure 3 : Plan cadastral de la zone d'étude

G220360-001A	CITALLIOS	1.5
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	13

2.2. Présentation du projet

Un projet global de rénovation urbaine est prévu pour l'ensemble du secteur de la Butte Rouge. L'objectif est de rénover le parc de logements et les espaces extérieurs afin de les adapter aux normes actuelles énergétiques et de confort.

Les deux ilots 1 et 2, dits respectivement « Mermoz » et « Les Escaliers », sont les deux zones « test » pour la suite du projet.

Il est ainsi prévu, à ce stade, la démolition et la reconstruction d'une partie des bâtiments actuels, la rénovation des bâtiments non démolis et la rénovation des espaces publics. Notons qu'à ce stade, les caractéristiques exactes du projet ne sont pas connues.

Figure 4 : Esquisse du projet de mars 2022

G220360-001A	CITALLIOS	1.6
INFOS DIAG	rue Francis de Pressencé– CHÂTENAY-MALABRY (92)	10

3. <u>ETUDES HISTORIQUES</u>, <u>DOCUMENTAIRES ET MEMORIELLES</u> (PRESTATIONS A100 ET A110)

Dans le cadre de notre étude, une recherche historique et documentaire a été réalisée à partir des bases de données publiques et d'une étude des photographies aériennes de l'IGN.

3.1. Visite du site

La visite de site a été réalisée le 3 mai 2022 par Laurent REVEL de GEOLIA.

Le formulaire de visite est fourni en *Annexe* 2.

L'ilot 1 est occupé par un ensemble de 9 bâtiments de logements collectifs de type R+2 sur un niveau de sous-sol semi-enterré, par des voies de circulation et par des espaces verts d'agrément.

L'ilot 2 est occupé par un ensemble immobilier constitué de bâtiments de logements collectifs de type R+2 sur un niveau de sous-sol semi-enterré, par une résidence Séniors, par des espaces verts d'agrément et par des terrains boisés en friche et avec une forte pente, non accessibles.

Les systèmes de chauffage sont actuellement alimentés au gaz de ville. Notons cependant que l'intérieur des bâtiments n'était pas accessible et n'a pu être visité.

Aucune source ou activité potentiellement polluante n'a été identifiée lors de la visite.

Un reportage photographique et un plan présentant les observations lors de la visite est joint en *Annexe 3*.

3.2. <u>Visite des abords de la zone d'étude (rayon de 150 m minimum autour du site)</u>

L'environnement immédiat de la zone d'étude est essentiellement résidentiel avec des bâtiments d'habitations.

Deux établissements sensibles sont localisés à proximité de l'ilot 1. Il s'agit :

- de l'école maternelle Suzanne Buisson,
- de l'école élémentaire Léonard de Vinci.

Ces établissements sont en position amont hydrogéologique supposée et ils ne sont donc pas considérés comme vulnérables vis-à-vis d'une pollution provenant du site par le biais de la nappe.

3.3. Installations classées pour la protection de l'environnement

3.3.1. Préfecture et Archives Départementales

Le registre de la Préfecture des Hauts-de-Seine a été consulté. Aucune installation classée pour la protection de l'environnement n'est recensée au droit de la zone d'étude.

Aucun dossier n'a été reversé aux archives départementales.

3.3.2. Bases des données des activités industrielles

Base de données BASIAS

Aucun site BASIAS n'est répertorié au droit de la zone d'étude.

Cependant, plusieurs sites industriels sont répertoriés aux alentours de la zone d'étude. Ils sont décrits ci-après.

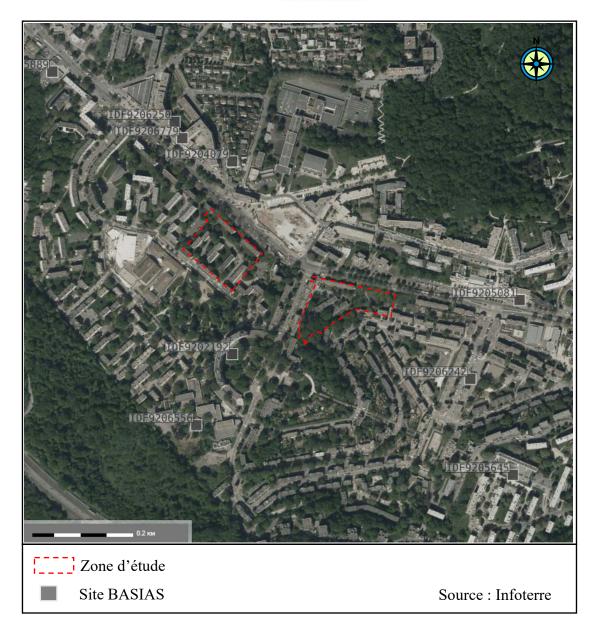


Figure 5: Emplacement des sites BASIAS

19

Tableau 1 : Liste des sites BASIAS à proximité de la zone d'étude

Référence BASIAS	Etat du site	Raison sociale	Nom usuel	Début des activités	Fin des activités	Activités exercées sur le site	Distanc orien	e (m) et tation	Positiopn hydtogéologique supposée
IDF9202192	Activité terminée	Breit (SA)	Laverie	1954	1983	Blanchisserie-teinturerie	134	S	Aval
IDF9206556	Activité terminée	CES Léonard de Vinci	N.R.	1979	2004	Traitement et revêtement des métaux ; usinage ; mécanique générale ; Fabrication de coutellerie	275	S	Aval
IDF9204079	Activité terminée	Garage	Garage	1973	1984	Garages, ateliers, mécanique et soudure	312	N	Amont
IDF9206242	Activité terminée	ARCADES (Pressing des)	Laverie Pressing - nettoyage a sec	1963		Blanchisserie-teinturerie	360	E	Latéral / Aval
IDF9206779	En activité	Alex Pressing (M. Bouaziz)	Blanchisserie	1964	Blanchisserie-teinturerie ; Dépôt de liquides inflammables (D.L.I.)		393	NO	Amont
IDF9206250	N.R.	Station Technique Chatenay, anc. Paris Pétrole Distribution	Station-Service Avia	1963	Raffinage, distillation et rectification du pétrole et/ou stockage d'huile minérales ; Commerce de gros, de détail, de désserte de carburants en magasin spécialisé		427	NO	Amont
IDF9205081	Activité terminée	Roblin (Entreprise)	Magasin de cycles- Motos	1964	1984	Commerce de gros, de détail, de désserte de carburants en magasin spécialisé (station service de toute capacité de stockage)		E	Latéral / Aval

N.R.: Non renseigné

Deux sites industriels sont répertoriés en amont hydrogéologique supposé. Au regard de ces informations, les activités exercées ont potentiellement impacté la qualité des milieux (sol et nappe). Les polluants susceptibles d'être rencontrés sont les hydrocarbures et les solvants, ils pourraient avoir migré sur le site d'étude via la nappe si elle est vulnérable.

• Base de données BASOL

Le site étudié ne fait pas partie de la base de données des sites et sols pollués, ou potentiellement pollués, appelant une action des pouvoirs publics, à titre préventif ou curatif (BASOL).

De plus, dans un rayon de 1 km, aucun site BASOL n'est répertorié aux alentours de la zone d'étude.

• Base de données des SIS

Le site étudié ne fait pas partie de la base de données des Secteurs d'Information sur les Sols.

De plus, aucun site SIS n'est répertorié aux alentours de la zone d'étude.

3.4. <u>Informations recueillies d'après les photographies aériennes</u>

Les campagnes de photographies aériennes consultées ont permis d'observer l'évolution de l'occupation du site, depuis 1931 jusqu'à nos jours, en complément des informations déjà en notre possession.

Les photographies aériennes sont présentées en Annexe 4.

Tableau 2 : Liste des photographies aériennes de l'IGN consultées

Année	Mission	Cliché	Annexe	
1931	CAF -A 263	2	X	
1949	F2215-2515	419	X	
1956	CDP1108	1076	X	
1963	CDP3908	9795	X	
1967	FR1235	1220		
1972	FR2281	303		
1977	FR2875	104	X	
1987	FR4053	1024		
1994	FR5037	1654		
2000	FR5396	63		
2004 à 2018	Google Earth	Google Earth		

Le site

D'après les clichés, le site a d'abord été occupé par des zones boisées naturelles.

Les bâtiments de la cité jardin apparaissent dans les années 1940.

Le bâtiment au centre de l'ilot 2 apparait ensuite dans les années 1970. La configuration du site évolue peu par la suite.

L'environnement du site

Au début du XX^{ème} siècle, l'environnement du site était essentiellement rural.

Il devient peu à peu résidentiel à partir des années 1950.

G220360-001A	CITALLIOS	21
INFOS DIAG	rue Francis de Pressencé– CHÂTENAY-MALABRY (92)	21

4. ETUDE DE LA VULNERABILITE DES MILIEUX (PRESTATION A120)

4.1. Contexte géologique et lithologique

Selon les informations en notre possession (carte géologique n°183 du BRGM de Paris et sa notice, la BSS du BRGM...), la description lithologique est la suivante (des formations les plus récentes aux plus anciennes), sous des terrains de couverture :

- Argiles à meulière de Montmorency g_{3a} : les argiles à meulière sont constituées d'argiles brun rougeâtre compactes renfermant des blocs de calcaire silicifié (meulière). Leur épaisseur, au droit de l'ilot 1, est de l'ordre de 5/6 m,
- Sables de Fontainebleau g_{2b} : Ce sont des sables siliceux bien classés. Ils sont de couleur blanc pur à grisâtre, mais le plus souvent ocre à roux. Leur épaisseur au droit du site peut atteindre plusieurs dizaines de mètres.

La couche d'argile à meulière est peu perméable et peu vulnérable vis-à-vis d'une source de pollution superficielle. Cependant, les sables de Fontainebleau, attendus sous la couche d'argile à meulière sur l'ilot 1 et sous les terres de couverture au droit de l'ilot 2, sont vulnérables à une pollution des sols, de par leur nature perméable.

Par ailleurs, la présence de remblais au droit du site est possible. Ces derniers peuvent constituer une source potentielle de pollution.

22

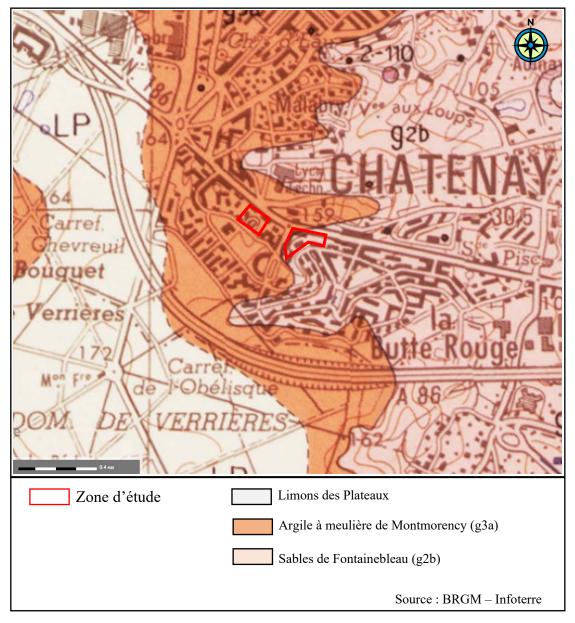


Figure 6 : Localisation de la zone d'étude sur la carte géologique de Paris

G220360-001A	CITALLIOS	22
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	23

4.2. Contexte hydrogéologique

D'après les données de la BSS, la première nappe susceptible d'être rencontrée est la nappe des sables de Fontainebleau qui est attendue vers 40 m de profondeur. Au vu de ces informations et compte tenu de la nature des terrains présents sur le site, cette nappe est considérée comme étant moyennement vulnérable à des pollutions superficielles.

La base de données des points d'eau (BSS/BRGM) recense 4 ouvrages (puits, forages...) au voisinage de la zone d'étude. Ils sont indiqués sur la carte ci-après et décrits dans le tableau de la page suivante.

Figure 7: Localisation des points d'eau dans les environs du site

G220360-001A	CITALLIOS	24
INFOS DIAG	rue Francis de Pressencé– CHÂTENAY-MALABRY (92)	24

Tableau 3 : Description des points d'eau situés à proximité de la zone d'étude (rayon < 1 km)

Référence du point d'eau	Nature	Profondeur atteinte (m)	Date de réalisation	ZSOL	Etat de l'ouvrage	Exploitation	Utilisation	Profondeur (e au)	Distanc orien	e (m) et tation	Position hydogéologiqu e
02192X0293/GTH2	FORAGE	2150	1983	160	Exploité	Géothermie	Chauffage	N.R.	227	N	Amont
02192X0292/GTH1	FORAGE	1932	1983	160	Exploité	Géothermie	Chauffage	N.R.	230	N	Amont
02192X0313/PZ4	FORAGE	13	1990	115	N.R.	N.R.		3.9	794	NE	Latéral
02192X0312/PZ3	FORAGE	6	1990	91	N.R.	N.R.	Eau	1	938	NE	Latéral

N.R.: Non Renseigné

D'après la base de données de la BSS, aucun ouvrage n'est situé en aval hydrogéologique supposé. Les ouvrages cités ci-dessus ne sont donc pas considérés comme sensibles.

• Captages d'Alimentation en Eau Potable :

Selon les informations obtenues par l'ARS des Hauts-de-Seine, aucun captage AEP n'est répertorié sur la commune de Chatenay-Malabry. Par ailleurs, le site n'est pas concerné par un périmètre de protection de captage d'eau.

Ainsi au regard de ces informations, la première nappe circulant au droit du site est peu vulnérable et non sensible à une pollution superficielle provenant du site.

4.3. Contexte hydrologique

Le cours d'eau le plus proche du site correspond au ru d'Aulnay situé à environ 700 m au nord du site. Compte-tenu de la distance de ce cours d'eau à la zone d'étude, le réseau hydrographique n'est pas considéré comme vulnérable vis-à-vis d'une pollution des eaux de ruissellement provenant du site.

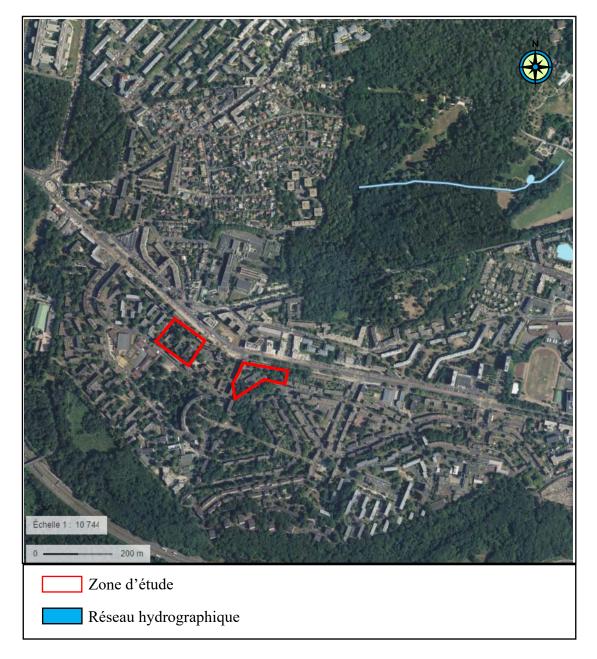


Figure 8 : Localisation du réseau hydrographique le plus proche

4.4. Contexte météorologique

Selon Météo France, le climat en Île-de-France est de type océanique altéré. Il est assez homogène sur la région mais impacté par la présence d'un îlot de chaleur urbain à Paris. Les températures varient en moyenne de 2°C au plus bas en hiver à 24°C au plus haut en été.

Les précipitations sont régulières et homogènes. Elles varient de 40 à 60 mm par mois pour un total de 630 mm par an.

G220360-001A	CITALLIOS	26
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	20

Concernant l'ensoleillement, l'Ile-de-France n'est pas une région très ensoleillée (1700 heures de soleil par an contre 1850 heures en moyenne nationale).

Les vents dominants soufflent du sud-ouest mais des vents du nord-est sont également assez fréquents.

Des zones enherbées sont présentes sur la zone d'étude et sont donc vulnérables à d'éventuelles retombées de poussières potentiellement polluées issues d'un site voisin et à l'infiltration d'éventuelles pollutions dans les sols superficiels via les précipitations.

4.5. Les milieux naturels

Selon les informations obtenues par la DRIEAT, la zone d'étude n'est pas située dans l'emprise d'un espace protégé de type ZNIEFF, Biotope, NATURA 2000, ZICO, Réserve naturelle, Parc Naturel Régional, ou encore de sites classés et inscrits.

Le site protégé le plus proche correspond au bois de Verrière classé en tant que ZNIEFF de type II.

Vis-à-vis des milieux naturels et sites protégés, il n'y a donc pas de contrainte réglementaire liée à la localisation du site. De plus aucun espace protégé n'est répertorié aux alentours de la zone d'étude.

5. <u>CONCLUSION DE L'ETUDE HISTORIQUE ET DOCUMENTAIRE – ELABORATION D'UN PROGRAMME D'INVESTIGATIONS (PRESTATION A130)</u>

5.1. Données issues de l'étude historique et mémorielle

A l'issue des études historiques et documentaires, nous avons retenu les problématiques suivantes :

- les remblais éventuels d'aménagement du site,
- les activités industrielles répertoriées à l'amont hydrogéologique. A ce sujet, la nappe souterraine est attendue en profondeur et il est peu probable qu'elle ait directement été impactée par ces activités.

5.2. Schéma conceptuel

En considérant :

- les remblais éventuels,
- un projet d'aménagement immobilier,
- les cibles à prendre en compte sont les adultes et enfants résidents. Les risques potentiels également à étudier sont liés à l'ingestion au droit des jardins sur pleine terre et à l'inhalation de vapeurs dans les locaux confinés.

il a été recommandé de réaliser le programme d'investigations suivant :

5.3. <u>Stratégie d'investigations vis-à-vis de la recherche de pollution et des risques sanitaires</u>

Tableau 4 : Stratégie d'investigation, sondages et analyses prévisionnelles

Source de pollution potentielle repérée	Localisation	Matrice étudiée	Profondeur préconisée	Nombre d'ouvrages	Polluants à rechercher
Remblais	Ilot 1	Sol	2 et 4 m	9	HCT, HAP, BTEX,
éventuels	Ilot 2	Sol	2 et 4 m 10		COHV, métaux
Milieu en	Ilot 1	Air du sol	2 m	2	HCT,
profondeur	Ilot 2	Air du sol	2 m	2	BTEXN, COHV

5.4. Stratégie d'investigations vis-à-vis des terres excavées

Les sondages permettront également d'obtenir un premier aperçu de la qualité des terres pouvant être excavées dans le cadre du projet.

Des analyses de type pack ISDI¹, correspondant aux critères d'acceptation des terres en Installation de Stockage de Déchets Inertes (ISDI) seront également nécessaires pour proposer des filières d'acceptation des déblais devant être évacués dans le cadre du projet.

¹ **Pack ISDI**: HAP, HCT, PCB, COT, CAV sur brut et les 12 métaux, la Fraction Soluble, l'Indice Phénol, les Fluorures, le Carbone Organique Total (COT), les Chlorures et les Sulfates sur lixiviat

G220360-001A	CITALLIOS	20
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	29

6. <u>RECONNAISSANCES SUR LE MILIEU « SOL » (PRESTATIONS A200 ET A260)</u>

6.1. Nature des investigations

Les investigations sur les sols se sont déroulées le 10 mai 2022. Elles ont consisté à réaliser 16 sondages à l'aide d'une sondeuse mécanique équipée de tarières en diamètre 90 mm ou d'une tarière manuelle et descendus à 2 m et 4 m de profondeur. Il était prévu de réaliser 19 sondages, mais 3 d'entre eux n'ont pas pu être réalisés du fait de la non accessibilité à ces zones.

Les investigations réalisées sont récapitulées dans le tableau ci-dessous :

Tableau 5: Investigations réalisées

Sondages	Profondeur prévue (m)	Localisation	Remarque
T1 à T5	2 m		les sondages T1 et T4 ont été équipés d'un piézair
T5 à T9	4 m	répartis sur le lot 1	-/-
T10, T11, T13 et T14	2 m		-/-
T12	2 m	répartis sur le lot 2	Sondage non réalisé en raison de la présence d'une zone arborée non accessible
T15, T16 et T19	4 m	repares sur le 1002	-/-
T17 et T18	4 m		Sondages non réalisés en raison de la présence d'une zone arborée non accessible

Au total, 52 échantillons ont été prélevés en fonction de la lithologie et des observations organoleptiques.

Le plan d'implantation des sondages est fourni en Annexe 5, une carte par ilot.

6.2. Méthode d'investigation

6.2.1. Sondages pour les prélèvements de sols

La technique de foration n'utilisant pas de fluide, elle permet d'éviter de souiller les terrains traversés et de récupérer des échantillons de sol peu déstructurés, et donc, d'apprécier au mieux la lithologie des matériaux en place. En revanche, en présence de terrains résistants et blocs, les refus sont rapidement atteints.

Pour garantir la représentativité de l'échantillonnage, les sondages ont été réalisés en respectant les procédures suivantes :

- foration à sec,
- nettoyage des outils de prélèvement entre chaque passe d'échantillonnage,
- rebouchage des ouvrages avec les matériaux du site en fin de prélèvement.

6.2.2. Prélèvements de sols

Les prélèvements ont été réalisés selon les procédures suivantes, garantissant la représentativité des échantillons :

- utilisation de récipients de verre, hermétiquement fermés pour les analyses,
- utilisation de gants jetables (pour chaque prélèvement),
- transport des échantillons à l'obscurité et dans une glacière refroidie par des pains de glace,
- conservation des échantillons non analysés au réfrigérateur, en vue d'analyses ultérieures.

Les échantillons moyens composites de chaque horizon ont été constitué.

Les conditions météorologiques lors de l'étude étaient les suivantes :

- température moyenne : 20°C

- pression atmosphérique : 1920 hPa

- hygrométrie : 54 %

Les échantillons ont été expédiés au laboratoire sous 24 heures, conservés au laboratoire pendant un mois après la fin de l'étude puis détruits.

6.3. Résultats des investigations sur site

Les profondeurs sont données par rapport à la tête des sondages, soit le niveau topographique au moment de notre intervention.

G220360-001A	CITALLIOS	21
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	31

L'examen des matériaux extraits des forages a permis de mettre en évidence la succession lithologique suivante : Remblais

De la surface à environ 0,5 à 1 m de profondeur au droit de certains points, il a été mis en évidence la présence de matériaux limoneux et/ou sableux marron avec des débris exogènes (petits résidus noirâtres, morceaux de terres cuite) Ces matériaux correspondent vraisemblablement à des remblais et/ou à des terrains remaniés.

Argiles

Sous les terrains de couverture, au droit de l'ilot 1, les terrains rencontrés correspondent à des argiles à meulière rougeâtres.

Limons et sables

Au droit de l'ilot 2, les matériaux observés correspondent à des limons marron et à des sables, plus ou moins limoneux, marron, beiges à jaunâtres.

Les coupes lithologiques des sondages sont jointes en *Annexe* 6.

6.4. Programme des analyses

Les analyses chimiques ont été réalisées par le laboratoire WESSLING. Ce laboratoire possède plusieurs agréments du Ministère en charge de l'Environnement et du Ministère du Travail pour procéder aux analyses. Il est accrédité EN17025 reconnu COFRAC.

6.4.1. Analyse sur les sols

Compte-tenu des résultats de l'étude documentaire et afin d'obtenir un premier aperçu de la qualité des terrains superficiels et semi-profonds, les analyses ont porté sur les critères d'acceptation des terres en Installation de Stockage de Déchets Inertes (ISDI), les 12 métaux sur brut, les COHV et des cyanures totaux lixiviables.

Des tests d'agressivité vis-à-vis des bétons ont également été réalisés.

Le tableau ci-après reprend l'ensemble des sondages réalisés, les échantillons prélevés, les signes organoleptiques et les analyses réalisées.

Tableau 6 : Programme analytique (Ilot 1)

	Tableau V. Frogramme analytique (not 1)														
Sondage(s)	Date et Heure de prélèvement	Tarière Ø	Echantillons composites (m)	Remblai	Signe olfactif	Mesure PID	Description Lithologique	Description organoléptique	Pack ISDI + COHV + 12 métaux + Cyanures sur lixiviat	Pack ISDI + COHV + 12 métaux	Pack agressivité des sols vis à vis des bétons: Norme P18-325- 1 (206-1)				
	T1 0005/22 9h00		0/0,5	Χ		0	Limons sableux brun clair avec quelques débris de terre cuite et petits résidus d'incinération	Petits résidus d'incinération	X						
T1		90	0,5/1	Χ		0	Sables légèrement limoneux rougeâtres, beaucoup de débris de terre cuite			Χ					
	10/0		1/2			0	Argiles à meulière			Χ	X				
	50		0/0,5	Χ		0	Limons brun clair légèrement sableux avec grains noirâtres et petits résidus d'incinération	Couleur noirâtre - Petits résidus d'incinération	Χ						
Т2	10/05/22 9h20	90	0,5/1			0	Argiles brun clair et grains de calcaires avec traces orangées								
	10/(1/2			0	Argiles à meulière orangées rougeâtres avec beaucoup de grains de calcaire								
	20		0-0,5	Χ		0,2	Limon sableux brun clair avec quelque débris de terre cuite			Χ					
Т3	10/05/22 10h20	90	0,5-1			0,2	Argiles brun clair avec grains de calcaire								
	10/(1-2			0,2	Argiles brun clair avec grains de calcaire (un peu plus sec)								
	00		0/0,7	Χ		0	Limons sableux bruns et quelque débris exogènes (silex, petits résidus d'incinération)	Petits résidus d'incinération	X						
T4	10/05/22 8h00	90	0,7/1			0	Argiles à meulière brun-orangé								
	10/0		1/2			0	Argiles à meulière orange à rougeâtres plus compactes								
	T5 27 10h40 90	90	0-0,5	Χ		0	Limons sableux bruns avec débris de terre cuite et rares résidus d'incinération	Rares résidus d'incinération	Χ						
Т5			0,5-1			0	Argiles brun-orangé avec quelques grains de calcaire								
	10/(1-2			0	Argiles rougeâtres compactes avec passées grisâtres et grains de calcaire			X					
	2 9440		0/0,5			0	Limons sableux brun clair avec quelques racines			X					
T		90	0,5/1			0	Argiles sableuses brun clair avec quelques grains de calcaire								
T6	10/05/22 9h40	90	1/2			0	Argiles à meulière brun clair légèrement orangé avec beaucoup de grains de calcaire			X	X				
			2/4			0	Argiles à meulière brun clair légèrement orangé avec beaucoup de grains de calcaire (Un peu plus sec)								
			0/0,5			0	Limons sableux bruns clair avec grains de calcaire		X						
Т7	10/05/22 8h30	90	0,5/1			0	Argiles à meulière brunes avec beaucoup de grains de calcaire								
17	10/05/2	<i>5</i> 0	1/2,5			0	Argiles à meulière brunes légèrement plus orangées avec beaucoup de grains de calcaire								
			2,5/4			0	Argiles brun-orangé clair			×					
		90	-				0-0,5			0	Limons sableux brun clair et graviers de calcaire		×		
	0000				0,5-1			0 Argiles brun clair lég	Argiles brun clair légèrement sableuses avec quelques grains de calcaire						
Т8	10/05/22 10h00		1-2			0	Argiles brun-clair-orangé avec grains de calcaire			X	X				
	10.		2-3			0	Argiles rougeâtres compactes avec grains de calcaire								
			3-4			0									
		<u>-</u>	0-0,5	?		0	Argiles limoneuses brun-gris avec rares petits résidus d'incinération	Rares résidus d'incinération	X						
	0h50		0,5-1			0	Argiles brun-orangé			X					
Т9	10/05/22 10h50	90	1-2			0									
	10		2-3			0,1	Argiles orangées à meulière avec beaucoup de grains de calcaire								
	2		3-4			0,1									
	2														

² Pack ISDI: HAP, HCT, PCB, COT, CAV sur brut et les 12 métaux, la Fraction Soluble, l'Indice Phénol, les Fluorures, le Carbone Organique Total (COT), les Chlorures et les Sulfates sur lixiviat.

G220360-001A	CITALLIOS	22
INFOS DIAG	rue Francis de Pressencé – CHÂTENAY-MALABRY (92)	33

Tableau 7 : Programme analytique (Ilot 2)

Sondage(s)	Date et Heure de prélèvement	Tarière Ø	Echantillons composites (m)	Remblai	Signe olfactif	Mesure PID	Description Lithologique	Description organoléptique	Pack ISDI + COHV + 12 métaux + Cyanures sur lixiviat	Pack ISDI + COHV + 12 métaux	Pack agressivité des sols vis à vis des bétons: Norme P18-325-1 (206-1)
	45		0-0,3			nm	Limons argileux marron avec cailloutis de silex et de calcaire et avec racines			X	
T10	10/05/22 9h45	90	0,3-1,5			nm	Sables légèrement argileux beige-jaunâtre				
	10/(1,5-2			nm	Sables argileux marron-orangé avec cailloux et cailloutis de calcaire		Х		
T11	10/05/22 11h10	Manuelle 63	0-0,5	X		nm	Limons sableux marron avec cailloutis de silex et de calcaire, terre cuite et petits résidus d'incinération	Petits résidus d'incinération	Χ		
111	10/05/2	Manu	0,5-1			nm	Limons marron clair				
T13	10/05/22 10h40	elle 63	0-0,6	X		nm	Limons sableux marron avec cailloux et cailloutis de silex et de calcaire et avec petits résidus d'incinération	Petits résidus d'incinération			
113	10/05/22 10h-	Manu	0,6-1			nm	Sables fins jaune-orangé				
	000 PT	90	0-1	?		nm	Limons sableux marron clair avec cailloutis de silex et de calcaire				
T14			1-1,5			nm	Limons marron clair				
			1,5-2			nm	Sables limoneux marron clair avec cailloux et caillout is de meulière			X	
	%10		0-1	X		nm	Limons sableux marron clair à foncé avec cailloux et cailloutis de silex et de calcaire et avec petits résidus d'incinération	Petits résidus d'incinération		Х	
T15	10/05/22 10h10	90	1-3			nm	Sables fins beige-jaunâtre à orangés				
	10		3-4			nm	Sables this beige-jamaire a trianges				X
	50		0-1	?		nm	Limons sableux marron clair avec cailloutis de silex et de calcaire et avec racines		X		
T16	T16 00825 8H20	90	1-2			nm	Argiles sableuses marron-orangé avec cailloux et cailloutis de meulière				
			2-4			nm	Sables fins légèrement argileux beige-jaunâtre à orangés				
	3		0-1			nm	Limons marron clair avec racines			Х	
T19	10/05/22 8h45	90	1-3			nm	Sahloo fine being investigation in the				
	10/0		3-4			nm	Sables fins beige-jaunâtre à orangés				

nm : non mesuré

6.4.2. Résultats des analyses chimiques en laboratoire

a. Comparaison des teneurs au bruit de fond local

Dans un premier temps, il convient de déterminer le bruit de fond local des sols en place n'ayant pas subi de pollution extérieure. Dans le cas de la région parisienne, la définition du bruit de fond géochimique est délicate du fait de l'urbanisation et de l'activité humaine.

Dans le cas présent, sur la première couche superficielle, les concentrations mesurées dans les sols ont été comparées à des valeurs sélectionnées parmi les critères d'innocuité des supports de culture, selon le projet de décret relatif aux critères de qualité agronomiques et d'innocuité selon les conditions d'usage pour les matières fertilisantes et les supports de culture, texte initial de 2013, mise à jour en projet 11/2020 (Annexe I : annexes de l'article D. 255-14-1) -, parmi les données de l'INRA concernant les teneurs totales en éléments traces mesurées dans les sols en France. Sur les couches suivantes, selon la définition du bruit de fond naturel local, sur la base des éléments du Gis Sol et des cartes Refersol, et de l'étude des teneurs moyennes mesurées sur site.

Tableau 8 : Teneurs en éléments traces dans les sols retenues par GEOLIA

	Valeur de comparaison retenues par GEOLIA en mg/kg	Gamme de valeurs couramment observées dans les sols "ordinaires" de toutes granulométries
Source	Projet de décret relatif aux critères de qualité agronomiques et d'innocuité selon les conditions d'usage pour les matières fertilisantes et les supports de culture, texte initial de 2013, mise à jour en projet 11/2020 (Annexe I : annexes de l'article D. 255-14-1) -,	INRA concernant les teneurs totales en éléments traces mesurées dans les sols en France
Composés r	nétalliques et métalloïdes	
As	40	25
Cd	1.5	0,05 à 0,45
Cr	120	10 à 90
Co		2 à 23
Cu	200	2 à 20
Hg	1	0,02 à 0,10
Ni		2 à 60
Pb	120	9 à 50
Se		0,10 à 0,70
Zn	500	10 à 100
Composés o	organiques	
HAP	Somme des 16 HAP : 6 mg/kg	
PCB	Somme des 7 PCBs : 0.8 mg/kg	

G220360-001A	CITALLIOS	25
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	33

En ce qui concerne l'antimoine et le baryum, les concentrations mesurées dans les sols sont comparées aux données de l'ATSDR (1997) concernant les teneurs totales en éléments traces mesurées dans les sols aux États-Unis.

Les valeurs indiquées ci-dessus ne sont données qu'à titre de comparaison. Elles ne constituent en aucun cas des valeurs réglementaires.

Dans le tableau de comparaison des teneurs, elles sont présentées comme valeurs indicatives d'un bruit de fond retenues par GEOLIA.

b. Pour les terres excavées

Pour les terres excavées, le référentiel de comparaison est constitué des critères d'acceptation des terres en Installation de Stockage de Déchets Inertes (ISDI) selon l'Arrêté du 12 décembre 2014 et dans des Installations de Stockage pour Déchets Non Dangereux selon la décision n°2003 du 19 décembre 2002, reportés aux tableaux suivants.

Tableau 9 : Valeurs limites à respecter pour Déchets Inertes Admissibles dans des Installations de Stockage de Déchets Inertes selon l'Arrêté du 12 décembre 2014 et dans des Installations de Stockage pour Déchets Non Dangereux selon la décision n°2003 du 19 décembre 2002

1° Paramètres à vérifier lors du test de lixiviation et valeurs limites à respecter :

PARAMÈTRES	Valeur limite à respecter (*) en mg/kg de matière sèche pour les ISDI	Valeur limite à respecter en mg/kg de matière sèche pour les ISDI+	Valeur limite à respecter en mg/kg de matière sèche pour les TN+ (******)	Valeur limite à respecter en mg/kg de matière sèche pour les ISDND
As	0,5	1,5	1,5	2
Ba	20	60	60	100
Cd	0,04	0,12	0,5	1
Cr total	0,5	1,5	4	10
Cu	2	6	6	50
Hg	0,01	0,03	0,03	0,2
Мо	0,5	1,5	8	10
Ni	0,4	1,2	1,2	10
Pb	0,5	1,5	1,5	10
Sb	0,06	0,18	0,6	0,7
Se	0,1	0,3	0,5	0,5
Zn	4	12	12	50
Fluorures	10	30	72	150
Indice phénols	1	3	3	-
COT sur éluât (**)	500	500	500	800 (****)
FS (fraction soluble) (***)	4 000	12 000	32 000	60 000 (****)
Sulfate (***)	1 000 (*)	3 000 (*)	18 000	20 000 (****)
Chlorure (***)	800	2 400	2450	15 000 (****)

^(*) Si le déchet ne respecte pas cette valeur pour le sulfate, il peut être encore jugé conforme aux critères d'admission si la lixiviation ne dépasse pas les valeurs suivantes : 1 500 mg/l a un ratio L/S=0,1 l/kg et 6 000 mg/kg de matière sèche a un ratio L/S=10 l/kg. Il est nécessaire d'utiliser l'essai de percolation NF CEN/TS 14405 pour déterminer la valeur lorsque L/S=0,1 l/kg dans les conditions d'équilibre initial ; la valeur correspondant à L/S=10 l/kg peut être déterminée par un essai de lixiviation NF EN 12457-2 ou par un essai de percolation NF CEN/TS 14405 dans des conditions approchant l'équilibre local.

(*****) Les valeurs correspondant à la FS peuvent être utilisées à la place des valeurs fixées pour le sulfate et le chlorure.

2° Paramètres à vérifier pour le contenu total et valeurs limites à respecter :

G220360-001A	CITALLIOS	27
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	31

^(**) Si le déchet ne satisfait pas à la valeur limite indiquée pour le carbone organique total sur éluât à sa propre valeur de pH, il peut aussi faire l'objet d'un essai de lixiviation NF EN 12457-2 avec un pH compris entre 7,5 et 8,0. Le déchet peut être jugé conforme aux critères d'admission pour le carbone organique total sur éluât si le résultat de cette détermination ne dépasse pas 500 mg/kg de matière sèche.

^(***) Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction soluble.

^(****) Si le déchet ne satisfait pas aux valeurs indiquées pour le carbone organique total sur éluât à sa propre valeur de pH, il peut aussi faire l'objet d'un essai avec un rapport L/S =10 l/kg et un pH compris entre 7,5 et 8. Le déchet peut être jugé conforme aux critères d'admission pour le COT sur éluât si le résultat de cette détermination ne dépasse pas 800 mg/kg (un projet de méthode fondé sur la prénorme européenne n° 14429 est disponible).

^(*****) Déchets inertes présentant une surconcentration d'origine naturelle

PARAMÈTRES	Valeur limite à respecter (*) en mg/kg de matière sèche pour les ISDI	Valeur limite à respecter en mg/kg de matière sèche pour les TN+	Valeur limite à respecter en mg/kg de matière sèche pour les ISDND
COT (carbone organique total)	30 000 (**)	60 000	5%
BTEX (benzène, toluène, éthylbenzène et xylènes)	6	6	Spécifique par Arrêté Préfectoral
PCB (Polychlorobiphényles 7 congénères)	1	1	Spécifique par Arrêté Préfectoral
Hydrocarbures (C10 à C40)	500	500	Spécifique par Arrêté Préfectoral (~2 500)
HAP (hydrocarbures aromatiques polycycliques)	50	50	Spécifique par Arrêté Préfectoral (~100)

^(*) Pour les sols, une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluât, soit au pH du sol, soit pour un pH situe entre 7,5 et 8,0.

En complément des valeurs règlementaires, on retiendra également les seuils suivants pour les COHV fixés par certaines Installations de Stockage de Déchets Inertes en région parisienne :

- pour les ISDI, 2 mg/kg pour la somme des COHV et 1 mg/kg pour le trichloroéthylène,
- pour les ISDND, 1 000 mg/kg pour la somme des COHV.

b. Résultats des analyses sur les sols

Les bordereaux d'analyses de sols en laboratoire sont présentés en Annexe 7.

G220360-001A	CITALLIOS	20
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	38

Tableau 10 : Résultats des analyses sur les sols (Ilot 1)

Désignation d'échantillon	7				10			T1 0/0.5	T1 0.5/1	T1 1/2	T2 0/0.5	T3 0/0.5	T4 0/0.7	T5 0/0.5	T5 1/2
N° d'échantillon Indice organoleptique anormal			CHATEN	AY MALABI	RY ILOT 1			22-072805-01	22-072805-02	22-072805-03	22-072805-04	22-072805-05	22-072805-06	22-072805-07	22-072805-08
R = Remblais TR = Terrain Remanié TN = Terrain Naturel							J	TR	TR	TN	TR	R/TR	TR?	TR	TN
200 Innivitation		Seuil ISDD	Seuil ISDND	Seuil ISDI +	Seuil ISDI	Seuil TN+	Valeurs de gestion retenues par GEOLIA			1			I	I	ı
Paramètre Matière sèche	Unité							86,9	90	93,7	82,6	86,8	87,5	88,7	89,3
Carbone organique total (COT)	% mass MB mg/kg MS	60 000	50 000	30 000	30 000	60 000		12000	<500	<500	11000	12000	14000	12000	<500
Indice hydrocarbure (HCT) C10- Indice hydrocarbure (HCT) C10-C4		50 000	2500**	500	500	ı	100	<20	<20	<20	<20	<20	<20	53	<20
Hydrocarbures > C10-C12 Hydrocarbures > C12-C16	mg/kg MS mg/kg MS	30 000	2300	300	300		700	<20 <20 <20	<20 <20 <20	<20 <20 <20	<20 <20 <20	<20 <20 <20	<20 <20 <20	<20 <20	<20 <20 <20
Hydrocarbures > C16-C21	mg/kg MS							<20	<20	<20	<20	<20	<20	<20	<20
Hydrocarbures > C21-C35 Hydrocarbures > C35-C40	mg/kg MS mg/kg MS							<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	26 <20	<20 <20
Métaux, métaux lourds et autres											1		T	T	
Antimoine (Sb) Arsenic (As)	mg/kg MS mg/kg MS						1,5 40	<1,0 13	1,0 67	<1,0 20	<1,0 11	<1,0 11	1,0 15	<1,0 14	<1,0 14
Baryum (Ba) Cadmium (Cd)	mg/kg MS mg/kg MS						3500 1,5	94 <0,4	160 0,4	31 <0,4	74 <0,4	71 <0,4	190 <0,4	71 <0,4	11 <0,4
Chrome (Cr) total Cuivre (Cu)	mg/kg MS mg/kg MS						120 200	28 18	81 13	6,0	29 13	29 13	30 23	29 19	30 3,0
Mercure (Hg) Molybdène (Mo)	mg/kg MS mg/kg MS						1	0,1 <1,0	<0,1 3,0	0,1 <1,0	0,1 <1,0	0,2 <1,0	0,2 2,0	0,3 <1,0	<0,1 <1,0
Nickel (Ni) Plomb (Pb)	mg/kg MS mg/kg MS						60 120	14 48	29 81	9,0	15 37	14 34	22 41	12	5,0 10
Sélénium (Se)	mg/kg MS						0,7 500	1,0	2,0	<1,0 11	<1,0	1,0	<1,0	<1,0 57	<1,0
Zinc (Zn)	mg/kg MS			I		<u> </u>	300	56	48	1 11	66	49	60	31	<5,0
Hydrocarbures halogénés volatils 1,1-Dichloroéthane	mg/kg MS						LQ	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
1,1-Dichloroéthylène Dichlorométhane	mg/kg MS mg/kg MS						LQ LQ	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1
Tétrachloroéthylène 1,1,1-Trichloroéthane	mg/kg MS mg/kg MS		·				LQ LQ	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1
Tétrachlorométhane Trichlorométhane	mg/kg MS mg/kg MS		_		_		LQ LQ	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1
Trichloroéthylène Chlorure de vinyle	mg/kg MS mg/kg MS			1*	1*		LQ LQ	<0,1 <0,1	<0,1	<0,1 <0,1 <0,1	<0,1	<0,1 <0,1 <0,1	<0,1 <0,1 <0,1	<0,1 <0,1 <0,1	<0,1 <0,1 <0,1
cis-1.2-Dichloroéthylène trans-1.2-Dichloroéthylène	mg/kg MS						LQ LQ	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1	<0,1 <0,1 <0,1	<0,1 <0,1	<0,1 <0,1 <0,1	<0,1 <0,1
Somme des COHV	mg/kg MS mg/kg MS		1000*	2*	2*		LQ	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
Benzène et aromatiques (CAV - E										1	1	ı	I	ı	ı
Benzène Toluène	mg/kg MS mg/kg MS							<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1
Ethylbenzène m-, p-Xylène	mg/kg MS mg/kg MS							<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1
o-Xylène Somme des BTEX	mg/kg MS mg/kg MS		30*	6	6	6		<0,1 -/-	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Cumène m-, p-Ethyltoluène	mg/kg MS mg/kg MS							<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1
Mésitylène o-Ethyltoluène	mg/kg MS mg/kg MS							<0,1 <0,1 <0,1	<0,1	<0,1 <0,1 <0,1	<0,1	<0,1 <0,1 <0,1	<0,1 <0,1 <0,1	<0,1 <0,1 <0,1	<0,1 <0,1 <0,1
Pseudocumène Somme des CAV	mg/kg MS							<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
	mg/kg MS							-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
Hydrocarbures aromatiques poly Naphtalène	mg/kg MS)						<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	0,09	<0,05
Acénaphtylène Acénaphtène	mg/kg MS mg/kg MS							<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 0,17	<0,05 <0,05
Fluorène Phénanthrène	mg/kg MS mg/kg MS							<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 0,06	0,14 1,2	<0,05 <0,05
Anthracène Fluoranthène (*)	mg/kg MS mg/kg MS							<0,05 0,17	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 0,17	0,28 1,2	<0,05 <0,05
Pyrène Benzo(a)anthracène	mg/kg MS mg/kg MS							0,14 0.07	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	0,14	1,0 0,54	<0,05 <0.05
Chrysène Benzo(b)fluoranthène (*)	mg/kg MS mg/kg MS							0,07 0,18	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	0,08 0,18	0,51 0,70	<0,05 <0,05
Benzo(k)fluoranthène (*) Benzo(a)pyrène (*)	mg/kg MS mg/kg MS							<0,05 0,10	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	0,07 0,11	0,27	<0,05 <0,05
Dibenzo(a,h)anthracène	mg/kg MS							<0,05	< 0,05	<0,05	<0,05	<0,05	<0,05	<0,09	<0,05
Indéno(1,2,3,c,d)pyrène Benzo(g,h,i)pérylène	mg/kg MS mg/kg MS	#005	500:	70	5 0			0,09 0,08	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	0,09	0,26	<0,05 <0,05
Somme des HAP	mg/kg MS	5000	500*	50	50	I	6	0,91	-/-	-/-	-/-	-/-	1,1	7,4	-/-
Polychlorobiphényles (PCB) PCB n° 28	mg/kg MS							<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01
PCB n° 52 PCB n° 101	mg/kg MS mg/kg MS							<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01
PCB n° 118 PCB n° 138	mg/kg MS mg/kg MS							<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01
PCB n° 153 PCB n° 180		1						<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01
	mg/kg MS					1	0,8	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
Somme des 7 PCB		50		1	1		•		L.		,	,			
Somme des 7 PCB Lixiviation	mg/kg MS mg/kg MS mg/kg MS		900	1		500		61.0	<16.0						~16 A
Somme des 7 PCB Lixiviation Carbone organique total (COT) Sulfates (SO4)	mg/kg MS mg/kg MS mg/kg MS mg/kg MS	1000 50 000	800 20 000	500 3 000	500 1000	500		61,0 <100	<16,0 130	<16,0 300	65,0 <100	100	69,0 <100	91,0 <100	<16,0 260
Somme des 7 PCB Lixiviation Carbone organique total (COT) Sulfates (SO4) Fraction soluble Chlorures (CI)	mg/kg MS	1000 50 000 100 000 25 000		3 000 12 000 2 400	500	18000 32000 2450		<100 <1000 <100	130 <1000 <100	<16,0 300 <1000 <100	65,0 <100 <1000 <1000	100 <100 <1000 <1000	69,0 <100 <1000 <1000	91,0 <100 <1000 <1000	260 <1000 <100
Somme des 7 PCB Lixiviation Carbone organique total (COT) Sulfates (SO4) Fraction soluble Chlorures (Cl) Phénol (indice) Fluorures (F)	mg/kg MS	1000 50 000 100 000 25 000 100 500	20 000 60 000	3 000 12 000	500 1000 4000	18000 32000		<100 <1000 <100 <100 <0,1 13	130 <1000	<16,0 300 <1000	65,0 <100 <1000 <1000 <0,1 6,0	100 <100 <1000	69,0 <100 <1000 <1000 <0,1	91,0 <100 <1000 <1000 <0,1 8,0	260 <1000
Somme des 7 PCB Lixiviation Carbone organique total (COT) Sulfates (SO4) Fraction soluble Chlorures (CI) Phénol (indice)	mg/kg MS	1000 50 000 100 000 25 000 100	20 000 60 000 15 000	3 000 12 000 2 400 3	500 1000 4000 800	18000 32000 2450 3		<100 <1000 <100 <0,1	130 <1000 <100 <0,1	<16,0 300 <1000 <100 <0,1	65,0 <100 <1000 <1000 <0,1	100 <100 <1000 <1000 <100 <0,1	69,0 <100 <1000 <1000 <0,1	91,0 <100 <1000 <1000 <0,1	260 <1000 <100 <0,1
Somme des 7 PCB Lixiviation Carbone organique total (COT) Sulfates (SO4) Fraction soluble Chlorures (Cl) Phénol (indice) Fluorures (F)	mg/kg MS	1000 50 000 100 000 25 000 100 500	20 000 60 000 15 000	3 000 12 000 2 400 3	500 1000 4000 800	18000 32000 2450 3		<100 <1000 <100 <100 <0,1 13	130 <1000 <100 <0,1	<16,0 300 <1000 <100 <0,1	65,0 <100 <1000 <1000 <0,1 6,0	100 <100 <1000 <1000 <100 <0,1	69,0 <100 <1000 <1000 <0,1	91,0 <100 <1000 <1000 <0,1 8,0	260 <1000 <100 <0,1
Somme des 7 PCB Lixiviation Carbone organique total (COT) Sulfates (SO4) Fraction soluble Chlorures (CI) Phénol (indice) Fluorures (F) Cyanures totaux (CN) Métaux lixiviables Antimoine (Sb) Arsenic (As)	mg/kg MS	1000 50 000 100 000 25 000 100 500 5	20 000 60 000 15 000 150 1 0,7 2	3 000 12 000 2 400 3 30 0,18 1,5	500 1000 4000 800 1 10	18000 32000 2450 3 72 0,6 1,5		<100 <1000 <1000 <100 <0,1 13 <0,1 <0,05 <0,03	130 <1000 <100 <0,1 5,0 	<16,0 300 <1000 <100 <0,1 2,0 <0,05 <0,03	65,0 <100 <1000 <1000 <0,1 6,0 <0,1 <0,0 <0,0 <0,0 <0,0 <0,0	100 <100 <1000 <1000 <0,1 2,0 <0,05 <0,03	69,0 <1000 <1000 <1000 <0,1 12 <0,1 <0,05 <0,03	91,0 <1000 <1000 <1000 <0,1 8,0 <0,1 <0,05 <0,03	260 <1000 <100 <0,1 <1,0 <0,05 <0,03
Somme des 7 PCB Lixiviation Carbone organique total (COT) Sulfates (SO4) Fraction soluble Chlorures (CI) Phénol (indice) Fluorures (F) Cyanures totaux (CN) Métaux lixiviables Antimoine (Sb) Arsenic (As) Baryum (Ba) Cadmium (Cd)	mg/kg MS	1000 50 000 100 000 25 000 100 500 5 5 25 300 5	20 000 60 000 15 000 15 000 1 0,7 2 100 1	3 000 12 000 2 400 3 30 0,18 1,5 60 0,12	500 1000 4000 800 1 10 0,06 0,5 20 0,04	18000 32000 2450 3 72 0,6 1,5 60 0,5		<100 <1000 <1000 <100 <0,1 13 <0,1 <0,05 <0,03 0,19 <0,015	130 <1000 <100 <0,1 5,0 -0,05 <0,03 <0,05 <0,015	<pre><16,0 300 <1000 <100 <0,1 2,0 </pre> <pre><0,05 <0,03 0,07 <0,015</pre>	65,0 <100 <1000 <1000 <0,1 6,0 <0,1 <0,0 <0,0 <0,1 <0,0 <0,0 <0,1	100 <100 <1000 <100 <0,1 2,0 <0,05 <0,03 0,19 <0,015	69,0 <100 <1000 <100 <0,1 12 <0,1 <0,05 <0,03 0,07 <0,015	91,0 <1000 <1000 <1000 <0,1 8,0 <0,1 <0,05 <0,03 0,15 <0,015	260 <1000 <1000 <0,1 <1,0 <1,0 <0,05 <0,03 0,1 <0,015
Somme des 7 PCB Lixiviation Carbone organique total (COT) Sulfates (SO4) Fraction soluble Chlorures (Cf) Phénol (indice) Fluorures (F) Cyanures totaux (CN) Métaux lixiviables Antimoine (Sb) Arsenic (As) Baryum (Ba) Cadmium (Cd) Chrome (Cr) Cuivre (Cu)	mg/kg MS	1000 50 000 100 000 25 000 100 500 5 5 5 25 300 5 70 100	20 000 60 000 15 000 15 000 1 0,7 2 100 1 10 50	3 000 12 000 2 400 3 3 30 0,18 1,5 60 0,12 1,5 6	500 1000 4000 800 1 10 0,06 0,5 20 0,04 0,5 2	18000 32000 2450 3 72 0,6 1,5 60 0,5 4		<100 <1000 <1000 <100 <0,1 13 <0,1 <0,05 <0,03 0,19 <0,015 <0,05 0,07	130 <1000 <100 <0,1 5,0 <0,05 <0,03 <0,05 <0,05 <0,05 <0,05 <0,05	<pre><16,0 300 <1000 <1000 <100 <0,1 2,0 </pre> <pre><0,05 <0,03 0,07 <0,015 <0,05 <0,05 <0,05 <0,05 </pre>	65,0 <1000 <1000 <1000 <0,1 6,0 <0,1 <0,05 <0,03 0,27 <0,015 <0,05 <0,05 <0,05	100 <100 <1000 <1000 <0,1 2,0 <0,05 <0,03 0,19 <0,015 0,06 <0,05	69,0 <1000 <1000 <1000 <0,1 12 <0,1 <0,05 <0,03 0,07 <0,015 <0,05 <0	91,0 <1000 <1000 <1000 <0,1 8,0 <0,1 <0,05 <0,03 0,15 <0,015 <0,05 <0,05 <0,05	260 <1000 <100 <0,1 <1,0
Somme des 7 PCB Lixiviation Carbone organique total (COT) Sulfates (SO4) Fraction soluble Chlorures (CI) Phénol (indice) Fluorures (F) Cyanures totaux (CN) Métaux lixiviables Antimoine (Sb) Arsenic (As) Baryum (Ba) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Mercure (Hg) Molybdène (Mo)	mg/kg MS	1000 50 000 100 000 25 000 100 500 5 5 25 300 5 70 100 2 30	20 000 60 000 15 000 15 000 15 000 1 0,7 2 100 1 1 10 50 0,2 10	3 000 12 000 2 400 3 3 30 0,18 1,5 60 0,12 1,5 6 0,03 1,5	500 1000 4000 800 1 10 0,06 0,5 20 0,04 0,5 2 0,01 0,5	18000 32000 2450 3 72 0,6 1,5 60 0,5 4 6 0,03 8		<100 <1000 <1000 <100 <0,1 13 <0,1 <0,05 <0,03 0,19 <0,015 <0,05 0,07 <0,001 <0,1	130 <1000 <100 <0,1 5,0 <0.05 <0.03 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.05	<pre><16,0 300 <1000 <1000 <0,1 2,0 <0,1 2,0 </pre> <pre><0,05 <0,03 0,07 <0,015 <0,05 <0,00 <0,01 <0,01 <0,01 <0,01 </pre>	65,0 <100 <1000 <1000 <0,1 6,0 <0,1 <0,05 <0,03 <0,27 <0,015 <0,05 <	100 <100 <1000 <1000 <0,1 2,0 <0,05 <0,05 <0,01 <0,015 <0,06 <0,05 <0,001 <0,01	69,0 <100 <1000 <1000 <10,1 12 <0,1 <0,05 <0,03 <0,07 <0,015 <0,05 <	91,0 <1000 <1000 <1000 <0,1 8,0 <0,1 <0,05 <0,03 0,15 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <	260 <1000 <0,1 <1,0 <0,1 <1,0 <0,05 <0,03 0,1 <0,015 <0,05 <0,05 <0,001 <0,01
Somme des 7 PCB Lixiviation Carbone organique total (COT) Sulfates (SO4) Fraction soluble Chlorures (Cf) Phénol (indice) Fluorures (F) Cyanures totaux (CN) Métaux lixiviables Antimoine (Sb) Arsenic (As) Baryum (Ba) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Mercure (Hg) Molybdène (Mo) Nickel (Ni) Plomb (Pb)	mg/kg MS	1000 50 000 100 000 25 000 100 500 5 5 5 25 300 5 70 100 2 30 40 50	20 000 60 000 15 000 15 000 100 100 100 100 100 100 100 100 100	3 000 12 000 2 400 3 3 30 0,18 1,5 60 0,12 1,5 6 0,03 1,5 1,5	500 1000 4000 800 1 10 0,06 0,5 20 0,04 0,5 2 0,01 0,5 0,4	18000 32000 2450 3 72 0,6 1,5 60 0,5 4 6 0,03 8 1,2		<100 <1000 <1000 <100 <0,1 13 <0,1 <0,05 <0,03 0,19 <0,015 <0,05 0,07 <0,001 <0,1 4 0,14 <0,1	130 <1000 <1000 <0,1 <5,0 < 0,05 <0,03 <0,015 <0,015 <0,005 <0,005 <0,005 <0,001 <0,01 <0,01 <0,01 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	<pre><16,0 300 <1000 <1000 <100 <0,1 2,0 </pre> <pre><0,05 <0,03 0,07 <0,015 <0,05 <0,05 <0,001 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0</pre>	65,0 <1000 <1000 <1000 <0,1 6,0 <0,1 <0,05 <0,03 0,27 <0,015 <0,05 <0,05 <0,005 <0,001 <0,1 <0,1	100 <100 <1000 <1000 <0,1 2,0 <0,05 <0,03 0,19 <0,015 <0,06 <0,05 <0,001 <0,1 <0,1 <0,1	69,0 <1000 <1000 <1000 <0,1 12 <0,1 <0,05 <0,03 0,07 <0,015 <0,05 <0,05 <0,001 <0,1 <0,1 <0,1	91,0 <1000 <1000 <1000 <0,1 8,0 <0,1 <0,05 <0,03 0,15 <0,015 <0,05 <0,05 <0,001 <0,1 <0,1	260 <1000 <100 <0,1 <1,0 <0,05 <0,03 0,1 <0,015 <0,05 <0,05 <0,05 <0,01 <0,01 <0,01 <0,01
Somme des 7 PCB Lixiviation Carbone organique total (COT) Sulfates (SO4) Fraction soluble Chlorures (CI) Phénol (indice) Fluorures (F) Cyanures totaux (CN) Métaux lixiviables Antimoine (Sb) Arsenic (As) Baryum (Ba) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Mercure (Hg) Molybdène (Mo) Nickel (Ni)	mg/kg MS	50 000 100 000 25 000 100 000 500 5 5 5 25 300 5 70 100 2 3 30 40	20 000 60 000 15 000 15 000 100 100 100 100 100 100 100 100 100	3 000 12 000 2 400 3 3 30 0,18 1,5 60 0,12 1,5 6 0,03 1,5 1,2	500 1000 4000 800 1 10 0,06 0,5 20 0,04 0,5 2 0,01 0,5 0,5	18000 32000 2450 3 72 0,6 1,5 60 0,5 4 6 0,03 8 1,2		<100 <1000 <1000 <1000 <0,1 13 <0,1 <0,05 <0,03 0,19 <0,015 <0,05 <0,001 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,011 <0,	130 <1000 <0,1 5,0 <0.05 <0.05 <0.05 <0.05 <0.005 <0.005 <0.001 <0.01 <0.01 <0.01	<pre><16,0 300 <1000 <100 <0,1 2,0 </pre> <pre><0,05 <0,03 0,07 <0,015 <0,05 <0,005 <0,001 <0,1 0,27</pre>	65,0 <100 <1000 <1000 <0,1 6,0 <0,1 <0,05 <0,03 0,27 <0,015 <0,05 <0,05 <0,05 <0,05 <0,01 <0,01 <0,1	100 <100 <1000 <100 <0,1 2,0 <0,05 <0,03 0,19 <0,015 0,06 <0,05 <0,05 <0,05 <0,05 <0,01 <0,1 <0,0 <0,0 	69,0 <100 <1000 <1000 <100 <0,1 12 <0,1 <0,05 <0,03 <0,07 <0,015 <0,05 <0,05 <0,001 <0,01 <0,1	91,0 <1000 <1000 <1000 <1000 <0,11 8,0 <0,11 <0,05 <0,03 0,15 <0,05 <0,05 <0,005 <0,005 <0,005 <0,001 <0,01 <0,01	260 <1000 <100 <0,1 <1,0 <0,05 <0,03 0,1 <0,015 <0,05 <0,05 <0,05 <0,05 <0,001 <0,01 <0,01 <0,01

* Valeurs non réglementaires

Teneur dépassant les critères d'admission des terres en ISDD

Teneur dépassant les critères d'admission des terres en ISDND indiqués dans la décision européenne

Teneur dépassant les critères d'admission des ISDI et des filières aménagées dites ISDI+

Teneur dépassant les critères d'admission des ISDI indiqués dans l'Arrêté du 12 décembre 2014

TN+

Valeurs de gestion retenues par GEOLIA

Remblais ou terrain remanié

G220360-001A	CITALLIOS	20
INFOS DIAG	rue Francis de Pressencé – CHÂTENAY-MALABRY (92)	39

Désignation d'échantillon Designation d'échantillon

Indice organoleptique anormal

R = Remblais

TR = Terrain Remanié

TN = Terrain Naturel

CHATENAY MALABRY ILOT 1

T6 0/0.5	T6 1/2	T7 0/0.5	T7 2.5/4	T8 0/0.5	T8 1/2	T9 0/0.5	T9 0.5/1
22-072805-09	22-072805-10	22-072805-11	22-072805-12	22-072805-13	22-072805-14	22-072805-15	22-072805-16
TR ?	TN	TN	TN	TR ?	TN	TR ?	TN

Margine Marg		•	Seuil ISDD	Seuil ISDND	Seuil ISDI +	Seuil ISDI	Seuil TN+	Valeurs de gestion retenues par GEOLIA								
Company Comp	Paramètre										0.5.5	0.1	0.60		2.5	20.6
Margin M	Matière sèche Carbone organique total (COT)	1	60 000	50 000	30 000	30 000	60 000						,		,	,
The content of the co	I I' I I MCT C10 C				•		•				•			•		•
Company Comp	• ` /		50 000	2500**	500	500		100	<20	<20	<20	<20	<20	<20	<20	<20
Proceedings	Hydrocarbures > C10-C12															
Secondary Complete	Hydrocarbures > C16-C21									<20		<20	<20	<20	<20	<20
Management Man	Hydrocarbures > C21-C35															
Standard 1700	Trydrocarbules > C55-C40	mg/kg Wi3			I		1		120	120	120	120	120	\20	120	120
Second Company Compa					1		1	1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	Arsenic (As)	mg/kg MS						40	9,0	26	8,0	21	8,0	19	10	16
The continue	* ' '															
Section Control Cont	Chrome (Cr) total	mg/kg MS						120	27	70	23	21	22	67	24	51
Company								200				,				_
Proceedings	Molybdène (Mo)	mg/kg MS						-	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0
Security																
Company Comp	Sélénium (Se)	mg/kg MS						0,7	1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0
	Zinc (Zn)	mg/kg MS						500	75	20	76	6,0	43	24	34	30
Application													T		Ī	
Selection	1,1-Dichloroéthane 1,1-Dichloroéthylène						-		- /						,	_
A	Dichlorométhane	mg/kg MS						LQ	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
International	Tétrachloroéthylène 1,1,1-Trichloroéthane						-		- /							_
Company March Company March Company March Company March Company March Ma	Tétrachlorométhane	mg/kg MS						LQ	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
All Control	Trichlorométhane Trichloroéthylène				1*	1*	-									
Marie of the control of the contro	Chlorure de vinyle	mg/kg MS				-		LQ	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Page	cis-1.2-Dichloroéthylène trans-1.2-Dichloroéthylène															
Indexes	Somme des COHV			1000*	2*	2*									,	
Indexes	Benzène et aromatiques (CAV - B)	ΓΕΧ)														
The content	Benzène	mg/kg MS													,	
Secretary Secr																
Second Content	m-, p-Xylène	mg/kg MS							<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
September Pert No.	· ·			30*	6	6	6				,				,	
Selection	Cumène	mg/kg MS							<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Company Comp	m-, p-Ethyltoluène Mésitylène															
Second of CAT	o-Ethyltoluène	mg/kg MS							<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Notice arborn arount lique poly vicines (IAP)	Pseudocumène Somme des CAV															
Second Computation Page MS							1	•					1			
Accordant Page No.	Naphtalène)						<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Security	Acénaphtylène															
Proceedings	Fluorène Fluorène														-,	_
Secretal public Pyrish Park No. 1.00 1.	Phénanthrène															
Second Authorithesis Mag MS	Anthracene Fluoranthène (*)														- /	
Paragraph Para	Pyrène														,	
Secure	Chrysène															
Securic Security Project	Benzo(b)fluoranthène (*)															
	Benzo(k)nuorantnene (*) Benzo(a)pyrène (*)											-,			- ,	
Networks New Year	Dibenzo(a,h)anthracène															
CB at 28	Benzo(g,h,i)pérylène											- /			- /	
CS B * 28	Somme des HAP	mg/kg MS	5000	500*	50	50		6	0,20	-/-	-/-	-/-	0,15	-/-	-/-	-/-
CSB # 152	Polychlorobiphényles (PCB)															
CSB of 101	PCB n° 28 PCB n° 52															
CB n° 138	PCB n° 101	mg/kg MS							<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01
CB of 153 mg/kg MS	PCB n° 118 PCB n° 138				 		 									
Somme des 7 PCB	PCB n° 153	mg/kg MS							<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Activation Activation Activation Activation Activate Activation Activate	PCB n° 180 Somme des 7 PCB		50		1	1	1	0.8								
Carbone organique total (COT) mg/kg MS 1000 800 500 500 500 500 410 <16,0 66,0 <16,0 61,0 <16,0 70,0 71		CIVI ga/giii	50		1 1	1	1 1	0,0	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
Sulfates (SO4) mg/kg MS 50 000 20 000 3 000 1000 18000	Carbone organique total (COT)	ma/ka Me	1000	800	500	500	500		410	<16.0	66.0	<16.0	61.0	<16.0	70.0	71.0
Chlorures (Cl)	Sulfates (SO4)														,	
Phénol (indice) mg/kg MS 100	Fraction soluble															
Shorures (F) mg/kg MS 500 150 30 10 72 < 1,0 < 1,0 < 1,0 6,0 14 7,0 12 6,0 3,0	Phénol (indice)		100		3		3				<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Métaux lixiviables Antimoine (Sb)	Fluorures (F)	mg/kg MS			30	10	72		<1,0	<1,0		14		12		3,0
Antimoine (Sb)		CIVI ga/giii	, ,	1	1	<u> </u>	1	1			~0,1	<u> </u>	~0,1	<u> </u>	~0,1	<u> </u>
Arsenic (As) mg/kg MS 25 2 1,5 0,5 1,5 0,05 0,05 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,015 <0,015 <0,015 <0,015 <0,015 <0,015 <0,015 <0,015 <0,015 <0,015 <0,015 <0,015 <0,015 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,0	Métaux lixiviables Antimoine (Sh)	ma/ka MS	5	0.7	0.18	0.06	0.6		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Cadmium (Cd)	Arsenic (As)	mg/kg MS	25	2	1,5	0,5	1,5		0,05	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
Chrome (Cr) mg/kg MS 70 10 1,5 0,5 4 < 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,	Baryum (Ba)	mg/kg MS														
Cuivre (Cu) mg/kg MS 100 50 6 2 6 0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,01 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,01 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	Chrome (Cr)					_								_	,	_
Molybdène (Mo) mg/kg MS 30 10 1,5 0,5 8 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	Cuivre (Cu)	mg/kg MS														
Nickel (Ni) mg/kg MS 40 10 1,2 0,4 1,2 <0,1 0,31 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,	Mercure (Hg) Molybdène (Mo)					_	· ·					,		_		_
Selénium (Se) mg/kg MS 7 0.5 0.3 0.1 0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Nickel (Ni)	mg/kg MS	40	10	1,2	0,4	1,2		<0,1	0,31	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Zinc (Zn) mg/kg MS 200 50 12 4 12 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5	Plomb (Pb) Sélénium (Se)															
mere a evacuation ISDI ISD	Zinc (Zn)					_			<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
	r mere a evacuation								ISDI	ISDI	I ISDI	191)1+	191)1	I ISDI+	ISDI	ISDI

* Valeurs non réglementaires

Teneur dépassant les critères d'admission des terres en ISDD Teneur dépassant les critères d'admission des terres en ISDND indiqués dans la décision européenne X Teneur dépassant les critères d'admission des ISDI et des filières aménagées dites ISDI+

X Teneur dépassant les critères d'admission des terres en ISDI indiqués dans l'Arrêté du 12 décembre 2014

X TN+

X Valeurs de gestion retenues par GEOLIA

Remblais ou terrain remanié

G220360-001A	CITALLIOS	40
INFOS DIAG	rue Francis de Pressencé – CHÂTENAY-MALABRY (92)	40

Tableau 11 : Résultats des analyses sur les sols (Ilot 2)

Désignation d'échantillon						_ 1	T10 0/1	T10 1.5/2	T11 0/0.5	T13 0/0.6	T14 1.5/2	T15 0/1	T16 0/1	T19 0/
N° d'échantillon		CHATEN	AY MALAB	RY LOT 2			22-072805-17	22-072805-18	22-072805-19	22-072805-20	22-072805-21	22-072805-22	22-072805-24	22-072805
ndice organoleptique anormal R = Remblais						1								
TR = Terrain Remanié TN = Terrain Naturel							TR?	TR?	TR ?	R / TR	TN	TR	TR?	TN
	Seuil ISDI	Seuil ISDND	Seuil ISDI +	Seuil ISDI	Seuil TN+	Valeurs de gestion retenues par GEOLIA								
aramètre	Unité													
Matière sèche Carbone organique total (COT)	% mass MB mg/kg MS 60 000	50 000	30 000	30 000	60 000		86,5 1000	85,9 <500	89,2 16000	92,1 11000	91,9 <500	88,6 14000	90,6 6100	91,6 <500
ndice hydrocarbure (HCT) C1														
ndice hydrocarbure (HCT) C10-0	C40 mg/kg MS 50 000	2500**	500	500		100	<20	<20	67	25	<20	120	25	<20
Hydrocarbures > C10-C12 Hydrocarbures > C12-C16	mg/kg MS mg/kg MS						<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20
Hydrocarbures > C16-C21 Hydrocarbures > C21-C35	mg/kg MS mg/kg MS						<20 <20	<20 <20	<20 49	<20 <20	<20 <20	<20 97	<20 <20	<20 <20
Hydrocarbures > C35-C40	mg/kg MS						<20	<20	<20	<20	<20	<20	<20	<20
Métaux, métaux lourds et autre Antimoine (Sb)	es éléments mg/kg MS					1,5	<1,0	<1,0	2	<1,0	<1,0	<1,0	<1,0	<1,0
Arsenic (As) Baryum (Ba)	mg/kg MS mg/kg MS					40 3500	9 47	17 160	60	7 79	25 58	7 79	9 39	5 51
Cadmium (Cd) Chrome (Cr) total	mg/kg MS mg/kg MS					1,5 120	<0,4 12	<0,4 18	<0,4 13	<0,4 14	<0,4 36	0,5 10	<0,4 14	<0,4 15
Cuivre (Cu)	mg/kg MS					200	10	9	14	17	10	20	12	5
Mercure (Hg) Molybdène (Mo)	mg/kg MS mg/kg MS					1	0,1 <1,0	0,1 <1,0	<0,1 <1,0	0,3 <1,0	<0,1 <1,0	0,3 <1,0	<0,1 <1,0	<0,1 <1,0
Nickel (Ni) Plomb (Pb)	mg/kg MS mg/kg MS					60 120	6 39	9 710	9 50	9 52	14 27	7 83	8 19	9
Sélénium (Se)	mg/kg MS mg/kg MS					0,7 500	<1,0 38	<1,0 66	<1,0 110	<1,0 83	<1,0 32	<1,0 110	<1,0 27	<1,0
lydrocarbures halogénés volat														
,1-Dichloroéthane ,1-Dichloroéthylène	mg/kg MS mg/kg MS					LQ LQ	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1
Dichlorométhane	mg/kg MS					LQ	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Fétrachloroéthylène ,1,1-Trichloroéthane	mg/kg MS mg/kg MS					LQ LQ	<0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1
Tétrachlorométhane Trichlorométhane	mg/kg MS mg/kg MS					LQ LQ	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1
Trichloroéthylène Chlorure de vinyle	mg/kg MS mg/kg MS	<u> </u>	1*	1*		LQ LQ	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1
rans-1.2-Dichloroéthylène	mg/kg MS mg/kg MS					LQ LQ	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Somme des COHV	mg/kg MS	1000*	2*	2*		LQ LQ	<0,1 -/-	<0,1 -/-	<0,1 -/-	-/-	<0,1 -/-	<0,1 -/-	-/-	<0,1 -/-
Benzène et aromatiques (CAV														
Benzène Coluène	mg/kg MS mg/kg MS						<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1
Ethylbenzène n-, p-Xylène	mg/kg MS mg/kg MS						<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1
o-Xylène Somme des BTEX	mg/kg MS mg/kg MS	30*	6	6	6		<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Cumène	mg/kg MS	30*	0	0			<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
n-, p-Ethyltoluène Mésitylène	mg/kg MS mg/kg MS						<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1
o-Ethyltoluène Pseudocumène	mg/kg MS mg/kg MS						<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1
Somme des CAV	mg/kg MS						-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
Hydrocarbures aromatiques po Naphtalène	blycycliques (HAP) mg/kg MS				I	1	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,0
Acénaphtylène	mg/kg MS						<0,05	<0,05	0,07	<0,05	<0,05	0,07	<0,05	<0,0:
Acénaphtène Fluorène	mg/kg MS mg/kg MS						<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,0
Phénanthrène Anthracène	mg/kg MS mg/kg MS						0,1 <0,05	<0,05 <0,05	0,49	0,27 0,08	<0,05 <0,05	0,16	<0,05 <0,05	<0,0
Fluoranthène (*) Pyrène	mg/kg MS mg/kg MS						0,37 0,4	0,14 0,12	1,5 1,6	0,56 0,4	<0,05 <0,05	0,51 0,41	0,09	<0,0:
Benzo(a)anthracène	mg/kg MS						0,21	0,07	0,74	0,26	<0,05	0,23	<0,05	<0,0:
Chrysène Benzo(b)fluoranthène (*)	mg/kg MS mg/kg MS						0,17 0,31	0,07 0,17	0,7 1,6	0,26 0,45	<0,05 <0,05	0,27 0,53	<0,05 0,1	<0,0:
Benzo(k)fluoranthène (*) Benzo(a)pyrène (*)	mg/kg MS mg/kg MS						0,13 0,24	<0,05 0,12	0,56 1,1	0,17 0,31	<0,05 <0,05	0,18	<0,05 0,06	<0,0
Dibenzo(a,h)anthracène ndéno(1,2,3,c,d)pyrène	mg/kg MS mg/kg MS						<0,05 0,16	<0,05 0,09	<0,21 0,74	<0,07 0,2	<0,05 <0,05	<0,07	<0,05 <0,05	<0,0
Benzo(g,h,i)pérylène Somme des HAP	mg/kg MS	500*	50	50		6	0,17	0,09	0,74 0,86 10	0,22	<0,05	0,25	<0,05 <0,05 0,32	<0,0
	mg/kg MS 5000	J00*		טכ ו	I .	υ	۷,3	0,07	10	3,4	-/-	2,3	1 0,32	-/-
Polychlorobiphényles (PCB) PCB n° 28	mg/kg MS						<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,0
PCB n° 52 PCB n° 101	mg/kg MS mg/kg MS						<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,0
PCB n° 118 PCB n° 138	mg/kg MS mg/kg MS						<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,0
PCB n° 153 PCB n° 180	mg/kg MS mg/kg MS						<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,0
Somme des 7 PCB	mg/kg MS 50		1	1	1		<0,01 -/-	<0,01	<0,01 -/-	<0,01	<0,01	<0,01 -/-	<0,01	<0,0
Lixiviation Carbone organique total (COT)	mg/kg MS 1000	800	500	500	500		69	35	65	51	16	58	130	140
Sulfates (SO4)	mg/kg MS 50 000	20 000	3 000	1000	18000		320	14000 19000	190	<100	1900	<100	100	<100
raction soluble Chlorures (CI)	mg/kg MS 100 000 mg/kg MS 25 000	60 000 15 000	12 000 2 400	4000 800	32000 2450		1200 <100	<100	1300 <100	<1000 <100	3500 <100	<1000 <100	1200 <100	<100 <100
hénol (indice) luorures (F)	mg/kg MS 100 mg/kg MS 500	150	30	1 10	3 72		<0,1 5	<0,1 9	<0,1 5	<0,1 6	<0,1 <1,0	<0,1 8	<0,1 3	<0,1 <1,0
yanures totaux (CN)	mg/kg MS 5	1						<0,1	<0,1	<0,1			<0,1	
Métaux lixiviables antimoine (Sb)	mg/kg MS 5	0,7	0,18	0,06	0,6		<0,05	<0,05	0,06	<0,05	<0,05	<0,05	<0,05	<0,0
Arsenic (As)	mg/kg MS 25	2	1,5 60	0,5 20	1,5 60		<0,03	<0,03	<0,03 0,25	<0,03	<0,03	<0,03	<0,03	<0,0
Baryum (Ba) Cadmium (Cd)	mg/kg MS 5	1	0,12	0,04	0,5		<0,015	<0,015	<0,015	<0,015	<0,015	<0,015	<0,015	<0,01
Chrome (Cr) Cuivre (Cu)	mg/kg MS 70 mg/kg MS 100	10 50	1,5 6	0,5 2	4 6		<0,05 <0,05	<0,05 <0,05	<0,05 0,06	<0,05 <0,05	<0,05 <0,05	<0,05 0,11	<0,05 0,06	0,06 <0,0
Mercure (Hg) Molybdène (Mo)	mg/kg MS 2 mg/kg MS 30	0,2 10	0,03 1,5	0,01	0,03 8		<0,001 <0,1	<0,001 <0,1	<0,001 <0,1	<0,001 <0,1	<0,001 <0,1	<0,001	<0,001 <0,1	<0,00
Nickel (Ni) Plomb (Pb)	mg/kg MS 40	10	1,3 1,2 1,5	0,4	1,2 1,5		<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Sélénium (Se)	mg/kg MS 7	0,5	0,3	0,1	0,5		<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Zinc (Zn)	mg/kg MS 200	50	12	4	12	1	< 0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	< 0,5

* Valeurs non réglementaires

X Teneur dépassant les critères d'admission des terres en ISDD

X Teneur dépassant les critères d'admission des terres en ISDND indiqués dans la décision européenne

X Teneur dépassant les critères d'admission des ISDI et des filières aménagées dites ISDI+

Teneur dépassant les critères d'admission des terres en ISDI indiqués dans l'Arrêté du 12 décembre 2014

X TN+

X Valeurs de gestion retenues par GEOLIA

Remblais ou terrain remanié

G220360-001A	CITALLIOS	41
INFOS DIAG	rue Francis de Pressencé— CHÂTENAY-MALABRY (92)	41

Tableau 12 : Résultats des analyses sur les sols (agressivité vis-à-vis des bétons)

Désignation d'échantillon						22-072805-03	22-072805-10	22-072805-14	22-072805-21	22-072805-23
N° d'échantillon Paramètre	Unité					T1 1/2	T6 1/2	T8 1/2	T14 1,5/2	T15 3/4
rarametre		Méthode de référence	XA1	XA2	XA3					
Caractéristiques chimiques										
Sulfates total	mg/kg	EN 196-2	≥ 2000 et ≤ 3000	>3000 et ≤ 12000	>12000 et ≤ 24000	280	720	240	2700	<75
Acidité (ml/kg)	ml/kg	DIN 4030-2	>200		ntré dans la ique	5,2	37	<5	29	<5
		XA1 : Environne	ment à faible ag	ressivité chimiqu	ue					
		XA2 : Environne	ment d'agressiv	ité chimique mo	déréé					
		XA3 : Environne	ment à forte agr	ressivité chimiqu	e					

NB : 24 échantillons ont été analysés au total dont 16 sur l'ilot 1 et 8 sur l'ilot 2.

<u>Concernant la pollution</u>, on observe très localement des traces de métaux et de HAP en 2 points sur l'ilot 1 et en 2 autres points sur l'ilot 2, qui sont légèrement supérieures aux valeurs de bruit de fond retenues par GEOLIA.

Les sols en place n'ont pas montré d'anomalie.

<u>Concernant la gestion des terres excavées</u>, on note la présence de fluorures en teneurs supérieures aux seuils d'acceptation en ISDI sur 4 échantillons prélevés sur l'ilot 1 et, pour un échantillon issu de l'ilot 2.

Enfin les analyses d'agressivité vis-à-vis des bétons révèlent des terrains peu agressifs chimiquement.

Problématiques susceptibles d'induire des risques sanitaires et/ou pour l'environnement (A200)	• Présence de HAP et de métaux sur brut dans les remblais (2 points sur l'ilot 1 et 2 points sur l'ilot 2), très légèrement supérieures aux valeurs de bruit de fond retenues par GEOLIA.
Problématiques de gestion des évacuations de terres en filières spécifiques (A260)	 Fluorures dépassant les seuils d'acceptation en ISDI (4 échantillons au droit de l'ilot 1) Fraction soluble et sulfates dépassant les seuils d'acceptation en ISDI (1 échantillon sur l'ilot 2)

G220360-001A	CITALLIOS	42
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	42

6.5. Limite de la méthode

Les sondages ponctuels ne peuvent offrir une vision continue de l'état des terrains du site. Leur implantation et leur densité permettent d'avoir une vision ponctuelle de l'état du sous-sol sans que l'on puisse exclure, entre deux sondages, l'existence d'une anomalie d'extension plus ou moins importante.

7. <u>RECONNAISSANCES COMPLEMENTAIRES SUR LE MILIEU GAZ DU SOL (PRESETATION A230)</u>

Des investigations sur le milieu gaz des sols ont été entreprises au droit de la zone d'étude.

7.1. Nature des investigations

Les prélèvements de gaz du sol permettent de mesurer la concentration des substances volatiles présentes dans l'air du sol et intègrent le dégazage des substances à partir des milieux plus en profondeur.

4 piézairs (2 répartis sur chaque ilot), notés PzaT1, PzaT5, sur l'ilot 1 et PzaT10 et PzaT14, sur l'ilot 2, ont été réalisés au droit de la zone d'étude et descendus jusqu'à 2 m de profondeur afin de caractériser les éléments volatils.

Le plan d'implantation des ouvrages est fourni en Annexe 5.

7.2. Méthode d'investigation

7.2.1. Sondage pour les prélèvements de gaz du sol

Chaque piézair a été équipé dans les sondages réalisés à la tarière mécanique (T1, T5, T10 et T14) en diamètre 90 mm.

Il a été équipé:

- en tube PEHD plein de 0 à 1,5 m,
- en tube PEHD crépiné de 1,5 à 2 m,
- d'un massif filtrant de graviers au niveau du tube crépiné,
- d'une isolation par de la sobranite sur une épaisseur de 0,5 à 1 m mise en place par couche de 10 cm,
- un bouchon en tête étanche.

Un capot hors sol cimenté et un bouchon de tête ont été mis en place afin de protéger chaque piézair des infiltrations éventuelles par des eaux de surface.

Les cuttings ont été collectés et évacués par l'entreprise de forage.

Les coupes des piézairs sont présentées en Annexe 8.

G220360-001A	CITALLIOS	4.4
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	44

7.2.2. Prélèvement des gaz du sol

Chaque prélèvement de gaz du sol a été réalisé :

- à l'aide d'un tube en silicone jetable, descendu à 1 m de profondeur dans l'ouvrage,
- après la purge préalable d'au moins cinq fois le volume d'air théorique (soit environ 3 min de purge à 2 l/min),
- la durée de pompage pour les prélèvements des COHV, des BTEX, du Naphtalène et des Hydrocarbures a été fixée à 180 min, afin d'obtenir des valeurs représentatives vis à vis des valeurs guides de la qualité de l'air intérieur, de l'OMS et du bruit de fond de la région parisienne, tout en respectant les caractéristiques physiques du support choisi (limite de claquage...).

Le débit des pompes de prélèvement a été étalonné aux alentours de 0,5 l/min par le laboratoire WESSLING. Une vérification des débits, avant utilisation et après utilisation, a été réalisée sur site à l'aide d'un débitmètre portatif.

Le tableau ci-dessous récapitule les mesures obtenues et le débit moyen obtenu sur l'ensemble de la période de prélèvement.

La campagne de prélèvement a été réalisée le 27 mai 2022.

Tableau 13 : Prélèvement des gaz du sol

Nom du piézair prélevé	Identification de la pompe de prélèvement WESSLING	Débit mesuré avant utilisation (l/min)	Débit mesuré après utilisation (l/min)	Débit moyen (l/min)
PzaT1	P3-074	0,526	0,517	0,521
PzaT5	P3-076	0,526	0,485	0,506
PzaT10	P3-075	0,527	0,502	0,515
PzaT14	P3-073	0,513	0,525	0,519

Les fiches de prélèvement sont présentées en *Annexe* 9.

7.3. Programme des analyses de gaz des sols

Les analyses chimiques ont été réalisées par le laboratoire WESSLING. Ce laboratoire possède plusieurs agréments du Ministère en charge de l'Environnement et du Ministère du Travail pour procéder aux analyses. Il possède des accréditations reconnues COFRAC pour ses laboratoires étrangers.

G220360-001A	CITALLIOS	15
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	43

Les analyses ont porté, pour les gaz du sol, sur les BTEX, les COHV, les hydrocarbures par la méthode TPHCWG.

L'analyse d'un échantillon « blanc » a également été réalisée afin de vérifier l'absence de contamination des échantillons durant les prélèvements et le transport.

7.4. Résultats des analyses chimiques en laboratoire

Les bordereaux d'analyses sont fournis en Annexe 10.

Les résultats d'analyses des zones de contrôles des tubes sont inférieurs à la limite de quantification du laboratoire, montrant que les tubes de mesure ne sont pas saturés et que les résultats sont représentatifs du milieu au moment du prélèvement.

Les résultats d'analyses de la zone de mesure du blanc sont inférieurs à la limite de quantification du laboratoire, justifiant l'absence de contamination croisée lors du transport des échantillons.

En l'absence de valeurs de gestion génériques, GEOLIA a retenu sur la base des valeurs disponibles, par ordre de priorité, la valeur réglementaire relative à la surveillance de la qualité de l'air intérieur dans certains établissements recevant du public³, la valeur repère de qualité de l'air pour les effets à seuil ou sans seuil du Haut Conseil de la Santé Publique (HCSP), qui fixe des valeurs repères d'aide pour l'aide à la gestion de la qualité de l'air intérieur pour des substances dans l'air des espaces clos (concentrations et échéances à atteindre); les valeurs guides de qualité d'air intérieur (VGA) de l'ANSES et par défaut la valeur de gestion R1/R2/R3 dans les lieux accueillant des enfants et adolescents pour la qualité de l'air intérieur de la méthodologie nationale pour les IEM.

Les valeurs de gestion pour l'air intérieur sont soumises de manière sécuritaire d'un facteur de dilution de 1 pour une dalle détériorée et de 10 pour une dalle en bon état, lorsque nous les comparons à des teneurs dans les gaz de sol.

Ils constituent des valeurs d'analyses de la situation, (en aucun cas de objectifs de remise en état, surtout lorsqu'il s'agit de teneur dans les gaz de sols et non dans l'air intérieur.

Les résultats d'analyse des gaz du sol ont montré l'absence d'anomalie, puisque les teneurs sont inférieures aux valeurs d'analyses de la situation x10 et même inférieures aux valeurs d'analyse de la situation.

Dans le respect de la méthodologie de gestion des Sites et Sols pollués, il est préconisé de réaliser plusieurs campagnes à des saisons différentes.

G220360-001A CITALLIOS
INFOS DIAG rue Francis de Pressencé- CHÂTENAY-MALABRY (92)

46

³ Décret n°2011-1727 du 2 décembre 2011 relatif aux valeurs-guides pour l'air intérieur pour le formaldéhyde et le benzène, intégré au code de l'environnement (Art.R.221-29-I et II, Sous-section 2 de la section 5 du chapitre Ier du titre II du livre II, partie réglementaire)

Tableau 14 : Concentrations en $\mu g/m^3$ mesurées dans les piézairs

NO 314 -1411			22 002100 01	22 002100 02	22 002100 02	22 002100 04
N° d'échantillon Désignation d'échantillon	+		22-082188-01 PzaT1	22-082188-02 PzaT5	22-082188-03 PzaT10	22-082188-04 PzaT14
Designation d'echantillon			rza I I	rza15	FZ3 1 10	rza 114
		Valeurs de gestion				
Paramètre	Unité	retenues par				
		GEOLIA pour une				
		dalle neuve (μg/m³)				
Hydrocarbures aliphatiques et aromatiques	,					
Hydrocarbures aromatiques C6-C7	μg/m ³		10,65	<10,99	<10,80	<10,70
Hydrocarbures aromatiques C7-C8	μg/m³		17,04	<10,99	14,04	<10,70
Hydrocarbures aromatiques C8-C9	μg/m ³	2 000	25,57	15,39	11,88	620,85
Hydrocarbures aromatiques C9-C10	μg/m ³		21,31	16,49	<10,80	14,99
Hydrocarbures aromatiques C10-C11	μg/m ³	2 000	10,65	<10,99	<10,80	<10,70
Hydrocarbures aromatiques C11-C12	μg/m ³		10,65	<10,99	<10,80	<10,70
Hydrocarbures aromatiques C12-C13	μg/m ³		10,65	<10,99	<10,80	<10,70
Hydrocarbures aromatiques C13-C14	μg/m³	2 000	10,65	<10,99	<10,80	<10,70
Hydrocarbures aromatiques C14-C15	μg/m ³		10,65	<10,99	<10,80	<10,70
Hydrocarbures aromatiques C15-C16	μg/m³		10,65	<10,99	<10,80	<10,70
Indice Hydrocarbures Aromatiques C6-C16	μg/m³	-	63,92	<54,95	<53,99	642,26
Hydrocarbures aliphatiques C5-C6	μg/m³	180 000	53,27	<54,95	<53,99	<53,52
Hydrocarbures aliphatiques C6-C7	μg/m³	180 000	53,27	<54,95	<53,99	<53,52
Hydrocarbures aliphatiques C7-C8	μg/m³	100 000	53,27	<54,95	<53,99	<53,52
Hydrocarbures aliphatiques C8-C9	μg/m³	10 000	53,27	<54,95	<53,99	<53,52
Hydrocarbures aliphatiques C9-C10	μg/m³	10 000	127,84	108,80	118,78	<53,52
Hydrocarbures aliphatiques C10-C11	μg/m³	10 000	149,14	164,85	<53,99	57,80
Hydrocarbures aliphatiques C11-C12	μg/m³	10 000	159,80	285,75	226,76	171,27
Hydrocarbures aliphatiques C12-C13	μg/m³		53,27	<54,95	<53,99	<53,52
Hydrocarbures aliphatiques C13-C14	μg/m³	10 000	53,27	<54,95	<53,99	<53,52
Hydrocarbures aliphatiques C14-C15	μg/m³	10 000	53,27	<54,95	<53,99	<53,52
Hydrocarbures aliphatiques C15-C16	μg/m³		53,27	<54,95	<53,99	<53,52
Indice Hydrocarbures Aliphatiques C5-C16	μg/m³	-	426,12	560,50	345,54	267,61
Composés Organiques Halogénés Volatils (C	OHV)	T		ī		1
Chlorure de vinyle	μg/m³	26	<2,13	<2,20	<2,16	<2,14
1,1-Dichloroéthylène	μg/m³		<2,13	<2,20	<2,16	<2,14
Dichlorométhane	μg/m ³	100	<2,13	<2,20	<2,16	<2,14
trans-1,2-Dichloroéthylène	μg/m³		<2,13	<2,20	<2,16	<2,14
1,1-Dichloroéthane	μg/m³		<2,13	<2,20	<2,16	<2,14
cis-1,2-Dichloroéthylène	μg/m³	600	<2,13	<2,20	<2,16	<2,14
Trichlorométhane	μg/m³	630	<2,13	<2,20	<2,16	<2,14
Tétrachlorométhane	μg/m ³	1100	<2,13	<2,20	<2,16	<2,14
1,1,1-Trichloroéthane	μg/m ³	10 000	<2,13	<2,20	<2,16	<2,14
Trichloroéthylène	μg/m³	100	<2,13	<2,20	<2,16	<2,14
Tétrachloroéthylène	μg/m ³	2 500	<2,13	<2,20	<2,16	<2,14
Somme des COHV	μg/m³	-	-/-	-/-	-/-	-/-
Benzène et aromatiques (CAV - BTEX)	. 3	20	212	-2.22	211	1
Benzène	μg/m ³	20	<2,13	<2,20	<2,16	<2,14
Toluène	μg/m ³	200 000	17,04	6,59	14,04	8,88
Ethylbenzène	μg/m ³	15 000	2,98	<2,20	<2,16	41,75
m-, p-Xylène	μg/m ³	1 000	13,85	8,02	7,13	256,90
o-Xylène	μg/m ³		8,42	6,04	3,24	331,83
Cumène	μg/m ³		<2,13	<2,20	<2,16	7,17
m-, p-Ethyltoluène	μg/m³		6,82	5,06	3,67	3,10
1,3,5-Triméthylbenzène (Mésitylène)	μg/m ³		2,24	2,42	<2,16	<2,14
o-Ethyltoluène	μg/m ³		<2,13	<2,20	<2,16	<2,14
1,2,4-Triméthylbenzène (Pseudocumène)	μg/m ³		9,06	6,81	4,00	3,10
Naphtalène	μg/m³	100	<2,13	<2,20	<2,16	<2,14
Somme des CAV	μg/m³	-	60,40	34,95	32,07	652,75

G220360-001A	CITALLIOS	47
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	4/

8. <u>INTERPRETATION DES RESULTATS ET SCHEMA CONCEPTUEL</u> (PRESTATION A270)

8.1. Synthèse des résultats de l'ensemble des investigations

L'ensemble des investigations réalisées au droit du site a mis en évidence :

- au sein des remblais et/ou terrains remaniés, la présence ponctuelle d'anomalies en métaux et en HAP,
- des dépassements des critères d'acceptation des ISDI sur 4 échantillons de l'ilot 1 pour les fluorures et sur 1 échantillon de l'ilot 2 pour la fraction soluble et les sulfates.
- l'absence d'anomalie dans l'air du sol.

8.2. Elaboration du schéma conceptuel

Un schéma conceptuel de fonctionnement du site a été établi sur la base des résultats des investigations et du projet présenté.

Les sources, les cibles et les voies de transfert prises en compte sont les suivantes :

• Les sources / pollutions :

Les sources/pollutions au droit du site sont représentées par les remblais/terrains remaniés avec localement des anomalies en HAP et métaux sur brut notamment au droit des espaces verts.

• Les cibles :

Pour rappel, le projet d'aménagement consiste à construire des bâtiments de logements collectifs avec un sous-sol, de réhabiliter une partie des bâtiments existants et d'aménager des jardins sur pleine terre.

Les cibles seront constituées par les adultes et les enfants résidents.

• Transfert et voies d'exposition :

Le risque est lié à un potentiel transfert de la source vers les cibles.

Dans le cas présent, il est lié à la présence de remblais avec des anomalies susceptibles d'induire un risque par ingestion au droit des espaces verts sur pleine terre.

Site

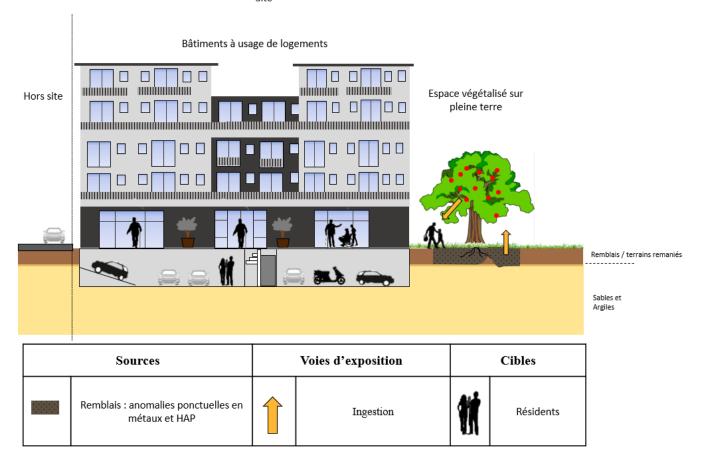


Figure 9 : Schéma conceptuel (projet)

G220360-001A	CITALLIOS	40
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	49

9. CONCLUSIONS ET PRECONISATIONS

9.1. Contexte environnemental

Dans le cadre d'un projet d'aménagement immobilier, CITALLIOS a missionné GEOLIA pour la réalisation d'un diagnostic initial sur les terrains correspondant aux ilots 1 et 2 de la cité jardin de la Butte Rouge à Chatenay-Malabry (92).

Dans le cadre du projet immobilier, il est prévu la construction de nouveaux bâtiments de logements avec des sous-sols, la réhabilitation d'une partie des bâtiments existants et l'aménagements d'espaces verts. Les caractéristiques exactes du projet ne sont pas connues à ce stade.

La cité jardin a été construite au cours des années 1930. Le site a précédemment été occupé par des terrains boisés ou agricoles. Aucune source ou activité potentielle de pollution n'a été identifiée au droit du site.

Afin d'obtenir un premier aperçu de la qualité des terrains superficiels et semi profonds, 16 sondages descendus à 2 et 4 m de profondeur ont été répartis sur les deux ilots (9 sondages sur l'ilot 1 et 7 sondages sur l'ilot 2). Ils ont mis en évidence des terrains sableux et limoneux superficiels (jusque vers 0,5 à 1 m de profondeur) pouvant correspondre à des remblais et/ou à des terrains remaniés. Les sols en place correspondent à des argiles à meulière et à des sables.

Les analyses ont montré (au sein des remblais/terrains remaniés superficiels), la présence d'anomalies ponctuelles en métaux sur brut et/ou en HAP.

Afin de caractériser les milieux plus en profondeur, 4 piézairs ont été installés à 2 m de profondeur (2 répartis sur l'ilot 1 et 2 autres sur l'ilot 2). Les analyses n'ont pas montré d'anomalie susceptible d'induire des risques par inhalation.

9.2. Evaluation des risques

L'objectif est de caractériser le risque associé à l'usage du site et, le cas échéant, de donner les recommandations pour la poursuite du projet.

Le principe de l'évaluation des risques repose sur les 3 éléments suivants : source – transfert – cible.

Dans le cas présent, les risques potentiels à prendre en compte sont les potentiels risques par ingestion au droit des jardins sur pleine terre. Ils sont liés à la présence de remblais/terrains remaniés avec des anomalies modérées en HAP et en métaux sur brut.

Il conviendra de faire de nouvelles analyses plus ciblées sur les zones d'espaces vert ou non recouvertes dans le cadre du nouveau projet pour statuer sur les risques pour les futurs occupants.

G220360-001A	CITALLIOS	50
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	30

9.3. Gestion des terres des sous-sols

9.3.1. Evacuation des terres

Sur la base des investigations et selon le projet retenu, il conviendra de trier et d'évacuer l'ensemble des terres vers les filières adaptées (ISDI, filière aménagée ISDI+ pour les terres avec des teneurs en fluorures supérieures aux seuils de l'arrêté du 12/12/2014, carrière sulfatée pour les terres avec des teneurs en fraction soluble et sulfates supérieures aux seuils de l'arrêté du 12/12/2014).

Nous rappelons qu'il est toujours possible, lors des terrassements, de rencontrer des pollutions fortuites ou des terrains impactés nécessitant des adaptations. Le cas échéant, il conviendra de nous consulter.

9.3.2. Réutilisation des terres

Les remblais/terres remaniées du site avec des anomalies ne sont pas considérés comme des terres banalisables et ils devront faire l'objet d'une évacuation vers une filière adaptée dans le cadre de leur terrassement.

Les sols en place du site qui ne présentent pas d'anomalie pourront être réutilisées sur site ou hors site, sous réserve d'un contrôle exercé par un Maitre d'œuvre spécialisé et du besoin du chantier.

Nous rappelons que les terres acceptées en ISDI ne sont pas systématiquement des terres banalisables et que leur réutilisation éventuelle doit être vérifiée et justifiée.

9.4. Recommandations pour la suite du projet

Selon les besoins du projet et de la localisation des aménagements, des reconnaissances ciblées seront nécessaires. Elles permettront de préciser les mesures de gestion vis-à-vis des éventuels risques sanitaires et de préciser la qualité des terres à évacuer en filière, les volumes et les surcouts associés.

10. <u>LIMITATIONS DU RAPPORT</u>

Le rapport remis est rédigé à l'usage exclusif de CITALLIOS. Il est établi sur la base des connaissances techniques, réglementaires et scientifiques connues au moment de sa rédaction.

Il s'inscrit dans le cadre d'un projet défini et ne concerne pas la gestion du site dans le cadre de son usage actuel.

Toute modification du projet doit entrainer une adaptation des conclusions voire des reconnaissances complémentaires.

Nous restons à la disposition du Maître d'Ouvrage pour lui fournir tout renseignement complémentaire qu'il pourrait juger utile concernant les résultats et les conclusions de notre étude, ainsi que pour lui proposer une mission de conseil pour la suite du projet.

52

ANNEXE 1:

REGLEMENTATION ET NORMES RELATIVES AUX SITES ET SOLS POLLUES

Cette annexe contient 5 pages

G220360-001A	CITALLIOS	Ammayra
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	Annexe

Réglementations et normes environnementales

Cadre juridique:

Le Code de l'environnement constitue la base réglementaire sur laquelle s'appuie la politique de gestion des sites et sols pollués :

- Code de l'Environnement, livre V, titre I, relatif aux Installations Classées,
- Code de l'Environnement, livre V, titre IV, relatif aux déchets,

Méthodologie nationale:

La méthodologie nationale de gestion des sites et sols pollués s'articule autour des textes suivants :

- Note ministérielle du 19/04/2017 relative aux sites et sols pollués Mise à jour des textes méthodologiques de gestion des sites et sols pollués de 2007 et documents associés :
 - Introduction à la méthodologie nationale de gestion des sites et sols pollués.
 - Méthodologie nationale de gestion des sites et sols pollués.
- Circulaire du 8/02/2007 relative aux Installations Classées Prévention de la pollution des sols. Gestion des sols pollués
- Circulaire du 8/02/2007 relative à l'implantation sur des sols pollués d'établissements accueillant des populations sensibles.

Norme s'appliquant aux prestataires de services dans le domaine des sites et sols pollués :

Les Normes NF X 31-620 de décembre 2018 parties 1 à 5, portant sur les prestations de services relatives aux sites et sols pollués, définissent et décrivent les exigences dans les domaines des prestations d'études, d'assistance et de contrôle (domaine A), les prestations d'ingénierie des travaux de réhabilitation (domaine B), les prestations d'exécution des travaux de réhabilitation (domaine C) et les prestations d'attestation de la prise en compte des mesures de gestion de la pollution des sols et des eaux souterraines dans la conception des projets de construction ou d'aménagement (domaine D).

Les tableaux suivants décrivent la codification des prestations des domaines A et D qui s'appliquent aux activités de GEOLIA.

$\ \, \textbf{Codification des offres globales de prestation-Domaine A} \\$

Code	Offres globales de prestations	Objectifs
AMO Etudes	Assistance à maitrise d'ouvrage (AMO)	Assister et conseiller son client pendant tout ou partie de la durée du projet
LEVE	Levée de doute pour savoir si un site relève ou non de la méthodologie nationale des sites pollués	Identifier les sites qui n'ont pas été pollués par des activités industrielles et /ou de service (sites industriels, zones de stockage, décharges, etc), ou par des activité d'épandage des effluents ou de déchets.
INFOS	Réalisation des études historiques, documentaires et de vulnérabilité afin d'élaborer un schéma conceptuel et, le cas échéant, un programme prévisionnel d'investigations	Elaborer un schéma conceptuel et, le cas échéant, un programme prévisionnel d'investigations. Cette étude est réalisée dès lors que le site relève de la méthodologie nationale de gestion des sites pollués.
DIAG	Mise en œuvre d'un programme d'investigations et interprétation des résultats	Identifier ou caractériser les sources potentielles de pollution, caractériser l'environnement local témoin, caractériser les vecteurs de transfets, caractériser les milieux d'exposition d'une population, obtenir les éléments nécessaires à la réalisation d'un projet.
PG	Plan de gestion dans le cadre d'un projet de réhabilitation ou d'amènagement d'un site	Définir les modalités de réhabilitation et d'amènagement d'un site pollué. Supprimer ou, à défaut, maîtriser les sources de pollution et leurs impacts
IEM	Interprétation de l'état des milieux	Distinguer les milieux avec des usages déjà fixés qui : - ne nécessitent aucune action particulière; - peuvent faire l'objet d'actions simples de gestion pour rétablir la compatibilité entre l'état des milieux et leurs usages constatés; nécessitent la misen en oeuvre d'un plan de gestion.
SUIVI	Surveillance environnementale	Recommander les actions appropriées à mener en cas de constat d'anomalies au cours des campagnes de suivi
BQ	Bilan quadriennal	Décider de la pertinence de la poursuite (avec ou sans adaptation) ou de l'arrêt d'une surveillance environnementale à l'issue d'une période de 4 ans
CONT	Contrôles : - de la mise en oeuvre du programme d'investigation ou de surveillance - de la mise en œuvre des mesures de gestion	Vérifier la conformité des travaux d'exécution des ouvrages d'investigations ou de surveillance. Contrôler, au fur et à mesure de leur avancement, que les mesures de gestion (opérations de dépollution, réalisation des aménagements, etc.)sont réalisées conformément aux dispositions prévues.
XPER	Expertise dans le domaine des sites et sols pollués	Réaliser une revue critique de l'intégralité du dossier ou répondre à des questions spécifiques.
VERIF	Vérifications en vue d'évaluer le passif environnemental lors d'un projet d'acquisition d'une entreprise	Identifier les activités passées et actuelles et les impacts associés, identifier les sources de pollution et les substances associées, évaluer le passif environnemental

Codification des offres de prestations élémentaires – Domaine A

Code	Offres de prestations élémentaires	objectifs
	de l'état des milieux	- Carjounia
A100	Visite du site	Procéder à un état des lieux. Il est impératif de visiter le site une ou plusieurs fois, le plus tôt possible dans le déroulement des études, afin : - d'orienter la recherche documentaire, d'en vérifier certaines informations ou de les compléter; - d'orienter la stratégie de contrôle des milieux; - surtout, de dimensionner à leur juste proportion les premières mesures de précaution et de maitrise des risques quand elle sont nécessaires.
A110	Etudes historique, documentaire et mémorielle	Les études historiques, documentaires et mémorielles ont pour but de reconstituer, à travers l'histoire des pratiques industrielles et environnementales du site, d'une part les zones potentiellement polluées et d'autre part les types de polluants potentiellement présents au droit du site concerné. Elles permettent, par ailleurs, d'identifier les restrictions ou contraintes d'usages qui pourraient être imposées aux terrains.
A120	Etude de vulnérabilité des milieux	Cette étude vise à identifier les possibilités de transfert des pollutions et les usages réels des milieux concernés. Les transferts peuvent s'effectuer par exemple par une nappe sous-jacente, par l'air atmosphérique, par les végétaux cultivés, etc. Les usages incluent par exemple les habitations, les établissements recevant du public, les zones agricoles, etc.
A130	Elaboration d'un programme prévisionnel d'investigations	Identifier ou caractériser des sources potentielles de pollution, apporter des éléments de connaissance d'un vecteur de transfert ou d'un milieu, infirmer ou confirmer certaines hypothèses du schéma conceptuel
A200	Prélèvements, mesures observations et/ou analyses sur les sols	
A210	Prélèvements, mesures observations et/ou analyses sur les eaux souterraines	
A220	Prélèvements, mesures observations et/ou analyses sur les eaux superficielles et/ou sédiments	Procéder aux prélèvements, mesures, observations
A230	Prélèvements, mesures observations et/ou analyses sur les gaz du sol	et/ou analyses selon les spécifications des différentes prestations en fonction des milieux
A240	Prélèvements, mesures observations et/ou analyses sur 'air ambiant et les poussières atmosphériques	concernés.
A250	Prélèvements, mesures observations et/ou analyses sur les denrées alimentaires	
A260	Prélèvements, mesures observations et/ou analyses sur les terres excavées ou à excaver	
A270	Interprétation des résultats des investigations	Présenter les résultats et établir les conclusions et préconisations sur les éventuelles suites à donner

Code	Offres de prestations élémentaires objectifs			
Evaluation	des impacts sur les enjeux à protéger			
A300	Analyse des enjeux sur les ressources en eau	Evaluer l'état actuel et à venir d'une ressource en eau dégradée par une pollution ou susceptible de l'être. Définir les actions pour prévenir et améliorer la qualité de la ressource en eau.		
A310	Analyse des enjeux sur les ressources environnementales	Identifier les espèces ou habitats naturels susceptibles d'être affectés par une pollution et définir les mesures de prévention appropriées.		
A320	Analyse des enjeux sanitaires	Evaluer les risques sanitaires en fonction des contextes de gestion.		
A330	Identification des différentes options de gestion possibles et réalisation d'un bilan coût/avantage	Proposer les options de gestion présentant le bilan coût/avantage le plus adapté.		
Autres com	pétences			
A400	Dossiers de restriction d'usage, de servitudes	Décrire les modalités de mise en place de restrictions d'usage ou de servitudes à instaurer à l'issue de la réhabilitation		

Codification de l'offre globale de prestation - Domaine D

Code	Offres globales de prestations	Objectifs
ATTES	gestion de la pollution des sols et des eaux souterraines dans la conception des projets de construction ou d'aménagement	Etablir une attestation garantissant la prise en compte des mesures de gestion de la pollution des sols et des eaux souterraines dans la conception des projets de construction ou d'aménagement affectant un site.

Normes relatives aux prélèvements et à l'échantillonnage des différents milieux :

a. Sols:

- NF ISO 10381-1 Mai 2003 : Qualité du sol Échantillonnage Partie 1 : lignes directrices pour l'établissement des programmes d'échantillonnage
- NF ISO 10381-2 mars 2003 : Qualité du sol Échantillonnage Partie 2 : lignes directrices pour les techniques d'échantillonnage
- NF ISO 10381-3 Mars 2002 : Qualité du sol Échantillonnage Partie 3 : lignes directrices relatives à la sécurité
- NF ISO 10381-5 Décembre 2005 : Qualité du sol Échantillonnage Partie 5 : lignes directrices pour la procédure d'investigation des sols pollués en sites urbains et industriels

b. Gaz du sol

- FD X31-611-1 Juillet 1997 : Qualité du sol Méthodes de détection et de caractérisation des pollutions Partie 1 : guide général pour les analyses des gaz des sols in situ employées en criblage de terrain.
- NF ISO 10381-7 Janvier 2006 Qualité du sol Échantillonnage Partie 7 : lignes directrices pour l'échantillonnage des gaz du sol

c. Eaux souterraines

- FD X31-614 Décembre 2017 : Qualité du sol Méthodes de détection et de caractérisation des pollutions Réalisation d'un forage de contrôle de la qualité de l'eau souterraine au droit d'un site potentiellement pollué.
- FD X31-615 Décembre 2017 : Qualité des sols Méthodes de détection, de caractérisation et de surveillance des pollutions en nappe Prélèvements et échantillonnage des eaux souterraines dans des forages de surveillance.

ANNEXE 2:

FICHE DE VISITE DE SITE

Cette annexe contient 8 pages

Version 5 du 08/02/2022

Représentant GEOLIA	Date de la visite
L. Revel	03/05/22
	1

Personnes rencontrées sur site

Nom	Organisme/Fonction/	Coordonnées (Mail/Tel)

1. LUCALISATION / IDENTIFICATION DU SIT	<u>E</u>
· Adresse du site: avenue Francis d	6 Précenssé
* Adresse du site: avenue Francis de Chateray- Valabry	
Localisation GPS : \square X : / Y :	🔀 Voir rapport
Topographie générale (pente):	v lot 2 descendant ves la
Superficie: 1,5 ha + 1,7 ha	mo-fil
Typologie actuelle du site :	
□ Décharge□ Friche industrielle□ Scolaire□ Agriculture	☐ Commerces Habitations ☐ Site réoccupé ☐ Autres
Population présente :	
□ aucune, □ occasionnelle, ☒ r	égulière
⊠adultes, □ travailleurs, ⊠ e	nfants

Version 5 du 08/02/2022

Conditions d'accès au site :	
☐ Site clôturé et surveillé	☐ Site clôturé et non surveillé
⊠ Site non clôturé mais surveillé	☐ Site non clôturé ni surveillé
2. ENVIRONNEMENT DU SITE	
■ ☐ Agricole	
■ ☐ Forestier Présence d'une zone protégée (ZNI ☐ Non ☐ Sois & Venie ■ ☐ Industriel (désignation)	☐ Voir EDH dans rapport
■ ☐ Commercial	
□ M	abitat collectif aisons individuelles ispersé
Présence de sous-sol, vides sanitais	res 🖾 Oui 🗆 Non
■ Établissements sensibles : crèches,	, parcs, jardins publics, écoles ☐ Voir EDH dans rapport
■ Cours d'eau, plan d'eau, zone inor ☐ Oui	ndable Voir EDH dans rapport
Rayon de voisinage visité: 2 Soc	, m
3. HISTORIQUE DU SITE / DES ACT	TIVITES PRATIQUEES
Activités classées ICPE : Oui N	Non Non renseigné
☐ Déclaration ☐ Enregistrement	☐ Autorisation
■ Nomenclatures □ Voir EDH dans rapport □ Liste (jointe en annexe)	Dates:

Version 5 du 08/02/2022

4.	<u>DESCRIPTIO</u>	N DU S	SITE						
	Voir EDH ou r Plan joint	apport							
	Si connu, sur un plan, préciser l'affectation des locaux, activités, ouvrages, dépôts de déchets, stockages de produits						de		
Inc	liquer les zones	non vis	sitables						
les tra de so	éléments suiv nsformateur, cu déchets, ou to uillées ont été r	vants : u uve aéri- oute aut epérées.	isage, o enne ou re soui	état, type de : u enterrée, zon rce de pollutio	sol, mod le de dép on poten	de de ootag itielle	e chauffage, stock	spaces extérieu age, présence de de produit, stod uer si des zond	de ck
	diquer la présen deries, Incident							nts de terrain,	
Fa	ire des photos (si autor	isation))					
		Car	actéris	tiques des bât	timents	exist	ants		
	Dénominati	on Ty	pe E	tat Dimensio	ons Us	age	Accès	Eventuelle pollution	
X	Voir EDH dan Voir sur plan j Liste n° (joi	oint nte en a	nnexe)	s des installat	ions/sto	ckag	ges/dépot	s	
	Localisation	Type	Etat	Dimensions / volumes	Usage	Su	bstances	Eventuelle pollution	

hon concerne

☐ Voir EDH dans rapport

☐ Liste n°... (jointe en annexe)

☐ Voir sur plan joint

Version 5 du 08/02/2022

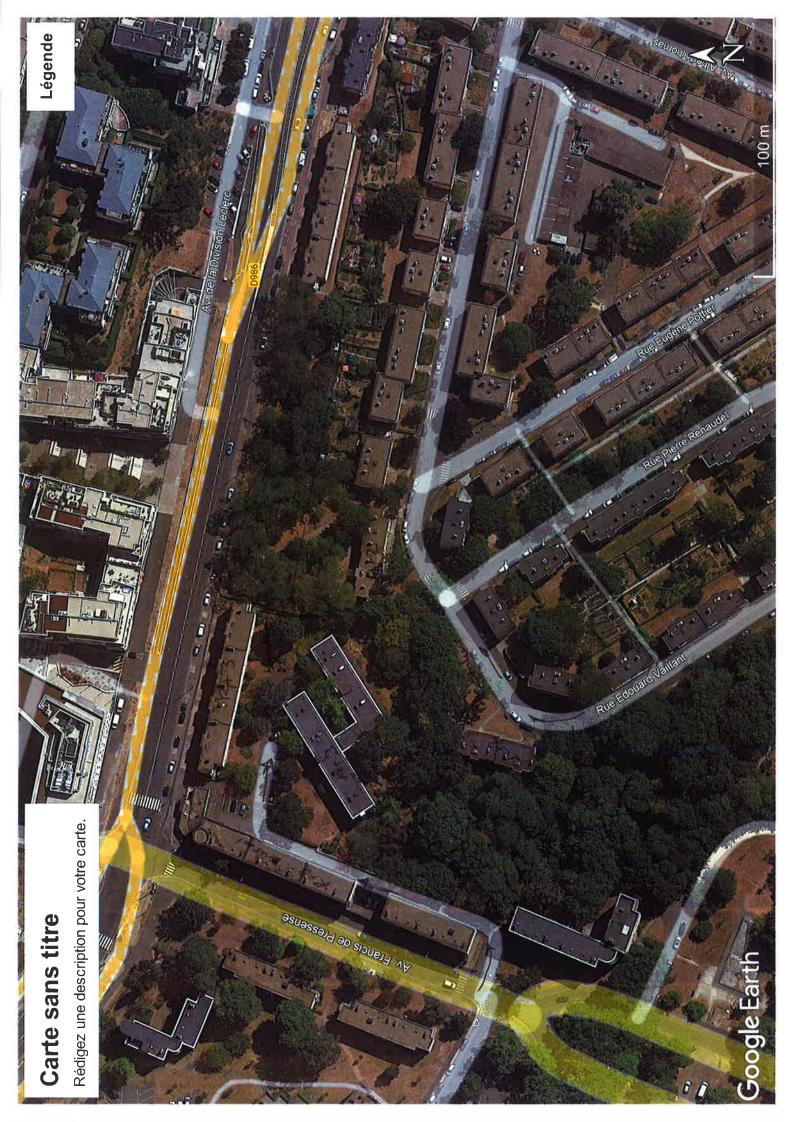
5. MILIEUX SUSCEPTIBLES D'ETRES POLLUES

5.1. Air	,		
Produits volatils cons	statés ou p	ulvérulents	
Source d'émission ga		ussière	☐ Hors site
5.2. Eaux superfi	cielles		
Présence d'un point d Si oui : Distance au si Débit estimé	□ Oui		✓Non
 Rejets extérie 	urs : Oui		□ Non
 Ruissellemen 	ts : □ Oui		□ Non
5.3. Eaux souterr	aines		
Présence d'une nappo		ne > 30 m	□ Non
Captage (AEI	P, AEI) : □ Oui		⊠Non
Ruissellemen	ts □ Oui		ĭ⊠ Non
Données complémen	taires si di	sponibles (profondeur, dé	bit,):
5.4. Sols			
Projet de requalificat	ion à cour Oui	t terme:	□ Non
Indice de pollution d	u sol (végé □ Oui	étation, revêtement, retom	bées atmosphériques) : Non

Version 5 du 08/02/2022

6. <u>MESURES DE MISE EN SECURITE A PRENDRE</u>

	□ Oui		⊠ Non	t.
6.1. \$	Synthèse des pollutions re	ncontrées		
Date	Date Type (atmosphérique, eaux de surface, eaux souterraines, sols) Equipement concerné Origines principa			
A précis	eer			
)		
6.2. I	Mesures prises			
	Action]	Degré d'urgence
Enlèven	nent de fût, bidons, autres d	léchets		
1	œuvre d'un confinement, ces intempéries	l'une protection		
	ment de vides, barriérage			
protection	on des eaux souterraines			
Limitati	on des usages de l'eau			
Restrict	ions des usages du sol			
Autres:				
EN CA	S DE NECESSITE PREVI	ENIR LES AUTO MUNICIPALES	RITES PREF	ECTORALES ET
in.				
Plaintes	existantes concernant l'usa	ige des milieux :	□ Non	ı

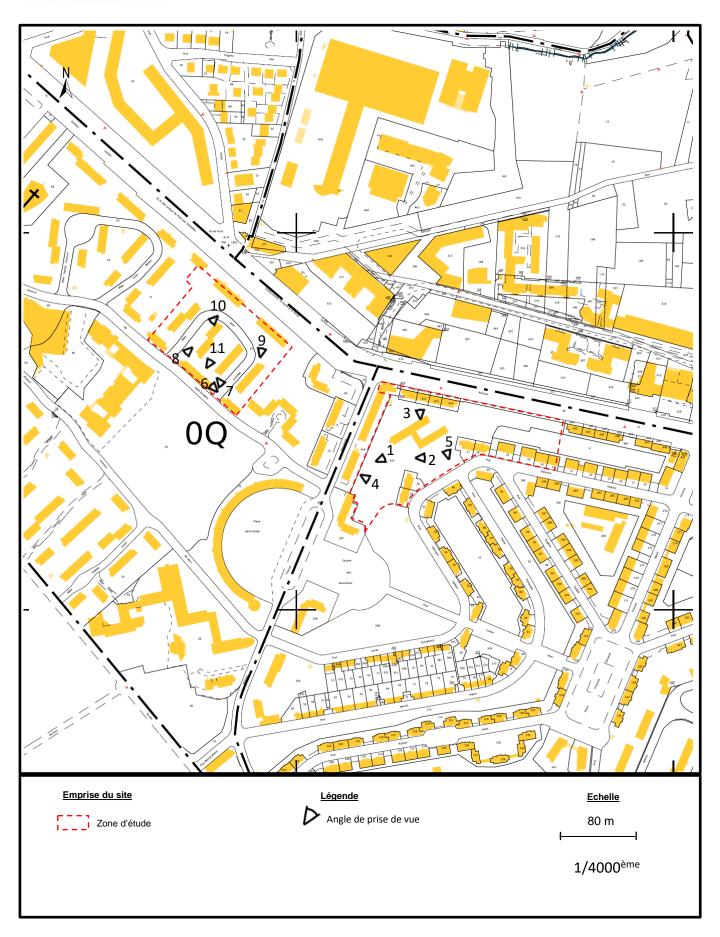

Version 5 du 08/02/2022

7. SCHEMA CONCEPTUEL DU SITE
✓ Voir EDH dans rapport ☐ Voir sur figure/document ci-dessous
Sources
Voies de transfert
Cible
Ou Schéma
A.
v v

8. INFORMATIONS SUPPLEMENTAIRES

ANNEXE 3:

REPORTAGE PHOTOGRAPHIQUE


Cette annexe contient 3 pages

Reportage photographique du site

DOSSIER: G220360 ANNEXE: 03

Adresse: CHATENAY-MALABRY

Reportage photographique du site

DOSSIER : G220360 ANNEXE : 03

Adresse: CHATENAY-MALABRY

llot 2

Vue 1

Vue 2

Vue 3

Vue 4

Vue 5

Reportage photographique du site

DOSSIER : G220360 ANNEXE : 03

Adresse: CHATENAY-MALABRY

llot 1

Vue 6

Vue 7

Vue 8

Vue 9

Vue 10

Vue 11

ANNEXE 4:

PHOTOGRAPHIES AERIENNES

Cette annexe contient 7 pages

G220360-001A	CITALLIOS	A
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	Annexe

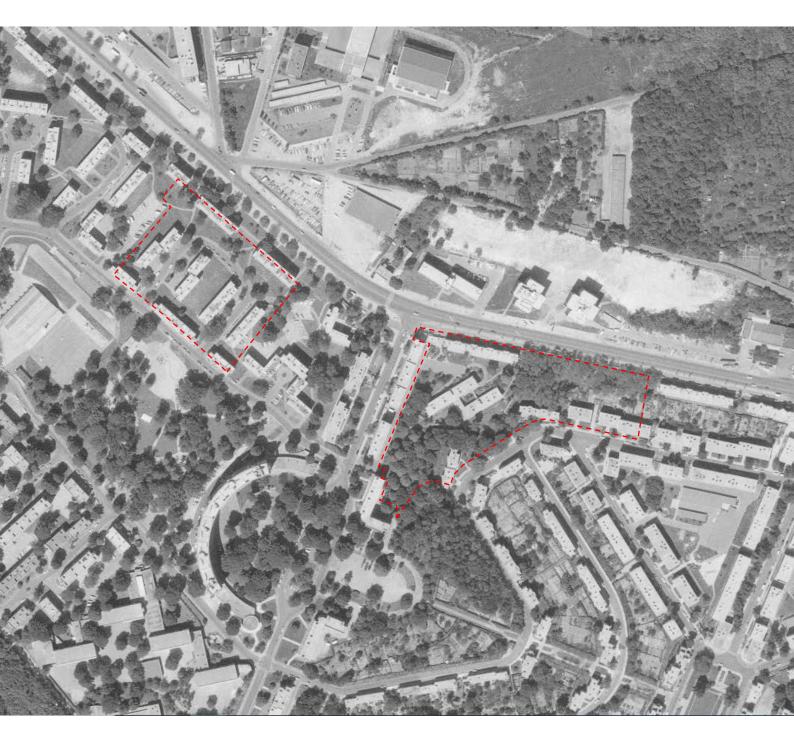
Source : Google Earth

Adresse: CHATENAY-MALABRY

PHOTOGRAPHIES AERIENNES 1/7 2018

Adresse: CHATENAY-MALABRY

PHOTOGRAPHIES AERIENNES 2/7 2004


Source : Google Earth

Adresse: CHATENAY-MALABRY

PHOTOGRAPHIES AERIENNES 3/7 1977

Zone d'étude

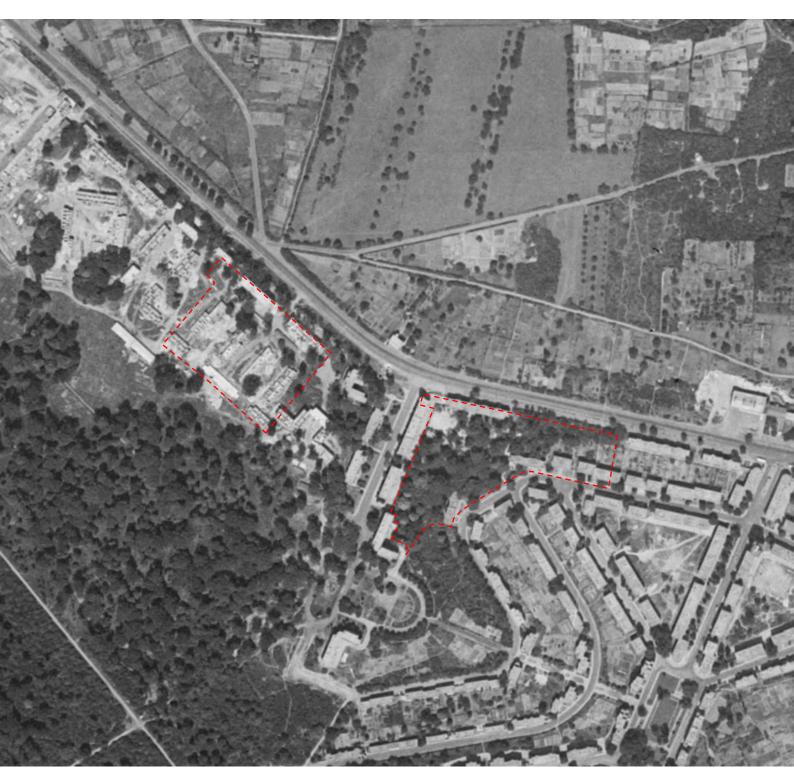
Adresse: CHATENAY-MALABRY

PHOTOGRAPHIES AERIENNES 4/7 1963

Zone d'étude

Adresse: CHATENAY-MALABRY

PHOTOGRAPHIES AERIENNES 5/7 1956


Zone d'étude

Adresse: CHATENAY-MALABRY

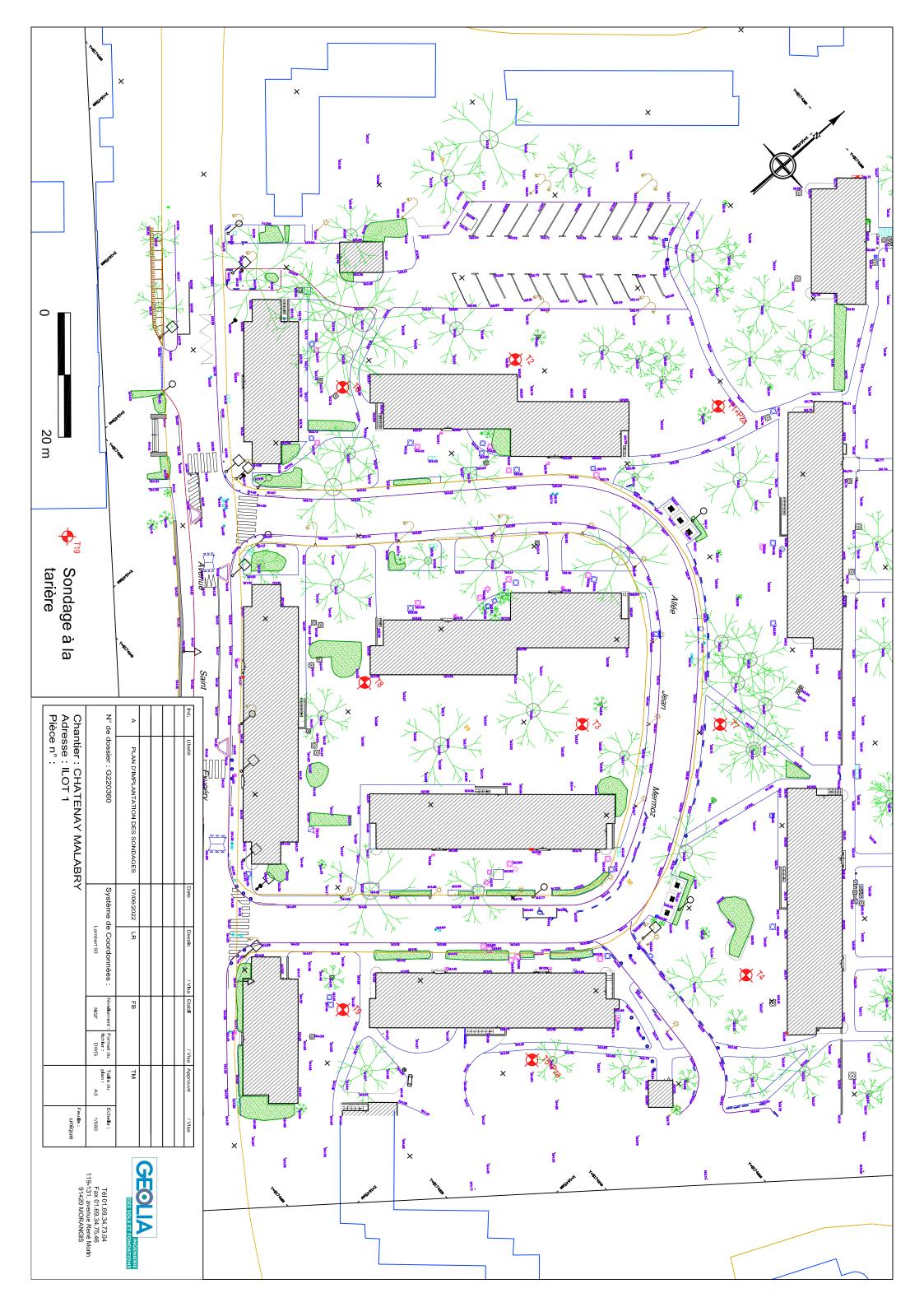
PHOTOGRAPHIES AERIENNES 6/7 1949

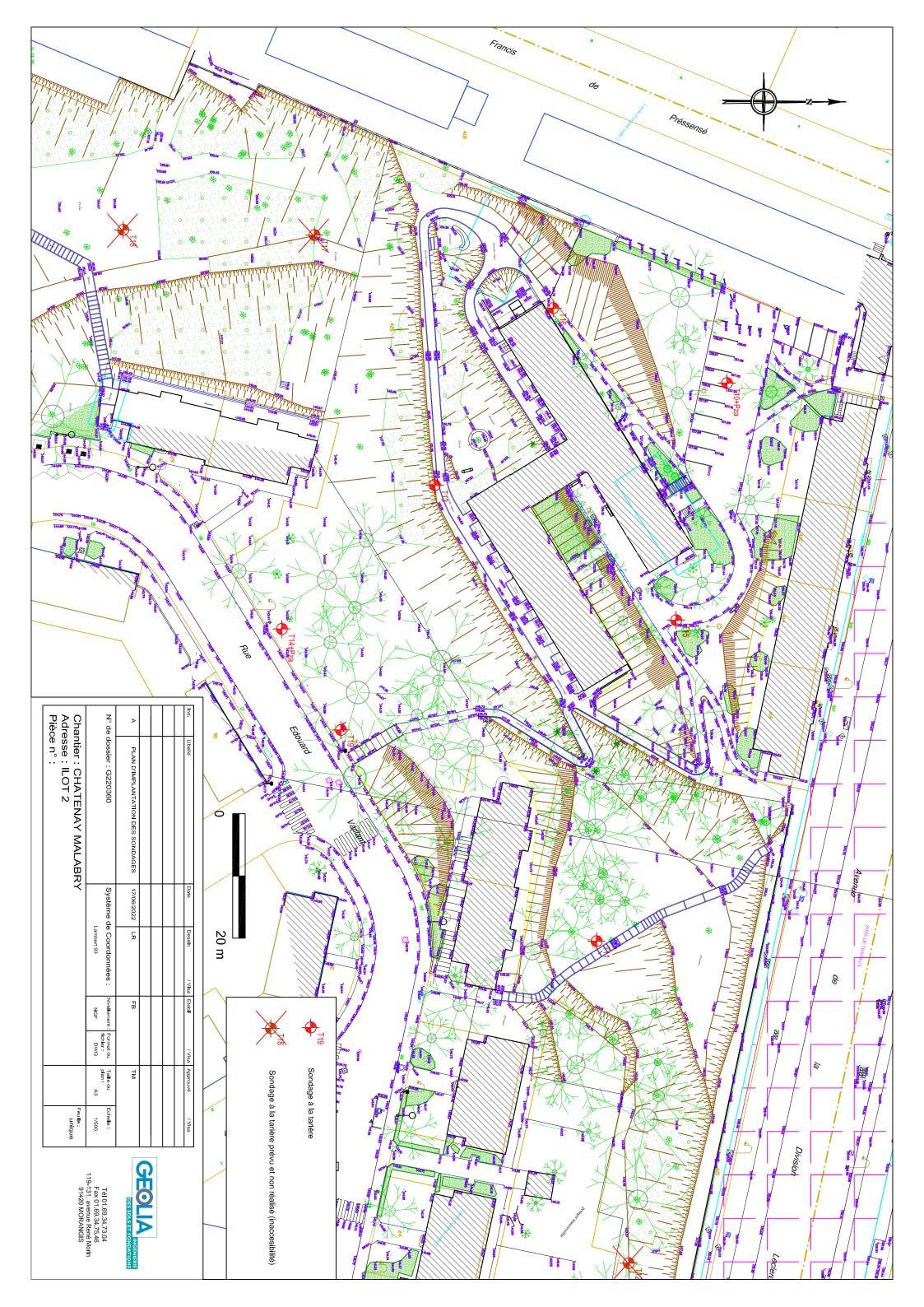

Zone d'étude

Adresse: CHATENAY-MALABRY

PHOTOGRAPHIES AERIENNES 7/7 1931

Zone d'étude




ANNEXE 5:

PLAN D'IMPLANTATION DES SONDAGES

Cette annexe contient 2 pages

G220360-001A	CITALLIOS	Ammaria
INFOS DIAG	rue Francis de Pressencé– CHÂTENAY-MALABRY (92)	Annexe

ANNEXE 6:

COUPES LITHOLOGIQUES DES SONDAGES

Cette annexe contient 16 pages

Date début: 10/05/2022

T1

X : 1645148 ≈ Y : 8174332 ≈

Cote NGF: 162 ≈

Date fin : 10/05/2022 Profondeur: 0,00 - 2,00 m

Inclinaison: 0°

Machine: Socomafor 65

Client: CITALLIOS

1/50

1/1

Cote NGF	Profondeur (m)	Echantillons		Lithologie	PID (mdd)	Signe(s) organoleptique(s) de pollution	Outil	Niveau d'eau	Equipement forage
61,50	0	ECH	RRRR te	s sableux brun clair avec quelques débris de erre cuite et petits résidus d'incinération (Remblais)	0	Petits résidus d'incinération	Æ	nre	iir - Cf. iillée
61,00	1,00 1	ECH	RRRR Sables	n s légèrement limoneux rougeâtres, beaucoup de débris de terre cuite (Remblais)	0		Tarière Ø 90 mm	de mesi	en piéza 1 T1 déta
		ECH		(Remblais) n Argiles à meulière	0		Tarière	Absence de mesure	Equipement en piézair - Cf. coupe Pza T1 détaillée
0,00	2,00 2		2,00 m						Ш
	3—								
	4-								
	_								
	5—								
	6—								
	_								
	7—								
	8-								
	9—								
	10 —								
Obs	servatio	ns:							EXGTE 3.2

Date début: 10/05/2022 Date fin : 10/05/2022

T2

Profondeur: 0,00 - 2,00 m

Cote NGF: 162,7 ≈
X: 1645141 ≈
Y: 8174310 ≈
Inclinaison: 0°

Machine: Socomafor 65

Client: CITALLIOS

1/50

1/1

Lithologie Lithol	Néant
ECH Argiles brun clair et grains de calcaire avec traces orangées 1,00 m CONTINUE CONTINU	Néant
beaucoup de grains de Caicaire 100,70 2,00 3 -	Z
5— 6—	
6—	
6—	
5— 6—	
6-	
6-	
7-	
9—	
10—	

Date début: 10/05/2022 Date fin : 10/05/2022

T3

X : 1645183 ≈ Y:8174314≈ Inclinaison: 0°

Cote NGF: 163,3 ≈

1/50 **Client: CITALLIOS** Machine: Socomafor 65

Cote NGF	Profondeur (m)	Echantillons	Lithologie	PID (mdd)	Signe(s) organoleptique(s) de pollution	Outil	Niveau d'eau	Equipement forage
62,80	0	ECH	R R R R Limon sableux brun clair avec quelque débris de R R R R terre cuite (Remblais)	0.2		E	nre	
62,30	1,00 4	ECH	Argiles brun clair avec grains de calcaire 1,00 m	0.2		Tarière Ø 90 mm	Absence de mesure	Néant
		ECH	Argiles brun clair avec grains de calcaire (un pe plus sec)	u 0.2		Tarière	Absence	2
1,30	2,00 2		2,00 m					
	3—							
	4-							
	5 —							
	6—							
	7—							
	8-							
	9—							
	10 —							
Obs	servatio	ns:						EXGTE 3.23

Date début: 10/05/2022

T4

Date fin : 10/05/2022 Profondeur: 0,00 - 2,00 m

Y:8174331 ≈ Inclinaison: 0°

Cote NGF: 163 ≈

X : 1645212 ≈

Machine: Socomafor 65 Client : CITALLIOS

		oomaioi	or onen: ona					1/1
Cote NGF	Profondeur (m)	Echantillons	Lithologie	PID (mdd)	Signe(s) organoleptique(s) de pollution	Outil	Niveau d'eau	Equipement forage
2,30	0	ECH	R R R R Limons sableux bruns et quelque débris exogène R R R R (silex, petits résidus d'incinération) R R R R R (R (Remblais) (Remblais)	0	Petits résidus d'incinération	mu	saure	
2,00		ECH	Arglies a meuliere brun-orange	0		90 r	e me	Ę
	2,00 2	ECH	1,00 m (本文章文章 1,00 m (本文章文章 2) (本文章文章 2) (本文章文章 2) (本文章文章 2,00 m (本文章文章 2,00 m	0		Tarière Ø 90 mm	Absence de mesure	Néant
.00	2,00 2							
	3—							
	ŭ							
	4-							
	5—							
	6—							
	7—							
	8-							
	0 –							
	9 —							
	10 —							
)he	ervatio	ns:						EXGTE 3.2

Date début: 10/05/2022 Date fin : 10/05/2022

T5

X : 1645220 ≈ Y:8174305≈ Inclinaison: 0°

Cote NGF: 164,2 ≈

Client: CITALLIOS Machine: Socomafor 65

Cote NGF	Profondeur (m)	Echantillons	Lithologie	Old (mdd)	Signe(s) organoleptique(s) de pollution	Outil	Niveau d'eau	Equipement forage
63,70	0,50	ECH	Limons sableux bruns avec débris de terre cuite e rares résidus d'incinération 0,50 m	0	Rares résidus d'incinération	_	<u>le</u>	aillée
3,20	1,00 4	ECH	Argiles brun-orangé avec quelques grains de calcaire	0		Tarière Ø 90 mm	de mesu	ıt en piéz a T5 dét.
		ECH	Argiles rougeâtres compactes avec passées grisâtres et grains de calcaire	0		Tarière	Absence de mesure	Equipement en piézair - Cf.coupe Pza T5 détaillée
2,20	2,00 2		2,00 m					_
	3—							
	4-							
	5—							
	6—							
	7—							
	8-							
	9-							
	10- servatio							EXGTE 3.2

Date début: 10/05/2022 Date fin : 10/05/2022

T6

X : 1645142 ≈ Y : 8174288 ≈ Inclinaison: 0°

Cote NGF: 163,7≈

Client: CITALLIOS Machine: Socomafor 65

achine: So	ocomato	Client : CITALI	.105				1/1
Profondeur (m)	Echantillons	Lithologie	PID (mdd)	Signe(s) organoleptique(s) de pollution	Outil	Niveau d'eau	Equipement forage
0 3,20 0,50	ECH	Limons sableux brun clair avec quelques racines	0				
2,70 1,00	ECH	Argiles sableuses brun clair avec quelques grains de calcaire 1,00 m	0				
1,70 2,00 ₂	ECH	© E◇ E◇ E © E◇ E◇ E © E◇ E◇ E Argiles à meulière brun clair légèrement orangé © E◇ E◇ E © E © E © E © E © E © E © E ©	0		Tarière Ø 90 mm	Absence de mesure	Néant
3 -	- ECH	Argiles à meulière brun clair légèrement orangé avec beaucoup de grains de calcaire (Un peu plus sec)	0		Tarière (Absence	N N
9,70 4,00		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
5 –							
6 –							
7-							
8-							
9 –							
10 –							
Observation	ons:						EXGTE 3.23

Date début: 10/05/2022 Date fin : 10/05/2022

T7

Cote NGF: 162,9 ≈ X : 1645184 ≈ Y:8174329≈ Inclinaison: 0°

Client: CITALLIOS Machine: Socomafor 65

		Jooinaio	Olicht: OliAL					1/1
Cote NGF	Profondeur (m)	Echantillons	Lithologie	PID (mdd)	Signe(s) organoleptique(s) de pollution	Outil	Niveau d'eau	Equipement forage
62,40	0	ECH	Limons sableux bruns clair avec grains de calcair	re 0				
	1,00 4	ECH	♦ Argiles à meulière brunes avec beaucoup de	0				
60,40	2-	ECH	Argiles à meulière brunes légèrement plus orangées avec beaucoup de grains de calcaire	0		Tarière Ø 90 mm	Absence de mesure	Néant
	3-	ECH	Argiles brun-orangé clair	0			4	
8,90	4,00		4,00 m					
	5 —							
	6 —							
	7-							
	8-							
	9 —							
	10 —							
01	servatio							EXGTE 3.2

Date début: 10/05/2022 Date fin : 10/05/2022

T8

X : 1645177 ≈ Y : 8174289 ≈

Cote NGF: 163,6 ≈

Profondeur: 0,00 - 4,00 m

Inclinaison: 0°

Machine: Socomafor 65

Client: CITALLIOS

1/50

1/1

Lithologie Signe(s) Sign	IVIACI		comaro	Olicit : OTALL					1/1	
0	Cote NGF	Profondeur (m)	Echantillons	Lithologie	Old (mdd)	Signe(s) organoleptique(s) de pollution	Outil	Niveau d'eau	Equipement forage	
### ##################################	163,10	0	ECH	0,50 m	0					
Argiles rougeâtres compactes avec grains de calcaire 159,80 4,00 4 4,00 m 4,00 m	162,60	1,00 1	ECH	quelques grains de calcaire	0					
Argiles rougeâtres compactes avec grains de calcaire 159,80 4,00 4 4,00 m 4,00 m			ECH		0		0 mm	mesure		
Argiles rougeâtres compactes avec grains de calcaire 159,80 4,00 4 4,00 m 4,00 m	161,60	2,00 2		2,00 m			8	ge r	ant	
Galcarie ECH 159.60 4,00		3	ECH	Argiles rougeâtres compactes avec grains de	0		Tarière &	Absence	Ϋ́	
159.60 4,00 m 4,00 m 5 -		3_		calcaire						
159.60 4,00 m 4,00 m 5 -			ECH							
6— 7— 8— 9— 10—			ECH		0					
6— 7— 8— 9— 10—	159.60	4.00		4,00 m						
		6— 7— 8—								-ogiciel JEAN LUTZ S.A - www.jeanlutzsa.fr
	Obs	servatio	ns:	L					EXGTE 3.23	Ĺ

Date début: 10/05/2022 Date fin : 10/05/2022

T9

X : 1645213 ≈ Y : 8174285 ≈ Inclinaison: 0°

Cote NGF: 164,4 ≈

Machine: Socomafor 65 **Client: CITALLIOS**

IVIGOI	c. C	ooomarc	51 OO	Oliche: Olizee	.00				1/1
Cote NGF	Profondeur (m)	Echantillons		Lithologie	PID (mdd)	Signe(s) organoleptique(s) de pollution	Outil	Niveau d'eau	Equipement forage
163,90	0	ECH		Argiles limoneuses brun-gris avec rares petits résidus d'incinération 0,50 m	0	Rares résidus d'incinération			
163,40	1,00 1	ECH		Argiles brun-orangé 1,00 m	0				
	2-	ECH			0		Tarière Ø 90 mm	Absence de mesure	Néant
	3-	ECH		Argiles orangées à meulière avec beaucoup de grains de calcaire	0.1		Tarière ƙ	Absence	Ϋ́
160,40		ECH		4,00 m	0.1				
	•								
	5 -								
	6 -								
	7-								
	8 -								
	9 -								
Obs	servati	ons:							EXGTE 3.23
0.00									

Date début: 10/05/2022

Date fin : 10/05/2022

T10

Cote NGF: 157,9 ≈ X : 1645320 ≈

Profondeur: 0,00 - 2,00 m

Y:8174213 ≈ Inclinaison: 0°

Machine: Socomafor 50 Client : CITALLIOS 1/50

Cote NGF	Profondeur (m)	Echantillons	Lithologie	PID (ppm)	Signe(s) organoleptique(s) de pollution	Outil	Niveau d'eau	Equipement forage
157,60	0	ECH	Limons argileux marron avec cailloutis de silex et de calcaire et avec racines (Remblais?) 0,30 m	0		90 mm	e mesure	Equipement en piézair - Cf. coupe Pza T10 détaillée
156,40	1,50		Sables légèrement argileux beige-jaunâtre 1,50 m			Tarière Ø 90 mm	Absence de mesure	pement er upe Pza T
155,90	2,00 2	ECH	Sables argileux marron-orangé avec cailloux et cailloutis de calcaire 2,00 m				4	Equi
	3—							
	4-							
	5 —							
	6 —							
	7—							
	8-							
	9 —							
01	10—							EXGTE 3.23

Date début: 10/05/2022 Date fin : 10/05/2022

T11

Cote NGF: 145,9 ≈ X : 1645393 ≈

Y:8174188≈ Inclinaison: 0°

Client: CITALLIOS Machine: Tarière manuelle

Cote NGF	Profondeur (m)	Echantillons	Lithologie	PID (mdd)	Signe(s) organoleptique(s) de pollution	Outil	Niveau d'eau	Equipement forage
45,40	0,50	ECH	R R R Limons sableux marron avec cailloutis de silex e R R R R de calcaire, terre cuite et petits résidus d'incinération (Remblais)	-	Petits résidus d'incinération	Tarière manuelle	Absence de mesure	Néant
14,90	1,00 1	ECH	0,50 m Limons marron clair	-		Ta	Abse	Ž
	2—							
	3—							
	4-							
	5 —							
	6 —							
	7-							
	8-							
	9—							
	10 —							EXGTE 3.2

Date début: 10/05/2022

T13

Date fin : 10/05/2022 Profondeur: 0,00 - 1,00 m X : 1645325 ≈ Y : 8174164 ≈ Inclinaison: 0°

Cote NGF: 151,1 ≈

Machine: Tarière manuelle Client : CITALLIOS 1/50

Cote NGF	Profondeur (m)	Echantillons	Lithologie		Signe(s) organoleptique(s) de pollution O Riveau d'eau				
150,50	0	ECH	R R R Limons sableux marron avec cailloux et cailloutis R R R R de silex et de calcaire et avec petits résidus d'incinération (Remblais)	-	Petits résidus d'incinération	Tarière manuelle	Absence de mesure	Néant	
150,10	1,00 4	ECH	0,60 m Sables fins jaune-orangé 1,00 m	-		' E	Ab		
	2—								
	4-								
	5 —								
	6 —								
	7—								
	8-								
	9—								
	10 —							EXGTE 3.23	

Date début: 10/05/2022 Date fin : 10/05/2022

T14

Cote NGF: 143,5 ≈ X : 1645348 ≈ Y:8174139≈ Inclinaison: 0°

Client: CITALLIOS Machine: Socomafor 50

viach	ine: So	comato	r 50	Client : CHALLI	US				1/1
Cote NGF	Profondeur (m)	Echantillons		Lithologie	PID (mdd)	Signe(s) organoleptique(s) de pollution	Outil	Niveau d'eau	Equipement forage
	0	ECH		Limons sableux marron clair avec cailloutis de silex et de calcaire (Remblais?)	-		90 mm	Absence de mesure	Equipement en piézair - Cf. coupe Pza T14 détaillée
	1,00 ₁	ECH		1,00 m Limons marron clair	-		Tarière Ø 90 mm	ence de	nent en Pza T1
	1,50	ECH		1,50 m Sables limoneux marron clair avec cailloux et cailloutis de meulière	-		Ta	Abs	Equiper
660	2,00 ₂			2,00 m					
	4								
	5 —								
	6—								
	7—								
	8—								
	9—								
	10 —								
Obs	ervatio	ns:					_		EXGTE 3.2

Date début: 10/05/2022

T15

Date fin : 10/05/2022 Profondeur: 0,00 - 4,00 m X:1645346 ≈ Y:8174203 ≈ Inclinaison: 0°

Cote NGF: 156,6 ≈

Machine: Socomafor 50 Client: CITALLIOS 1/50

										1/1
ECH Limons sableux marron clair à foncé avec califoux et de calcaire et avec petits résidus d'incinération reduce de califoux de silex et de calcaire et avec petits résidus d'incinération reduce de califoux se silex et de calcaire et avec petits résidus d'incinération reduce de califoux de silex et de calcaire et avec petits résidus d'incinération reduce de califoux de silex et de calcaire et avec petits résidus d'incinération reduce de califoux de silex et de calcaire et avec petits résidus d'incinération reduce de califoux de califoux de silex et de calcaire et avec petits résidus d'incinération reduce de califoux de califoux de silex et de calcaire et avec petits résidus d'incinération reduce de califoux de califoux de silex et de calcaire et avec petits reduce de califoux de califoux de silex et de calcaire et avec petits reduce de califoux de califoux de silex et de calcaire et avec petits reduce de califoux de califoux de silex et de califoux d	Cote NGF	Profondeur (m)	Echantillons			PID (mdd)	Signe(s) organoleptique(s) de pollution	Outil	Niveau d'eau	Equipement forage
Sables fins beige-jaunâtre à orangés CH Sables fins beige-jaunâtre à orangés	155,60	0	ECH	R R R R R R R R R R R R R R R R R R R	Limons sableux marron clair à foncé avec cailloux et cailloutis de silex et de calcaire et avec petits résidus d'incinération (Remblais)	-	Petits résidus d'incinération			
10-0 4.00 m		2—	ECH			-		Tarière Ø 90 mm	Absence de mesure	Néant
	152,60	4,00 4	ECH		4,00 m	-				
a— a— b— logiciei JEAN LUTZ S.A - www.jeanlutzsa.fr		5 —								
a— a— b— logiciei JEAN LUTZ S.A - www.jeanlutzsa.fr										
9— Policiel JEAN LUTZ S.A. www.jeanlutzsa.fr		6—								
9— Policiel JEAN LUTZ S.A. www.jeanlutzsa.fr										
about the state of		7_								
		,								
										<u></u>
		8-								anlutzs
										www.ie
		9—								- A.S.
										AN LUT
		10 -								iciel JE
Observations: EXGTE 3.23	Obs		ns:							EXGTE 3.23

Date début: 10/05/2022 Date fin : 10/05/2022

T16

X : 1645296 ≈ Y:8174182≈ Inclinaison: 0°

Cote NGF: 156,2 ≈

Profondeur: 0,00 - 4,00 m

Mach	Machine: Socomafor 50 Client: CITALLIOS 1/50									
Cote NGF	Profondeur (m)	Echantillons		Lithologie	PID (mdd)	Signe(s) organoleptique(s) de pollution	Outil	Niveau d'eau	Equipement forage	
455.00	0	ECH		Limons sableux marron clair avec cailloutis de silex et de calcaire et avec racines (Remblais?)	-					
155,20		ECH		Argiles sableuses marron-orangé avec cailloux et cailloutis de meulière	-		90 mm	mesure	ţ.	
154,20	3-	- ECH		2,00 m Sables fins légèrement argileux beige-jaunâtre à orangés 4,00 m	-		Tarière Ø 90 mm	Absence de mesure	Néant	
	5—									
	6-									
	7-									
	8-									www.jeanlutzsa.fr
	9-	-								Logiciel JEAN LUTZ S.A - www.jeanlutzsa.fr
Obs	10 – servatio	ons:							EXGTE 3.23	Logiciel

Date début: 10/05/2022

T19

Date fin : 10/05/2022 **T**Profondeur: 0,00 - 4,00 m

Cote NGF: 142,9 ≈ X : 1645364 ≈ Y : 8174149 ≈ Inclinaison: 0°

Machine: Socomafor 50 Client : CITALLIOS 1/50

IVIACI		comaio	1 30	Ollett : OTAL	Lioo				1/1	
Cote NGF	Profondeur (m)	Echantillons		Lithologie	PID (mdd)	Signe(s) organoleptique(s) de pollution	Outil	Niveau d'eau	Equipement forage	
141,90	0	ECH		Limons marron clair avec racines	-					
,	2—	- ECH		Sables fins beige-jaunâtre à orangés	-		Tarière Ø 90 mm	Absence de mesure	Néant	
138,90		ECH		4,00 m	-					
	5 —									
	6—									
	7—									
	8-									v.jeanlutzsa.fr
	9—									Logiciel JEAN LUTZ S.A - www.jeanlutzsa.fr
Obs	10 —	ons:							EXGTE 3.23	Logiciel JE/

ANNEXE 7:

BORDEREAU DES ANALYSES DE SOL EN LABORATOIRE

Cette annexe contient 44 pages

G220360-001A	CITALLIOS	Ammayra
INFOS DIAG	rue Francis de Pressencé– CHÂTENAY-MALABRY (92)	Annexe

Accréditation n°1-1364 Portée disponible sur www.cofrac.fr

WESSLING France S.A.R.L. Z.I. de Chesnes Tharabie · 40 rue du Ruisseau BP 50705 · 38297 Saint-Quentin-Fallavier Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56 $labo@wessling.fr \cdot www.wessling.fr\\$

Suivi par :

WESSLING France S.A.R.L, 3 Avenue de Norvège, ZA de Courtaboeuf, 91140 Villebon-Sur-Yvette

GEOLIA Monsieur Laurent REVEL 119/131 Avenue René Morin 91410 MORANGIS

UPA22-022871-1 N° rapport d'essai UPA-06351-22 N° commande Interlocuteur (interne) D. Cardon Téléphone +33 164 471 475

Courrier électronique David.Cardon@wessling.fr

Date 16.06.2022

Rapport d'essai

G220360 - CHATENAY MALABRY

Les résultats ne se rapportent qu'aux échantillons soumis à l'essai et tels qu'ils ont été reçus. Les résultats des paramètres couverts par l'accréditation EN ISO/CEI 17025 sont marqués d'un (A).

La portée d'accréditation COFRAC n°1-1364 essais du laboratoire WESSLING de Lyon (St Quentin Fallavier) est disponible sur le site www.cofrac.fr pour les résultats accrédités par ce laboratoire.

Le COFRAC est signataire des accords de reconnaissance mutuels de l'ILAC et de l'EA pour les activités d'essai.

Les organismes d'accréditation signataires de ces accords pour les activités d'essai reconnaissent comme dignes de confiance les rapports couverts par l'accréditation des autres organismes

d'accréditation signataires des accords des activités d'essai.

Ce rapport d'essai ne peut être reproduit que sous son intégralité et avec l'autorisation des laboratoires WESSLING.
Les laboratoires WESSLING autorisent leurs clients à extraire tout ou partie des résultats d'essai envoyés à titre indicatif sous format excel uniquement à des fins de retraitement, de suivi et d'interprétation de données sans faire allusion à l'accréditation des résultats d'essai

Les données fournies par le client sont sous sa responsabilité et identifiées en italique.

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-01	22-072805-02	22-072805-03	22-072805-04
Désignation d'échantillon	Unité	T1 0/0.5	T1 0.5/1	T1 1/2	T2 0/0.5

Analyse physique

Matières sèches - NF ISO 11465 - Réalisé par WESSLING Lyon (France)

Matière sèche	% masse MB	86,9 (A)	90,0 (A)	93,7 (A)	82,6 (A)
Incertitudes de mesure (k=2; 95%)	% masse wib	± 9%	± 9%	± 8%	± 9%

Paramètres globaux / Indices

Carbone organique total sur mat. solide (combustion sèche) - NF ISO 10694 - Réalisé par WESSLING Lyon (France)

Carbone organique total (COT)	mg/kg MS	12000 (A)	<500 (A)	<500 (A)	11000 (A)
Incertitudes de mesure (k=2; 95%)	rrig/kg ivis	± 6%	± 35%	± 35%	± 6%

Indice Hydrocarbures (C10-C40) (Agitation mécanique, purification au Florisil) - NF EN ISO 16703 - Réalisé par WESSLING Lyon (France)

Indice hydrocarbure C10-C40 Incertitudes de mesure (k=2; 95%)	mg/kg MS	<20 (A) ± 23%	<20 (A) ± 23%	<20 (A) ± 23%	<20 (A) ± 23%
Hydrocarbures > C10-C12	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C12-C16	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C16-C21	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C21-C35	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C35-C40	mg/kg MS	<20	<20	<20	<20

Métaux lourds

Métaux - Méthode interne : METAUX-ICP/MS - Réalisé par WESSLING Lyon (France)

Wetaux - Wethous TitleThe : WETAUX-101 7WG - Treatise pai WEGOLING Lyon (France)									
Chrome (Cr) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	28 (A) ± 20%	81 (A) ± 16%	21 (A) ± 20%	29 (A) ± 20%				
Nickel (Ni) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	14 (A) ± 21%	29 (A) ± 21%	9,0 (A) ± 21%	15 (A) ± 21%				
Cuivre (Cu) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	18 (A) ± 20%	13 (A) ± 20%	6,0 (A) ± 20%	13 (A) ± 20%				
Zinc (Zn) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	56 (A) ± 20%	48 (A) ± 20%	11 (A) ± 20%	66 (A) ± 20%				
Arsenic (As) Incertitudes de mesure (k=2; 95%)	mg/kg MS	13 (A) ± 9%	67 (A) ± 9%	20 (A) ± 9%	11 (A) ± 9%				
Sélénium (Se) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	1,0 (A) ± 12%	2,0 (A) ± 12%	<1,0 (A) ± 12%	<1,0 (A) ± 12%				
Molybdène (Mo) Incertitudes de mesure (k=2; 95%)	mg/kg MS	<1,0 (A) ± 14%	3,0 (A) ± 14%	<1,0 (A) ± 14%	<1,0 (A) ± 14%				
Cadmium (Cd) Incertitudes de mesure (k=2; 95%)	mg/kg MS	<0,4 (A) ± 10%	0,4 (A) ± 10%	<0,4 (A) ± 10%	<0,4 (A) ± 10%				
Antimoine (Sb) Incertitudes de mesure (k=2; 95%)	mg/kg MS	<1,0 (A) ± 10%	1,0 (A) ± 10%	<1,0 (A) ± 10%	<1,0 (A) ± 10%				
Baryum (Ba) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	94 (A) ± 22%	160 (A) ± 22%	31 (A) ± 23%	74 (A) ± 22%				
Mercure (Hg) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	0,1 (A) ± 29%	<0,1 (A) ± 29%	0,1 (A) ± 29%	0,1 (A) ± 29%				
Plomb (Pb) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	48 (A) ± 20%	81 (A) ± 16%	13 (A) ± 20%	37 (A) ± 20%				

Quality of Life

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-01	22-072805-02	22-072805-03	22-072805-04
Désignation d'échantillon	Unité	T1 0/0.5	T1 0.5/1	T1 1/2	T2 0/0.5

Hydrocarbures halogénés volatils (COHV)

Composés organohalogénés volatils - Méthode interne : COHV-HS/GC/MS - Réalisé par WESSLING Lyon (France)

4.4.50.11		0.4.(4)	0.4.(4)	0.4.40	0.4.(1)
1,1-Dichloroéthane	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg me	± 16%	± 16%	± 16%	± 16%
1,1-Dichloroéthylène		<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 23%	± 23%	± 23%	± 23%
Dichlorométhane		<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 30%	± 30%	± 30%	± 30%
Tétrachloroéthylène		<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 28%	± 28%	± 28%	± 28%
1,1,1-Trichloroéthane	manifem MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 20%	± 20%	± 20%	± 20%
Tétrachlorométhane	man/len MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 24%	± 24%	± 24%	± 24%
Trichlorométhane	manifem MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 18%	± 18%	± 18%	± 18%
Trichloroéthylène	man/len MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 27%	± 27%	± 27%	± 27%
Chlorure de vinyle	malka MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 45%	± 45%	± 45%	± 45%
cis-1,2-Dichloroéthylène	malka MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 22%	± 22%	± 22%	± 22%
trans-1,2-Dichloroéthylène	malka MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 21%	± 21%	± 21%	± 21%
Somme des COHV	mg/kg MS	-/-	-/-	-/-	-/-

Benzène et aromatiques (CAV - BTEX)

Benzène et aromatiques - Méthode interne : BTEX-HS/GC/MS - Réalisé par WESSLING Lyon (France)

Benzène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 38%	± 38%	± 38%	± 38%
Toluène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 29%	± 29%	± 29%	± 29%
Ethylbenzène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 18%	± 18%	± 18%	± 18%
m-, p-Xylène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 21%	± 21%	± 21%	± 21%
o-Xylène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 23%	± 23%	± 23%	± 23%
Cumène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 25%	± 25%	± 25%	± 25%
m-, p-Ethyltoluène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 27%	± 27%	± 27%	± 27%
Mésitylène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 30%	± 30%	± 30%	± 30%
o-Ethyltoluène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 29%	± 29%	± 29%	± 29%
Pseudocumène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 28%	± 28%	± 28%	± 28%
Somme des CAV	mg/kg MS	-/-	-/-	-/-	-/-

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-01	22-072805-02	22-072805-03	22-072805-04
Désignation d'échantillon	Unité	T1 0/0.5	T1 0.5/1	T1 1/2	T2 0/0.5

Hydrocarbures aromatiques polycycliques (HAP)

HAP (16) - NF ISO 18287 - Réalisé par WESSLING Lyon (France)

HAP (16) - NF ISO 18287 - Realise par WESS	LING Lyon (France	1			
Naphtalène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 17%	± 17%	± 17%	± 17%
Acénaphtylène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 20%	± 20%	± 20%	± 20%
Acénaphtène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 18%	± 18%	± 18%	± 18%
Fluorène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 19%	± 19%	± 19%	± 19%
Phénanthrène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 18%	± 18%	± 18%	± 18%
Anthracène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,05 (A) ± 19%	<0,05 (A) ± 19%	<0,05 (A) ± 19%	<0,05 (A) ± 19%
Fluoranthène	mg/kg MS	0,17 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 20%	± 20%	± 20%	± 20%
Pyrène	mg/kg MS	0,14 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 21%	± 21%	± 21%	± 21%
Benzo(a)anthracène	mg/kg MS	0,07 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 19%	± 19%	± 19%	± 19%
Chrysène	mg/kg MS	0,07 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 18%	± 18%	± 18%	± 18%
Benzo(b)fluoranthène	mg/kg MS	0,18 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 21%	± 21%	± 21%	± 21%
Benzo(k)fluoranthène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 20%	± 20%	± 20%	± 20%
Benzo(a)pyrène	mg/kg MS	0,10 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 30%	± 30%	± 30%	± 30%
Dibenzo(a,h)anthracène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 32%	± 32%	± 32%	± 32%
Indéno(1,2,3,c,d)pyrène	mg/kg MS	0,09 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 32%	± 32%	± 32%	± 32%
Benzo(g,h,i)pérylène	mg/kg MS	0,08 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 25%	± 25%	± 25%	± 25%
Somme des HAP	mg/kg MS	0,91	-/-	-/-	-/-

Polychlorobiphényles (PCB)

PCB - Méthode interne : HAP-PCB-GC/MS - Réalisé par WESSLING Lyon (France)

PCB n° 28	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 28%	± 28%	± 28%	± 28%
PCB n° 52	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 23%	± 23%	± 23%	± 23%
PCB n° 101	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 24%	± 24%	± 24%	± 24%
PCB n° 118	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 36%	± 36%	± 36%	± 36%
PCB n° 138	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 33%	± 33%	± 33%	± 33%
PCB n° 153	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 37%	± 37%	± 37%	± 37%
PCB n° 180	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 45%	± 45%	± 45%	± 45%
Somme des 7 PCB	mg/kg MS	-/-	-/-	-/-	-/-

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-01	22-072805-02	22-072805-03	22-072805-04
Désignation d'échantillon	Unité	T1 0/0.5	T1 0.5/1	T1 1/2	T2 0/0.5

Préparation d'échantillon

Minéralisation à l'eau régale	- Méthode interne	· MINERALISATION METALIX	- Réalisé par WESSLING Lyon (France)

Minéralisation à l'eau régale	MS	13/05/2022 (A)	13/05/2022 (A)	13/05/2022 (A)	13/05/2022 (A)				
Lixiviation									
Lixiviation - Méthode interne : LIXIVIATION 1X24H - Réalisé par WESSLING Lyon (France)									
Masse totale de l'échantillon	g	71 (A)	120 (A)	95 (A)	74 (A)				
Masse de la prise d'essai	g	21 (A)	20 (A)	21 (A)	20 (A)				
Refus >4mm	g	35 (A)	54 (A)	50 (A)	59 (A)				
pH / Conductivité - NF T 90-008 / NF EN 27888 - Réalisé par WESSLING Lyon (France)									
pH		8,3 à 21,4°C (A)	8,1 à 21,4°C (A)	7,8 à 21,4°C (A)	8 à 21°C (A)				
Conductivité [25°C]	μS/cm	110 (A)	110 (A)	93 (A)	86 (A)				

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-01	22-072805-02	22-072805-03	22-072805-04
Désignation d'échantillon	Unité	T1 0/0.5	T1 0.5/1	T1 1/2	T2 0/0.5

Sur lixiviat filtré

Résidu sec anrès filtration à	105+/-5°C - NF T90-029	 Réalisé par WESSLING Lvon (France) 	nce)
itesidu sec apres ilitiation a	100-7-0 0 - 141 130-023	- Nealise pai WESSElling Lybli (i lai	1001

Résidu sec après filtration	mg/l E/L	<100 (A)	<100 (A)	<100 (A)	<100 (A)			
Incertitudes de mesure (k=2; 95%)		± 15%	± 15%	± 15%	± 15%			
Anions dissous (filtration à 0,2 µm) - Méthode interne : ANIONS - IC - Réalisé par WESSLING Lyon (France)								
Chlorures (CI)	mg/l E/L	<10 (A)	<10 (A)	<10 (A)	<10 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 11%	± 11%	± 11%	± 11%			
Sulfates (SO4) Incertitudes de mesure (k=2 ; 95%)	mg/l E/L	<10 (A) ± 11%	13 (A) ± 11%	30 (A) ± 11%	<10 (A) ± 11%			
Fluorures (F) Incertitudes de mesure (k=2 ; 95%)	mg/l E/L	1,3 (A) ± 9%	0,5 (A)	0,2 (A)	0,6 (A)			
Phénol total (indice) après distillation sur eau /	lixiviat - NF EN IS	O 14402 - Réalisé par WE	ESSLING Lyon (France)					
Phénol (indice)	μg/l E/L	<10 (A)	<10 (A)	<10 (A)	<10 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 15%	± 15%	± 15%	± 15%			
Carbone organique total (COT) - NF EN 1484 -	Réalisé par WESS	SLING Lyon (France)						
Carbone organique total (COT)	mg/l E/L	6,1 (A)	<1,6 (A)	<1,6 (A)	6,5 (A)			
Incertitudes de mesure (k=2; 95%)		± 11%	± 20%	± 20%	± 11%			
Métaux dissous sur eaux / lixiviat (ICP-MS) - N	F EN ISO 17294-2	? - Réalisé par WESSLING	S Lyon (France)					
Chrome (Cr) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	<5,0 (A) ± 24%	<5,0 (A) ± 24%	<5,0 (A) ± 24%	<5,0 (A) ± 24%			
Nickel (Ni)	μg/l E/L	14 (A)	<10 (A)	27 (A)	<10 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 27%	± 27%	± 27%	± 27%			
Cuivre (Cu) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	7,0 (A) ± 43%	<5,0 (A) ± 43%	<5,0 (A) ± 43%	<5,0 (A) ± 43%			
Zinc (Zn)	μg/l E/L	<50 (A)	<50 (A)	<50 (A)	<50 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 17%	± 17%	± 17%	± 17%			
Arsenic (As)	μg/l E/L	<3,0 (A)	<3,0 (A)	<3,0 (A)	<3,0 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 27%	± 27%	± 27%	± 27%			
Sélénium (Se)	μg/l E/L	<10 (A)	<10 (A)	<10 (A)	<10 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 25%	± 25%	± 25%	± 25%			
Cadmium (Cd) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	<1,5 (A) ± 43%	<1,5 (A) ± 43%	<1,5 (A) ± 43%	<1,5 (A) ± 43%			
Baryum (Ba)	μg/l E/L	19 (A)	<5,0 (A)	7,0 (A)	27 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 23%	± 23%	± 23%	± 23%			
Plomb (Pb)	μg/l E/L	<10 (A)	<10 (A)	<10 (A)	<10 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 24%	± 24%	± 24%	± 24%			
Molybdène (Mo)	μg/l E/L	<10 (A)	<10 (A)	<10 (A)	<10 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 23%	± 23%	± 23%	± 23%			
Antimoine (Sb) Incertitudes de mesure (k=2; 95%)	μg/l E/L	<5,0 (A) ± 24%	<5,0 (A) ± 24%	<5,0 (A) ± 24%	<5,0 (A) ± 24%			
Mercure (Hg)	μg/l E/L	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 31%	± 31%	± 31%	± 31%			
Cyanure total sur eau et lixiviat - NF EN ISO 14	4403-2 - Réalisé p	ar WESSLING Lyon (Fran	nce)					
Cyanures totaux (CN) Incertitudes de mesure (k=2; 95%)	mg/l E/L	<0,01 (A) ± 20%			<0,01 (A) ± 20%			

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-01	22-072805-02	22-072805-03	22-072805-04
Désignation d'échantillon	Unité	T1 0/0.5	T1 0.5/1	T1 1/2	T2 0/0.5

Fraction solubilisée

Mercure - (calculé d'éluat à solide (1:10)) - Réalisé par WESSLING Paris (France)

The foliation of the first of t										
Mercure (Hg)	mg/kg MS	<0,001	<0,001	<0,001	<0,001					
Carbone organique total (COT) - (calculé d'éluat à solide (1:10)) - Réalisé par WESSLING Paris (France)										
Carbone organique total (COT)	mg/kg MS	61,0	<16,0	<16,0	65,0					
Sulfates (SO4) - (calculé d'éluat à solide (1:10)) - Réalisé par WESSLING Paris (France)										
Sulfates (SO4)	mg/kg MS	<100	130	300	<100					
Indice Phénol total - (calculé d'éluat à solide (1:	10)) - Réalisé par	WESSLING Paris (France)							
Phénol (indice)	mg/kg MS	<0,1	<0,1	<0,1	<0,1					
Fraction soluble - Calcul d'ap. résidu sec - Réa	lisé par WESSLING	G Paris (France)								
Fraction soluble	mg/kg MS	<1000	<1000	<1000	<1000					
Traction Solubic	mg/kg WO	11000	1000	11000	1000					
Anions dissous - (calculé d'éluat à solide (1:10)) - Réalisé par WE	SSLING Paris (France)								
Fluorures (F)	mg/kg MS	13	5,0	2,0	6,0					
Chlorures (CI)	mg/kg MS	<100	<100	<100	<100					
Cyanure total - (calculé d'éluat à solide (1:10))	- Réalisé par WES	SLING Paris (France)								
Cyanures totaux (CN)	mg/kg MS	<0,1			<0,1					
Métaux sur lixiviat - (calculé d'éluat à solide (1:	10)) - Réalisé par '	WESSLING Paris (France)							
Chrome (Cr)	mg/kg MS	<0,05	<0,05	<0,05	<0,05					
Nickel (Ni)	mg/kg MS	0,14	<0,1	0,27	<0,1					
Cuivre (Cu)	mg/kg MS	0,07	<0,05	<0,05	<0,05					
Zinc (Zn)	mg/kg MS	<0,5	<0,5	<0,5	<0,5					
Arsenic (As)	mg/kg MS	<0,03	<0,03	<0,03	<0,03					
Sélénium (Se)	mg/kg MS	<0,1	<0,1	<0,1	<0,1					
Cadmium (Cd)	mg/kg MS	<0,015	<0,015	<0,015	<0,015					
Baryum (Ba)	mg/kg MS	0,19	<0,05	0,07	0,27					
Plomb (Pb)	mg/kg MS	<0,1	<0,1	<0,1	<0,1					
Molybdène (Mo)	mg/kg MS	<0,1	<0,1	<0,1	<0,1					
Antimoine (Sb)	mg/kg MS	<0,05	<0,05	<0,05	<0,05					

MB : Matières brutes MS : Matières sèches E/L : Eau/lixiviat

Informations sur les échantillons

Date de réception :	10.05.2022	10.05.2022	10.05.2022	10.05.2022
Type d'échantillon :	Sol / remblais	Sol / remblais	Sol / remblais	Sol / remblais
Date de prélèvement :	10.05.2022	10.05.2022	10.05.2022	10.05.2022
Heure de prélèvement :	00:00	00:00	00:00	00:00
Récipient :	2*250ml VBrun WES002	2*250ml VBrun WES002	250ml VBrun WES002	2*250ml VBrun WES002
Température à réception (C°) :	20°C	20°C	20°C	20°C
Début des analyses :	10.05.2022	10.05.2022	10.05.2022	10.05.2022
Fin des analyses :	20.05.2022	20.05.2022	20.05.2022	20.05.2022

Préleveur : MR

< : résultat inférieur à la limite de quantification

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-05	22-072805-06	22-072805-07	22-072805-08
Désignation d'échantillon	Unité	T3 0/0.5	T4 0/0.7	T5 0/0.5	T5 1/2

Analyse physique

Matières sèches - NF ISO 11465 - Réalisé par WESSLING Lyon (France)

Matière sèche	% masse MB	86,8 (A)	87,5 (A)	88,7 (A)	89,3 (A)
Incertitudes de mesure (k=2; 95%)	% masse wib	± 9%	± 9%	± 9%	± 9%

Paramètres globaux / Indices

Carbone organique total sur mat. solide (combustion sèche) - NF ISO 10694 - Réalisé par WESSLING Lyon (France)

Carbone organique total (COT)	ma/ka MS	12000 (A)	14000 (A)	12000 (A)	<500 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 6%	± 6%	± 6%	± 35%

Indice Hydrocarbures (C10-C40) (Agitation mécanique, purification au Florisil) - NF EN ISO 16703 - Réalisé par WESSLING Lyon (France)

Indice hydrocarbure C10-C40 Incertitudes de mesure (k=2; 95%)	mg/kg MS	<20 (A) ± 23%	<20 (A) ± 23%	53 (A) ± 23%	<20 (A) ± 23%
Hydrocarbures > C10-C12	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C12-C16	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C16-C21	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C21-C35	mg/kg MS	<20	<20	26	<20
Hydrocarbures > C35-C40	mg/kg MS	<20	<20	<20	<20

Métaux lourds

Métaux - Méthode interne : METAUX-ICP/MS - Réalisé par WESSLING Lyon (France)

Mictada Mictiodo Interne : MIE 17 to 7 To 17 Mic	Treamed par TV ECCE	Ente Lyon (France)			
Chrome (Cr) Incertitudes de mesure (k=2; 95%)	mg/kg MS	29 (A) ± 20%	30 (A) ± 20%	29 (A) ± 20%	30 (A) ± 20%
Nickel (Ni)	mg/kg MS	14 (A)	22 (A)	12 (A)	5,0 (A)
Incertitudes de mesure (k=2 ; 95%)		± 21%	± 21%	± 21%	± 21%
Cuivre (Cu)	mg/kg MS	13 (A)	23 (A)	19 (A)	3,0 (A)
Incertitudes de mesure (k=2 ; 95%)		± 20%	± 20%	± 20%	± 20%
Zinc (Zn) Incertitudes de mesure (k=2; 95%)	mg/kg MS	49 (A) ± 20%	60 (A) ± 20%	57 (A) ± 20%	<5,0 (A) ± 20%
Arsenic (As) Incertitudes de mesure (k=2; 95%)	mg/kg MS	11 (A) ± 9%	15 (A) ± 9%	14 (A) ± 9%	14 (A) ± 9%
Sélénium (Se)	mg/kg MS	1,0 (A)	<1,0 (A)	<1,0 (A)	<1,0 (A)
Incertitudes de mesure (k=2 ; 95%)		± 12%	± 12%	± 12%	± 12%
Molybdène (Mo)	mg/kg MS	<1,0 (A)	2,0 (A)	<1,0 (A)	<1,0 (A)
Incertitudes de mesure (k=2 ; 95%)		± 14%	± 14%	± 14%	± 14%
Cadmium (Cd)	mg/kg MS	<0,4 (A)	<0,4 (A)	<0,4 (A)	<0,4 (A)
Incertitudes de mesure (k=2; 95%)		± 10%	± 10%	± 10%	± 10%
Antimoine (Sb) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<1,0 (A) ± 10%	1,0 (A) ± 10%	<1,0 (A) ± 10%	<1,0 (A) ± 10%
Baryum (Ba)	mg/kg MS	71 (A)	190 (A)	71 (A)	11 (A)
Incertitudes de mesure (k=2 ; 95%)		± 22%	± 22%	± 22%	± 23%
Mercure (Hg)	mg/kg MS	0,2 (A)	0,2 (A)	0,3 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 29%	± 29%	± 29%	± 29%
Plomb (Pb) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	34 (A) ± 20%	41 (A) ± 20%	63 (A) ± 20%	10 (A) ± 20%

Quality of Life

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-05	22-072805-06	22-072805-07	22-072805-08
Désignation d'échantillon	Unité	T3 0/0.5	T4 0/0.7	T5 0/0.5	T5 1/2

Hydrocarbures halogénés volatils (COHV)

Composés organohalogénés volatils - Méthode interne : COHV-HS/GC/MS - Réalisé par WESSLING Lyon (France)

1,1-Dichloroéthane	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 16%	± 16%	± 16%	± 16%
1,1-Dichloroéthylène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/ng wo	± 23%	± 23%	± 23%	± 23%
Dichlorométhane	malka MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 30%	± 30%	± 30%	± 30%
Tétrachloroéthylène	4 140	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 28%	± 28%	± 28%	± 28%
1,1,1-Trichloroéthane	man/len MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 20%	± 20%	± 20%	± 20%
Tétrachlorométhane	/ MO	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 24%	± 24%	± 24%	± 24%
Trichlorométhane	manifem MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 18%	± 18%	± 18%	± 18%
Trichloroéthylène	man/len MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 27%	± 27%	± 27%	± 27%
Chlorure de vinyle	malka MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 45%	± 45%	± 45%	± 45%
cis-1,2-Dichloroéthylène	man/len MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 22%	± 22%	± 22%	± 22%
trans-1,2-Dichloroéthylène	malka MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 21%	± 21%	± 21%	± 21%
Somme des COHV	mg/kg MS	-/-	-/-	-/-	-/-

Benzène et aromatiques (CAV - BTEX)

Benzène et aromatiques - Méthode interne : BTEX-HS/GC/MS - Réalisé par WESSLING Lyon (France)

Benzène	malka MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 38%	± 38%	± 38%	± 38%
Toluène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 29%	± 29%	± 29%	± 29%
Ethylbenzène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg Mo	± 18%	± 18%	± 18%	± 18%
m-, p-Xylène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg WO	± 21%	± 21%	± 21%	± 21%
o-Xylène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg Mo	± 23%	± 23%	± 23%	± 23%
Cumène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg Mo	± 25%	± 25%	± 25%	± 25%
m-, p-Ethyltoluène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg me	± 27%	± 27%	± 27%	± 27%
Mésitylène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg me	± 30%	± 30%	± 30%	± 30%
o-Ethyltoluène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg Mo	± 29%	± 29%	± 29%	± 29%
Pseudocumène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/ng MO	± 28%	± 28%	± 28%	± 28%
Somme des CAV	mg/kg MS	-/-	-/-	-/-	-/-

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

 N° d'échantillon
 22-072805-05
 22-072805-06
 22-072805-07
 22-072805-08

 Désignation d'échantillon
 Unité
 T3 0/0.5
 T4 0/0.7
 T5 0/0.5
 T5 1/2

Hydrocarbures aromatiques polycycliques (HAP)

HAP (16) - NF ISO 18287 - Réalisé par WESSLING Lyon (France)

Naphtalène	mg/kg MS	<0,05 (A)	<0,05 (A)	0,09 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 17%	± 17%	± 17%	± 17%
Acénaphtylène Incertitudes de mesure (k=2; 95%)	mg/kg MS	<0,05 (A) ± 20%	<0,05 (A) ± 20%	<0,05 (A) ± 20%	<0,05 (A) ± 20%
Acénaphtène	mg/kg MS	<0,05 (A)	<0,05 (A)	0,17 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 18%	± 18%	± 18%	± 18%
Fluorène	mg/kg MS	<0,05 (A)	<0,05 (A)	0,14 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 19%	± 19%	± 19%	± 19%
Phénanthrène	mg/kg MS	<0,05 (A)	0,06 (A)	1,2 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 18%	± 18%	± 18%	± 18%
Anthracène	mg/kg MS	<0,05 (A)	<0,05 (A)	0,28 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 19%	± 19%	± 19%	± 19%
Fluoranthène	mg/kg MS	<0,05 (A)	0,17 (A)	1,2 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 20%	± 20%	± 24%	± 20%
Pyrène	mg/kg MS	<0,05 (A)	0,14 (A)	1,0 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 21%	± 21%	± 17%	± 21%
Benzo(a)anthracène	mg/kg MS	<0,05 (A)	0,08 (A)	0,54 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 19%	± 19%	± 23%	± 19%
Chrysène	mg/kg MS	<0,05 (A)	0,08 (A)	0,51 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 18%	± 18%	± 18%	± 18%
Benzo(b)fluoranthène	mg/kg MS	<0,05 (A)	0,18 (A)	0,70 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 21%	± 21%	± 22%	± 21%
Benzo(k)fluoranthène	mg/kg MS	<0,05 (A)	0,07 (A)	0,27 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 20%	± 20%	± 20%	± 20%
Benzo(a)pyrène	mg/kg MS	<0,05 (A)	0,11 (A)	0,60 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 30%	± 30%	± 18%	± 30%
Dibenzo(a,h)anthracène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,09 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 32%	± 32%	± 32%	± 32%
Indéno(1,2,3,c,d)pyrène	mg/kg MS	<0,05 (A)	0,09 (A)	0,26 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 32%	± 32%	± 31%	± 32%
Benzo(g,h,i)pérylène	mg/kg MS	<0,05 (A)	0,09 (A)	0,29 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 25%	± 25%	± 24%	± 25%
Somme des HAP	mg/kg MS	-/-	1,1	7,4	-/-

Polychlorobiphényles (PCB)

PCB - Méthode interne : HAP-PCB-GC/MS - Réalisé par WESSLING Lyon (France)

PCB n° 28	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 28%	± 28%	± 28%	± 28%
PCB n° 52	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 23%	± 23%	± 23%	± 23%
PCB n° 101	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 24%	± 24%	± 24%	± 24%
PCB n° 118	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 36%	± 36%	± 36%	± 36%
PCB n° 138	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 33%	± 33%	± 33%	± 33%
PCB n° 153	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 37%	± 37%	± 37%	± 37%
PCB n° 180	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 45%	± 45%	± 45%	± 45%
Somme des 7 PCB	mg/kg MS	-/-	-/-	-/-	-/-

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

 N° d'échantillon
 22-072805-05
 22-072805-06
 22-072805-07
 22-072805-08

 Désignation d'échantillon
 Unité
 T3 0/0.5
 T4 0/0.7
 T5 0/0.5
 T5 1/2

Préparation d'échantillon

Minéralisation à l'eau régale	- Méthode interne	· MINERALISATION METALIX	 Réalisé par WESSLING Lvon (France)

Minéralisation à l'eau régale	MS	13/05/2022 (A)	13/05/2022 (A)	13/05/2022 (A)	13/05/2022 (A)			
Lixiviation								
Lixiviation - Méthode interne : LIXIVIATION 1X24H - Réalisé par WESSLING Lyon (France)								
Masse totale de l'échantillon	g	71 (A)	99 (A)	90 (A)	71 (A)			
Masse de la prise d'essai	g	21 (A)	21 (A)	21 (A)	20 (A)			
Refus >4mm	g	35 (A)	66 (A)	61 (A)	53 (A)			
pH / Conductivité - NF T 90-008 / NF EN 27888 - Réalisé par WESSLING Lyon (France)								
pH		7,9 à 20,7°C (A)	8 à 20,9°C (A)	8,1 à 20,8°C (A)	7,5 à 20,7°C (A)			
Conductivité [25°C]	μS/cm	25 (A)	100 (A)	120 (A)	66 (A)			

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-05	22-072805-06	22-072805-07	22-072805-08
Désignation d'échantillon	Unité	T3 0/0.5	T4 0/0.7	T5 0/0.5	T5 1/2

Sur lixiviat filtré

Résidu sec après filtration à 105+/-5°C - NF T90-029 - Réalisé par WESSLING Ly	IG I von (France)	nar WESSLING	- Réalisé i	- NF T90-029	105+/-5°C	ec après filtration à	Résidu s
--	-------------------	--------------	-------------	--------------	-----------	-----------------------	----------

Résidu sec après filtration à 105+/-5°C - NF T9	0-029 - Réalisé pa	ar WESSLING Lyon (Franc	ce)		
Résidu sec après filtration		<100 (A)	<100 (A)	<100 (A)	<100 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/l E/L	± 15%	± 15%	± 15%	± 15%
· · ·					
Anions dissous (filtration à 0,2 µm) - Méthode i	nterne : ANIONS -	IC - Réalisé par WESSLI	NG Lyon (France)		
Chlorures (CI)		<10 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2; 95%)	mg/l E/L	± 11%	± 11%	± 11%	± 11%
Sulfates (SO4)	ma/l ⊏/l	<10 (A)	<10 (A)	<10 (A)	26 (A)
Incertitudes de mesure (k=2; 95%)	mg/l E/L	± 11%	± 11%	± 11%	± 11%
Fluorures (F)	mg/l E/L	0,2 (A)	1,2 (A)	0,8 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/i L/L	0,2 (A)	± 9%	0,0 (A)	~0,1 (A)
	NE EN 10	0.44400 B/ E/			
Phénol total (indice) après distillation sur eau /	lixiviat - NF EN IS	O 14402 - Realise par WE	SSLING Lyon (France)		
Phénol (indice)	μg/l E/L	<10 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2 ; 95%)	μ9/1 Ε/Ε	± 15%	± 15%	± 15%	± 15%
Carbona organique total (COT) NE EN 4404	Dágligá par WEGG	CLINC Lyon (France)			
Carbone organique total (COT) - NF EN 1484 -	Realise par WESS				
Carbone organique total (COT)	mg/l E/L	10 (A)	6,9 (A)	9,1 (A)	<1,6 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/i L/L	± 11%	± 11%	± 11%	± 20%
Métaux diagons our coux / liviviet /ICD MC\ N	E EN 100 47204 3	Dánliná nan WECCLING	Nam (France)		
Métaux dissous sur eaux / lixiviat (ICP-MS) - N	F EN 150 17294-2	•	· ·		
Chrome (Cr)	μg/l E/L	6,0 (A)	<5,0 (A)	<5,0 (A)	<5,0 (A)
Incertitudes de mesure (k=2 ; 95%)	pg/. L/L	± 24%	± 24%	± 24%	± 24%
Nickel (Ni)	μg/l E/L	<10 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2 ; 95%)	13	± 27%	± 27%	± 27%	± 27%
Cuivre (Cu)	μg/l E/L	<5,0 (A)	<5,0 (A)	<5,0 (A)	<5,0 (A)
Incertitudes de mesure (k=2 ; 95%)	, 0	± 43%	± 43%	± 43%	± 43%
Zinc (Zn)	μg/l E/L	<50 (A) ± 17%	<50 (A)	<50 (A) ± 17%	<50 (A)
Incertitudes de mesure (k=2 ; 95%)			± 17%		± 17%
Arsenic (As) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	<3,0 (A) ± 27%	<3,0 (A) ± 27%	<3,0 (A) ± 27%	<3,0 (A) ± 27%
Sélénium (Se)		<10 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 25%	± 25%	± 25%	± 25%
Cadmium (Cd)		<1,5 (A)	<1,5 (A)	<1,5 (A)	<1,5 (A)
Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 43%	± 43%	± 43%	± 43%
Baryum (Ba)		19 (A)	7,0 (A)	15 (A)	10 (A)
Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 23%	± 23%	± 23%	± 23%
Plomb (Pb)	n = n	<10 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 24%	± 24%	± 24%	± 24%
Molybdène (Mo)		<10 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2; 95%)	μg/l E/L	± 23%	± 23%	± 23%	± 23%
Antimoine (Sb)	ug/LE/I	<5,0 (A)	<5,0 (A)	<5,0 (A)	<5,0 (A)
Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 24%	± 24%	± 24%	± 24%
Mercure (Hg)	ug/l E/l	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 31%	± 31%	± 31%	± 31%
		=			
Cyanure total sur eau et lixiviat - NF EN ISO 1	4403-2 - Réalisé p	ar WESSLING Lyon (Fran	nce)		
Cyanures totaux (CN)	mg/l E/L		<0,01 (A)	<0,01 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/r L/L		± 20%	± 20%	

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-05	22-072805-06	22-072805-07	22-072805-08
Désignation d'échantillon	Unité	T3 0/0.5	T4 0/0.7	T5 0/0.5	T5 1/2

Fraction solubilisée

Mercure - (calculé d'éluat à solide (1:10)) - Réalisé par WESSLING Paris (France)

Mercure - (Calcule d'éluat à solide (1.10)) - Néalise par WESSEINO 1 ans (11ance)									
Mercure (Hg)	mg/kg MS	<0,001	<0,001	<0,001	<0,001				
Carbone organique total (COT) - (calculé d'éluat à solide (1:10)) - Réalisé par WESSLING Paris (France)									
Carbone organique total (COT)	mg/kg MS	100	69,0	91,0	<16,0				
Sulfates (SO4) - (calculé d'éluat à solide (1:10)) - Réalisé par WESSLING Paris (France)									
Sulfates (SO4)	mg/kg MS	<100	<100	<100	260				
,									
Indice Phénol total - (calculé d'éluat à solide (1:10)) - Réalisé par V	VESSLING Paris (France))						
Phénol (indice)	mg/kg MS	<0,1	<0,1	<0,1	<0,1				
Fraction soluble - Calcul d'ap. résidu sec - Ré	alisé par WESSLING	Paris (France)							
Fraction soluble	mg/kg MS	<1000	<1000	<1000	<1000				
Anions dissous - (calculé d'éluat à solide (1:1	0)) - Réalisé par WES	SSLING Paris (France)							
Fluorures (F)	mg/kg MS	2,0	12	8,0	<1,0				
Chlorures (CI)	mg/kg MS	<100	<100	<100	<100				
Cyanure total - (calculé d'éluat à solide (1:10))) - Réalisé par WESS	SLING Paris (France)							
Cyanures totaux (CN)	mg/kg MS		<0,1	<0,1					
Métaux sur lixiviat - (calculé d'éluat à solide (1:10\\ Déalisé === \\	VECCLING Paris (France)							
	''	`	•						
Chrome (Cr)	mg/kg MS	0,06	<0,05	<0,05	<0,05				
Nickel (Ni)	mg/kg MS	<0,1	<0,1	<0,1	<0,1				
Cuivre (Cu)	mg/kg MS	<0,05	<0,05	<0,05	<0,05				
Zinc (Zn)	mg/kg MS	<0,5	<0,5	<0,5	<0,5				
Arsenic (As)	mg/kg MS	<0,03	<0,03	<0,03	<0,03				
Sélénium (Se)	mg/kg MS	<0,1	<0,1	<0,1	<0,1				
Cadmium (Cd)	mg/kg MS	<0,015	<0,015	<0,015	<0,015				
Baryum (Ba)	mg/kg MS	0,19	0,07	0,15	0,1				
Plomb (Pb)	mg/kg MS	<0,1	<0,1	<0,1	<0,1				
Molybdène (Mo)	mg/kg MS	<0,1	<0,1	<0,1	<0,1				
Antimoine (Sb)	mg/kg MS	<0,05	<0,05	<0,05	<0,05				

MB : Matières brutes MS : Matières sèches E/L : Eau/lixiviat

Informations sur les échantillons

Date de réception :	10.05.2022	10.05.2022	10.05.2022	10.05.2022
Type d'échantillon :	Sol / remblais	Sol / remblais	Sol / remblais	Sol / remblais
Date de prélèvement :	10.05.2022	10.05.2022	10.05.2022	10.05.2022
Heure de prélèvement :	00:00	00:00	00:00	00:00
Récipient :	2*250ml VBrun WES002	2*250ml VBrun WES002	2*250ml VBrun WES002	2*250ml VBrun WES002
Température à réception (C°) :	20°C	20°C	20°C	20°C
Début des analyses :	10.05.2022	10.05.2022	10.05.2022	10.05.2022
Fin des analyses :	20.05.2022	20.05.2022	20.05.2022	20.05.2022

< : résultat inférieur à la limite de quantification

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-09	22-072805-10	22-072805-10	22-072805-11
Désignation d'échantillon	Unité	T6 0/0.5	T6 1/2	T6 1/2	T7 0/0.5

Analyse physique

Matières sèches - NF ISO 11465 - Réalisé par WESSLING Lyon (France)

Matière sèche	% masse MB	91,0 (A)	79,2 (A)	85,7 (A)
Incertitudes de mesure (k=2 · 95%)	% masse wib	+ 8%	+ 9%	+ 9%

Paramètres globaux / Indices

Carbone organique total sur mat. solide (combustion sèche) - NF ISO 10694 - Réalisé par WESSLING Lyon (France)

Carbone organique total (COT)	mg/kg MS	12000 (A)	<500 (A)	1600 (A)
Incertitudes de mesure (k=2; 95%)	Hig/kg ivis	± 6%	± 35%	± 35%

Indice Hydrocarbures (C10-C40) (Agitation mécanique, purification au Florisil) - NF EN ISO 16703 - Réalisé par WESSLING Lyon (France)

Indice hydrocarbure C10-C40 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<20 (A) ± 23%	<20 (A) ± 23%	<20 (A) ± 23%
Hydrocarbures > C10-C12	mg/kg MS	<20	<20	<20
Hydrocarbures > C12-C16	mg/kg MS	<20	<20	<20
Hydrocarbures > C16-C21	mg/kg MS	<20	<20	<20
Hydrocarbures > C21-C35	mg/kg MS	<20	<20	<20
Hydrocarbures > C35-C40	mg/kg MS	<20	<20	<20

Métaux lourds

Métaux - Méthode interne : METAUX-ICP/MS - Réalisé par WESSLING Lyon (France)

Chrome (Cr)		27 (A)	70 (A)		23 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 20%	± 16%		± 20%
Nickel (Ni)		14 (A)	17 (A)		11 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 21%	± 21%		± 21%
Cuivre (Cu)		29 (A)	12 (A)		6,0 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 20%	± 20%		± 20%
Zinc (Zn)	malka MC	75 (A)	20 (A)		76 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 20%	± 20%		± 20%
Arsenic (As)	mg/kg MS	9,0 (A)	26 (A)		8,0 (A)
Incertitudes de mesure (k=2 ; 95%)	Hig/kg ivio	± 9%	± 9%		± 9%
Sélénium (Se)	mg/kg MS	1,0 (A)	<1,0 (A)	•	<1,0 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg Wo	± 12%	± 12%		± 12%
Molybdène (Mo)	mg/kg MS	<1,0 (A)	<1,0 (A)		<1,0 (A)
Incertitudes de mesure (k=2 ; 95%)	Trig/kg Wio	± 14%	± 14%		± 14%
Cadmium (Cd)	mg/kg MS	<0,4 (A)	<0,4 (A)	•	<0,4 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg Wo	± 10%	± 10%		± 10%
Antimoine (Sb)	mg/kg MS	<1,0 (A)	<1,0 (A)		<1,0 (A)
Incertitudes de mesure (k=2 ; 95%)	riig/kg WO	± 10%	± 10%		± 10%
Baryum (Ba)	mg/kg MS	110 (A)	47 (A)		56 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg wo	± 22%	± 23%		± 23%
Mercure (Hg)	mg/kg MS	0,1 (A)	<0,1 (A)		<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	riig/kg WO	± 29%	± 29%		± 29%
Plomb (Pb)	mg/kg MS	35 (A)	24 (A)		16 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MO	± 20%	± 20%		± 20%

Quality of Life

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-09	22-072805-10	22-072805-10	22-072805-11
Désignation d'échantillon	Unité	T6 0/0.5	T6 1/2	T6 1/2	T7 0/0.5

Hydrocarbures halogénés volatils (COHV)

Composés organohalogénés volatils - Méthode interne : COHV-HS/GC/MS - Réalisé par WESSLING Lyon (France)

1,1-Dichloroéthane Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 16%	<0,1 (A) ± 16%	<0,1 (A) ± 16%
1,1-Dichloroéthylène Incertitudes de mesure (k=2; 95%)	mg/kg MS	<0,1 (A) ± 23%	<0,1 (A) ± 23%	<0,1 (A) ± 23%
Dichlorométhane Incertitudes de mesure (k=2; 95%)	mg/kg MS	<0,1 (A) ± 30%	<0,1 (A) ± 30%	<0,1 (A) ± 30%
Tétrachloroéthylène Incertitudes de mesure (k=2; 95%)	mg/kg MS	<0,1 (A) ± 28%	<0,1 (A) ± 28%	<0,1 (A) ± 28%
1,1,1-Trichloroéthane Incertitudes de mesure (k=2; 95%)	mg/kg MS	<0,1 (A) ± 20%	<0,1 (A) ± 20%	<0,1 (A) ± 20%
Tétrachlorométhane Incertitudes de mesure (k=2; 95%)	mg/kg MS	<0,1 (A) ± 24%	<0,1 (A) ± 24%	<0,1 (A) ± 24%
Trichlorométhane Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 18%	<0,1 (A) ± 18%	<0,1 (A) ± 18%
Trichloroéthylène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 27%	<0,1 (A) ± 27%	<0,1 (A) ± 27%
Chlorure de vinyle Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 45%	<0,1 (A) ± 45%	<0,1 (A) ± 45%
cis-1,2-Dichloroéthylène Incertitudes de mesure (k=2; 95%)	mg/kg MS	<0,1 (A) ± 22%	<0,1 (A) ± 22%	<0,1 (A) ± 22%
trans-1,2-Dichloroéthylène Incertitudes de mesure (k=2; 95%)	mg/kg MS	<0,1 (A) ± 21%	<0,1 (A) ± 21%	<0,1 (A) ± 21%
Somme des COHV	mg/kg MS	-/-	-/-	-/-

Benzène et aromatiques (CAV - BTEX)

Benzène et aromatiques - Méthode interne : BTEX-HS/GC/MS - Réalisé par WESSLING Lyon (France)

Benzène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 38%	<0,1 (A) ± 38%	<0,1 (A) ± 38%
Toluène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 29%	<0,1 (A) ± 29%	<0,1 (A) ± 29%
Ethylbenzène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 18%	<0,1 (A) ± 18%	<0,1 (A) ± 18%
m-, p-Xylène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 21%	<0,1 (A) ± 21%	<0,1 (A) ± 21%
o-Xylène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 23%	<0,1 (A) ± 23%	<0,1 (A) ± 23%
Cumène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 25%	<0,1 (A) ± 25%	<0,1 (A) ± 25%
m-, p-Ethyltoluène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 27%	<0,1 (A) ± 27%	<0,1 (A) ± 27%
Mésitylène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 30%	<0,1 (A) ± 30%	<0,1 (A) ± 30%
o-Ethyltoluène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 29%	<0,1 (A) ± 29%	<0,1 (A) ± 29%
Pseudocumène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 28%	<0,1 (A) ± 28%	<0,1 (A) ± 28%
Somme des CAV	mg/kg MS	-/-	-/-	-/-

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

 N° d'échantillon
 22-072805-09
 22-072805-10
 22-072805-10
 22-072805-11

 Désignation d'échantillon
 Unité
 T6 0/0.5
 T6 1/2
 T6 1/2
 T7 0/0.5

Hydrocarbures aromatiques polycycliques (HAP)

HAP (16) - NF ISO 18287 - Réalisé par WESSLING Lyon (France)

(10) 111 100 10201 11001100 pdi 112001		1		
Naphtalène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 17%	± 17%	± 17%
Acénaphtylène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg me	± 20%	± 20%	± 20%
Acénaphtène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg ivio	± 18%	± 18%	± 18%
Fluorène	manufan MC	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 19%	± 19%	± 19%
Phénanthrène	// NAO	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 18%	± 18%	± 18%
Anthracène		<0.05 (A)	<0.05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 19%	± 19%	± 19%
Fluoranthène		0.07 (A)	<0.05 (A)	<0.05 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 20%	± 20%	± 20%
Pyrène		0.05 (A)	<0.05 (A)	<0.05 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 21%	± 21%	± 21%
Benzo(a)anthracène		<0.05 (A)	<0.05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 19%	± 19%	± 19%
Chrysène		<0,05 (A)	<0.05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,03 (A) ± 18%	± 18%	<0,03 (A) ± 18%
,				
Benzo(b)fluoranthène	mg/kg MS	0,08 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 21%	± 21%	± 21%
Benzo(k)fluoranthène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)	0 0	± 20%	± 20%	± 20%
Benzo(a)pyrène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)		± 30%	± 30%	± 30%
Dibenzo(a,h)anthracène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg Mo	± 32%	± 32%	± 32%
Indéno(1,2,3,c,d)pyrène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2; 95%)	ilig/kg ivio	± 32%	± 32%	± 32%
Benzo(g,h,i)pérylène	ma/ka MC	<0,05 (A)	<0,05 (A)	<0,05 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 25%	± 25%	± 25%
Somme des HAP	mg/kg MS	0,20	-/-	-/-

Polychlorobiphényles (PCB)

PCB - Méthode interne : HAP-PCB-GC/MS - Réalisé par WESSLING Lyon (France)

PCB n° 28 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 28%	<0,01 (A) ± 28%	<0,01 (A) ± 28%
PCB n° 52 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 23%	<0,01 (A) ± 23%	<0,01 (A) ± 23%
PCB n° 101 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 24%	<0,01 (A) ± 24%	<0,01 (A) ± 24%
PCB n° 118 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 36%	<0,01 (A) ± 36%	<0,01 (A) ± 36%
PCB n° 138 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 33%	<0,01 (A) ± 33%	<0,01 (A) ± 33%
PCB n° 153 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 37%	<0,01 (A) ± 37%	<0,01 (A) ± 37%
PCB n° 180 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 45%	<0,01 (A) ± 45%	<0,01 (A) ± 45%
Somme des 7 PCB	mg/kg MS	-/-	-/-	-/-

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

 N° d'échantillon
 22-072805-09
 22-072805-10
 22-072805-10
 22-072805-11

 Désignation d'échantillon
 Unité
 T6 0/0.5
 T6 1/2
 T6 1/2
 T7 0/0.5

Préparation d'échantillon

Minéralisation à l'eau régale	Méthode interne	· MINERALISATION METALIX	- Réalisé par WESSLING Lyon (France)

Minéralisation à l'eau régale	MS	13/05/2022 (A)	13/05/2022 (A)		13/05/2022 (A)
Lixiviation					
Lixiviation - Méthode interne : LIXIVIATION 1X2	4H - Réalisé par V	VESSLING Lyon (France)			
Masse totale de l'échantillon	g	71 (A)		45 (A)	130 (A)
Masse de la prise d'essai	g	20 (A)		20 (A)	20 (A)
Refus >4mm	g	18 (A)		37 (A)	110 (A)
pH / Conductivité - NF T 90-008 / NF EN 27888	R - Réalisé nar WF	ESSLING Lyon (France)			
	- realise par vvi	1		0.4.2.04.000 (A)	0.4.2.04.4.9.0.(A)
pH		7,2 à 20,9°C (A)		8,1 à 21,2°C (A)	8,4 à 21,1°C (A)
Conductivité [25°C]	μS/cm	310 (A)		150 (A)	37 (A)

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-09	22-072805-10	22-072805-10	22-072805-11
Désignation d'échantillon	Unité	T6 0/0.5	T6 1/2	T6 1/2	T7 0/0.5

Sur lixiviat filtré

Résidu sec après filtration à	105+/-5°C - NF T90-029	- Réalisé par WESSLING Lyon (France	۱د

Résidu sec après filtration	mg/l E/L	170 (A)	<100 (A)		<100 (A)
ncertitudes de mesure (k=2 ; 95%)		± 15%	± 15%		± 15%
nions dissous (filtration à 0,2 µm) - Méthode	interne : ANIONS -	IC - Réalisé par WESSL	ING Lyon (France)		
Chlorures (CI)	mg/l E/L	<10 (A)	14 (A)		<10 (A)
ncertitudes de mesure (k=2 ; 95%)	mg/r L L	± 11%	± 11%		± 11%
Sulfates (SO4)	mg/l E/L	<10 (A)	34 (A)		<10 (A)
ncertitudes de mesure (k=2 ; 95%)		± 11%	± 11%		± 11%
Fluorures (F)	mg/l E/L	<0,1 (A)	<0,1 (A)		0,6 (A)
Phénol total (indice) après distillation sur eau a	lixiviat - NF EN IS	O 14402 - Réalisé par W	ESSLING Lyon (France)		
Phénol (indice)		27 (A)	<10 (A)		<10 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/I E/L	± 15%	± 15%		± 15%
Carbone organique total (COT) - NF EN 1484	- Réalisé nar WESS	SLING Lyon (France)			
- · · · ·	Troumed par Trees		-1 G (A)		6.6.(4)
Carbone organique total (COT) ncertitudes de mesure (k=2; 95%)	mg/l E/L	41 (A) ± 11%	<1,6 (A) ± 20%		6,6 (A) ± 11%
icertitudes de mesure (k=2 , 95%)		± 1170	± 20%		± 1170
<u> 1 Métaux dissous sur eaux / lixiviat (ICP-MS)</u>	NF EN ISO 17294-2	2 - Réalisé par WESSLIN	G Lyon (France)		
Chrome (Cr)		<5,0 (A)		<5,0 (A)	5,0 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 24%		± 24%	± 24%
lickel (Ni)		<10 (A)	31 (A)		<10 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 27%	± 27%		± 27%
cuivre (Cu)	a/I ⊑/I	5,0 (A)	<5,0 (A)		<5,0 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/I E/L	± 43%	± 43%		± 43%
linc (Zn)		<50 (A)	<50 (A)		<50 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 17%	± 17%		± 17%
rsenic (As)	μg/I E/L	5,0 (A)	<3,0 (A)		<3,0 (A)
ncertitudes de mesure (k=2 ; 95%)	µg/i ⊏/L	± 27%	± 27%		± 27%
Sélénium (Se)	ua/L⊏/L	<10 (A)	<10 (A)		<10 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 25%	± 25%		± 25%
Cadmium (Cd)	μg/l E/L	<1,5 (A)	<1,5 (A)		<1,5 (A)
ncertitudes de mesure (k=2 ; 95%)	рул шл	± 43%	± 43%		± 43%
aryum (Ba)	μg/l E/L	79 (A)	13 (A)		11 (A)
ncertitudes de mesure (k=2 ; 95%)	рул шл	± 23%	± 23%		± 23%
Plomb (Pb)	μg/l E/L	<10 (A)	<10 (A)		<10 (A)
ncertitudes de mesure (k=2 ; 95%)	рул шл	± 24%	± 24%		± 24%
folybdène (Mo)	μg/l E/L	<10 (A)	<10 (A)		<10 (A)
ncertitudes de mesure (k=2 ; 95%)	рул шл	± 23%	± 23%		± 23%
Intimoine (Sb)	μg/l E/L	<5,0 (A)	<5,0 (A)		<5,0 (A)
ncertitudes de mesure (k=2 ; 95%)	μ9/1 Ε/Ε	± 24%	± 24%		± 24%
Легсиге (Hg)	μg/l E/L	<0,1 (A)	<0,1 (A)		<0,1 (A)
ncertitudes de mesure (k=2 ; 95%)	µg/i ⊏/L	± 31%	± 31%		± 31%
Cyanure total sur eau et lixiviat - NF EN ISO 1	4403-2 - Réalisé p	ar WESSLING Lyon (Fra	nce)		
Cyanures totaux (CN)	. =				<0,01 (A)
ncertitudes de mesure (k=2 ; 95%)	mg/l E/L				± 20%

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

 N° d'échantillon
 22-072805-09
 22-072805-10
 22-072805-10
 22-072805-11

 Désignation d'échantillon
 Unité
 T6 0/0.5
 T6 1/2
 T6 1/2
 T7 0/0.5

Fraction solubilisée

Mercure - (calculé d'éluat à solide (1:10)) - Réalisé par WESSLING Paris (France)

Transcription of State a Solida (1.16)// Transcription of the Control of the Cont										
Mercure (Hg)	mg/kg MS	<0,001	<0,001		<0,001					
Carbone organique total (COT) - (calculé d'éluat à solide (1:10)) - Réalisé par WESSLING Paris (France)										
Carbone organique total (COT)	mg/kg MS	410	<16,0		66,0					
Sulfates (SO4) - (calculé d'éluat à solide (1:10)) - Réalisé par WESSLING Paris (France)										
Sulfates (SO4) - (calcule d'eluat à solide (1.10	ij) - Realise par WES	SSLING Paris (France)								
Sulfates (SO4)	mg/kg MS	<100	340		<100					
Indice Phénol total - (calculé d'éluat à solide (1:10)) - Réalisé par \	WESSLING Paris (France	2)							
Phénol (indice)	mg/kg MS	0,27	<0,1		<0,1					
Fraction soluble - Calcul d'ap. résidu sec - Ré	alisé par WESSLINC	3 Paris (France)								
Fraction soluble	mg/kg MS	1700	<1000		<1000					
Tradicit colabic	mg/kg WO	1700	11000		11000					
Anions dissous - (calculé d'éluat à solide (1:10	ົງ)) - Réalisé par WE	SSLING Paris (France)								
Fluorures (F)	mg/kg MS	<1,0	<1,0		6,0					
Chlorures (CI)	mg/kg MS	<100	140		<100					
Cyanure total - (calculé d'éluat à solide (1:10)) - Réalisé par WES	SLING Paris (France)								
Cyanures totaux (CN)	mg/kg MS				<0,1					
Métaux sur lixiviat - (calculé d'éluat à solide (1·10)) - Réalisé nar V	WESSLING Paris (France)							
Chrome (Cr)	mg/kg MS	<0.05	,	<0.05	0.05					
Nickel (Ni)	mg/kg MS	<0,1	0,31	5,55	<0,1					
Cuivre (Cu)	mg/kg MS	0,05	<0.05		<0.05					
Zinc (Zn)	mg/kg MS	<0,5	<0,5		<0,5					
Arsenic (As)	mg/kg MS	0,05	<0,03		<0,03					
Sélénium (Se)	mg/kg MS	<0,1	<0,1		<0,1					
Cadmium (Cd)	mg/kg MS	<0,015	<0,015		<0,015					
Baryum (Ba)	mg/kg MS	0,79	0,13		0,11					
Plomb (Pb)	mg/kg MS	<0,1	<0,1		<0,1					
Molybdène (Mo)	mg/kg MS	<0,1	<0,1		<0,1					
Antimoine (Sb)	mg/kg MS	<0,05	<0,05		<0,05					

MB : Matières brutes MS : Matières sèches E/L : Eau/lixiviat

Informations sur les échantillons

Date de réception :	10.05.2022	10.05.2022	10.05.2022	10.05.2022
Type d'échantillon :	Sol / remblais	Sol / remblais	Sol / remblais	Sol / remblais
Date de prélèvement :	10.05.2022	10.05.2022	10.05.2022	10.05.2022
Heure de prélèvement :	00:00	00:00	00:00	00:00
Récipient :	2*250ml VBrun WES002	250ml VBrun WES002	250ml VBrun WES002	2*250ml VBrun WES002
Température à réception (C°) :	20°C	20°C	20°C	20°C
Début des analyses :	10.05.2022	10.05.2022	23.05.2022	10.05.2022
Fin des analyses :	20.05.2022	20.05.2022	03.06.2022	20.05.2022

Préleveur : client

< : résultat inférieur à la limite de quantification

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-12	22-072805-13	22-072805-14	22-072805-15
Désignation d'échantillon	Unité	T7 2.5/4	T8 0/0.5	T8 1/2	T9 0/0.5

Analyse physique

Matières sèches - NF ISO 11465 - Réalisé par WESSLING Lyon (France)

Matière sèche	% masse MB	91,0 (A)	86,9 (A)	81,6 (A)	85,8 (A)
Incertitudes de mesure (k=2; 95%)	% masse wib	± 8%	± 9%	± 9%	± 9%

Paramètres globaux / Indices

Carbone organique total sur mat. solide (combustion sèche) - NF ISO 10694 - Réalisé par WESSLING Lyon (France)

Carbone organique total (COT)	ma/ka MS	<500 (A)	12000 (A)	<500 (A)	6100 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 35%	± 6%	± 35%	± 28%

Indice Hydrocarbures (C10-C40) (Agitation mécanique, purification au Florisil) - NF EN ISO 16703 - Réalisé par WESSLING Lyon (France)

Indice hydrocarbure C10-C40 Incertitudes de mesure (k=2; 95%)	mg/kg MS	<20 (A) ± 23%	<20 (A) ± 23%	<20 (A) ± 23%	<20 (A) ± 23%
Hydrocarbures > C10-C12	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C12-C16	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C16-C21	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C21-C35	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C35-C40	mg/kg MS	<20	<20	<20	<20

Métaux lourds

Métaux - Méthode interne : METAUX-ICP/MS - Réalisé par WESSLING Lyon (France)

Chrome (Cr)	malka MS	21 (A)	22 (A)	67 (A)	24 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 20%	± 20%	± 16%	± 20%
Nickel (Ni)	malka MC	6,0 (A)	14 (A)	14 (A)	10 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 21%	± 21%	± 21%	± 21%
Cuivre (Cu)	malka MC	3,0 (A)	13 (A)	8,0 (A)	7,0 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 20%	± 20%	± 20%	± 20%
Zinc (Zn)	malka MC	6,0 (A)	43 (A)	24 (A)	34 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 20%	± 20%	± 20%	± 20%
Arsenic (As)	mg/kg MS	21 (A)	8,0 (A)	19 (A)	10 (A)
Incertitudes de mesure (k=2 ; 95%)	Hig/kg ivio	± 9%	± 9%	± 9%	± 9%
Sélénium (Se)	mg/kg MS	<1,0 (A)	<1,0 (A)	<1,0 (A)	<1,0 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 12%	± 12%	± 12%	± 12%
Molybdène (Mo)	mg/kg MS	<1,0 (A)	<1,0 (A)	<1,0 (A)	<1,0 (A)
Incertitudes de mesure (k=2 ; 95%)	Hig/kg WiS	± 14%	± 14%	± 14%	± 14%
Cadmium (Cd)	mg/kg MS	<0,4 (A)	<0,4 (A)	<0,4 (A)	<0,4 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 10%	± 10%	± 10%	± 10%
Antimoine (Sb)	mg/kg MS	<1,0 (A)	<1,0 (A)	<1,0 (A)	<1,0 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg Wo	± 10%	± 10%	± 10%	± 10%
Baryum (Ba)	mg/kg MS	13 (A)	76 (A)	61 (A)	56 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 23%	± 22%	± 23%	± 23%
Mercure (Hg)	mg/kg MS	<0,1 (A)	0,2 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	riig/kg ivio	± 29%	± 29%	± 29%	± 29%
Plomb (Pb)	mg/kg MS	<10 (A)	39 (A)	17 (A)	19 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg Mo	± 20%	± 20%	± 20%	± 20%

Quality of Life

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-12	22-072805-13	22-072805-14	22-072805-15
Désignation d'échantillon	Unité	T7 2.5/4	T8 0/0.5	T8 1/2	T9 0/0.5

Hydrocarbures halogénés volatils (COHV)

Composés organohalogénés volatils - Méthode interne : COHV-HS/GC/MS - Réalisé par WESSLING Lyon (France)

4.4.50.11		0.4.(4)	0.4.(4)	0.4.(4)	0.4.(1)
1,1-Dichloroéthane	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 16%	± 16%	± 16%	± 16%
1,1-Dichloroéthylène		<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 23%	± 23%	± 23%	± 23%
Dichlorométhane		<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
	mg/kg MS	± 30%	± 30%	± 30%	± 30%
Incertitudes de mesure (k=2 ; 95%)				5.5.5.	
Tétrachloroéthylène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/ng Mo	± 28%	± 28%	± 28%	± 28%
1,1,1-Trichloroéthane		<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 20%	± 20%	± 20%	± 20%
Tétrachlorométhane		<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 24%	± 24%	± 24%	± 24%
Trichlorométhane		<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 18%	± 18%	± 18%	± 18%
Trichloroéthylène		<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 27%	± 27%	± 27%	± 27%
Chlorure de vinyle		<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 45%	± 45%	± 45%	± 45%
cis-1,2-Dichloroéthylène		<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 22%	± 22%	± 22%	± 22%
trans-1,2-Dichloroéthylène	4 140	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 21%	± 21%	± 21%	± 21%
Somme des COHV	mg/kg MS	-/-	-/-	-/-	-/-

Benzène et aromatiques (CAV - BTEX)

Benzène et aromatiques - Méthode interne : BTEX-HS/GC/MS - Réalisé par WESSLING Lyon (France)

Benzène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 38%	± 38%	± 38%	± 38%
Toluène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 29%	± 29%	± 29%	± 29%
Ethylbenzène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 18%	± 18%	± 18%	± 18%
m-, p-Xylène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 21%	± 21%	± 21%	± 21%
o-Xylène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 23%	± 23%	± 23%	± 23%
Cumène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 25%	± 25%	± 25%	± 25%
m-, p-Ethyltoluène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 27%	± 27%	± 27%	± 27%
Mésitylène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 30%	± 30%	± 30%	± 30%
o-Ethyltoluène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 29%	± 29%	± 29%	± 29%
Pseudocumène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 28%	± 28%	± 28%	± 28%
Somme des CAV	mg/kg MS	-/-	-/-	-/-	-/-

Quality of Life

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-12	22-072805-13	22-072805-14	22-072805-15
Désignation d'échantillon	Unité	T7 2.5/4	T8 0/0.5	T8 1/2	T9 0/0.5

Hydrocarbures aromatiques polycycliques (HAP)

HAP (16) - NF ISO 18287 - Réalisé par WESSLING Lyon (France)

The Art was a second of the Ar								
Naphtalène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 17%	± 17%	± 17%	± 17%			
Acénaphtylène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)			
Incertitudes de mesure (k=2; 95%)		± 20%	± 20%	± 20%	± 20%			
Acénaphtène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,05 (A) ± 18%	<0,05 (A) ± 18%	<0,05 (A) ± 18%	<0,05 (A) ± 18%			
Fluorène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)			
Incertitudes de mesure (k=2 ; 95%) Phénanthrène	mg/kg MS	± 19% <0,05 (A)	± 19% <0,05 (A)	± 19% <0,05 (A)	± 19% <0,05 (A)			
Incertitudes de mesure (k=2 ; 95%) Anthracène		± 18% <0.05 (A)	± 18% <0.05 (A)	± 18% <0.05 (A)	± 18% <0,05 (A)			
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 19% <0.05 (A)	± 19% 0.07 (A)	± 19%	± 19% <0.05 (A)			
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 20%	± 20%	± 20%	± 20%			
Pyrène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 21%	± 21%	± 21%	± 21%			
Benzo(a)anthracène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 19%	± 19%	± 19%	± 19%			
Chrysène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 18%	± 18%	± 18%	± 18%			
Benzo(b)fluoranthène	mg/kg MS	<0,05 (A)	0,08 (A)	<0,05 (A)	<0,05 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 21%	± 21%	± 21%	± 21%			
Benzo(k)fluoranthène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 20%	± 20%	± 20%	± 20%			
Benzo(a)pyrène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 30%	± 30%	± 30%	± 30%			
Dibenzo(a,h)anthracène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 32%	± 32%	± 32%	± 32%			
Indéno(1,2,3,c,d)pyrène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 32%	± 32%	± 32%	± 32%			
Benzo(g,h,i)pérylène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)			
Incertitudes de mesure (k=2; 95%)		± 25%	± 25%	± 25%	± 25%			
Somme des HAP	mg/kg MS	-/-	0,15	-/-	-/-			
	0 0							

Polychlorobiphényles (PCB)

PCB - Méthode interne : HAP-PCB-GC/MS - Réalisé par WESSLING Lyon (France)

PCB n° 28	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 28%	± 28%	± 28%	± 28%
PCB n° 52	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 23%	± 23%	± 23%	± 23%
PCB n° 101	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 24%	± 24%	± 24%	± 24%
PCB n° 118	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 36%	± 36%	± 36%	± 36%
PCB n° 138	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 33%	± 33%	± 33%	± 33%
PCB n° 153	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 37%	± 37%	± 37%	± 37%
PCB n° 180	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 45%	± 45%	± 45%	± 45%
Somme des 7 PCB	mg/kg MS	-/-	-/-	-/-	-/-

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

 N° d'échantillon
 22-072805-12
 22-072805-13
 22-072805-14
 22-072805-15

 Désignation d'échantillon
 Unité
 T7 2.5/4
 T8 0/0.5
 T8 1/2
 T9 0/0.5

Préparation d'échantillon

Minéralisation à l'eau régale	- Méthode interne	· MINERALISATION METALIX	- Réalisé par WESSLING Lyon (France)

Minéralisation à l'eau régale	MS	13/05/2022 (A)	13/05/2022 (A)	13/05/2022 (A)	13/05/2022 (A)
Lixiviation					
Lixiviation - Méthode interne : LIXIVIATION 1X2	4H - Réalisé par V	VESSLING Lyon (France)			
Masse totale de l'échantillon	g	92 (A)	110 (A)	71 (A)	84 (A)
Masse de la prise d'essai	g	20 (A)	21 (A)	20 (A)	20 (A)
Refus >4mm	g	81 (A)	46 (A)	57 (A)	71 (A)
pH / Conductivité - NF T 90-008 / NF EN 27888	R - Réalisé nar WF	ESSLING Lyon (France)			
	- realise par vvi		0.0 > 04.4%0 (A)	0.0.2.04.090 (A)	0.0 2.04.500 (A)
pH		8,3 à 21,2°C (A)	8,2 à 21,1°C (A)	8,3 à 21,3°C (A)	8,2 à 21,5°C (A)
Conductivité [25°C]	μS/cm	91 (A)	98 (A)	140 (A)	52 (A)

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-12	22-072805-13	22-072805-14	22-072805-15
Désignation d'échantillon	Unité	T7 2.5/4	T8 0/0.5	T8 1/2	T9 0/0.5

Sur lixiviat filtré

Résidu sec anrès filtration à	105+/-5°C - NF T90-029	 Réalisé par WESSLING Lvon (France) 	nce)
itesidu sec apres ilitiation a	100-7-0 0 - 141 130-023	- Nealise pai WESSElling Lybli (i lai	1001

Résidu sec après filtration	mg/l E/L	<100 (A)	<100 (A)	<100 (A)	<100 (A)
Incertitudes de mesure (k=2; 95%)		± 15%	± 15%	± 15%	± 15%
Anions dissous (filtration à 0,2 μm) - Méthode	nterne : ANIONS -	IC - Réalisé par WESSL	ING Lyon (France)		
Chlorures (CI)	mg/l E/L	<10 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2 ; 95%)		± 11%	± 11%	± 11%	± 11%
Sulfates (SO4)	mg/l E/L	11 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2 ; 95%)		± 11%	± 11%	± 11%	± 11%
Fluorures (F) Incertitudes de mesure (k=2 ; 95%)	mg/l E/L	1,4 (A) ± 9%	0,7 (A)	1,2 (A) ± 9%	0,6 (A)
Phénol total (indice) après distillation sur eau /	lixiviat - NF EN IS	O 14402 - Réalisé par Wi	ESSLING Lyon (France)		
Phénol (indice)	μg/l E/L	<10 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2 ; 95%)		± 15%	± 15%	± 15%	± 15%
Carbone organique total (COT) - NF EN 1484 -	Réalisé par WESS	SLING Lyon (France)			
Carbone organique total (COT)	mg/l E/L	<1,6 (A)	6,1 (A)	<1,6 (A)	7,0 (A)
Incertitudes de mesure (k=2; 95%)		± 20%	± 11%	± 20%	± 11%
Métaux dissous sur eaux / lixiviat (ICP-MS) - N	F EN ISO 17294-2	? - Réalisé par WESSLING	G Lyon (France)		
Chrome (Cr)	μg/l E/L	<5,0 (A)	<5,0 (A)	<5,0 (A)	<5,0 (A)
Incertitudes de mesure (k=2 ; 95%)		± 24%	± 24%	± 24%	± 24%
Nickel (Ni)	μg/l E/L	<10 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2 ; 95%)		± 27%	± 27%	± 27%	± 27%
Cuivre (Cu)	μg/l E/L	<5,0 (A)	<5,0 (A)	<5,0 (A)	<5,0 (A)
Incertitudes de mesure (k=2 ; 95%)		± 43%	± 43%	± 43%	± 43%
Zinc (Zn) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	<50 (A) ± 17%	<50 (A) ± 17%	<50 (A) ± 17%	<50 (A) ± 17%
Arsenic (As)	μg/l E/L	<3,0 (A)	<3,0 (A)	<3,0 (A)	<3,0 (A)
Incertitudes de mesure (k=2 ; 95%)		± 27%	± 27%	± 27%	± 27%
Sélénium (Se)	μg/l E/L	<10 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2 ; 95%)		± 25%	± 25%	± 25%	± 25%
Cadmium (Cd)	μg/l E/L	<1,5 (A)	<1,5 (A)	<1,5 (A)	<1,5 (A)
Incertitudes de mesure (k=2 ; 95%)		± 43%	± 43%	± 43%	± 43%
Baryum (Ba) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	7,0 (A) ± 23%	6,0 (A) ± 23%	9,0 (A) ± 23%	<5,0 (A) ± 23%
Plomb (Pb)	μg/l E/L	<10 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2 ; 95%)		± 24%	± 24%	± 24%	± 24%
Molybdène (Mo)	μg/l E/L	<10 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2 ; 95%)		± 23%	± 23%	± 23%	± 23%
Antimoine (Sb) Incertitudes de mesure (k=2; 95%)	μg/l E/L	<5,0 (A) ± 24%	<5,0 (A) ± 24%	<5,0 (A) ± 24%	<5,0 (A) ± 24%
Mercure (Hg)	μg/l E/L	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 31%	± 31%	± 31%	± 31%
Cyanure total sur eau et lixiviat - NF EN ISO 1	4403-2 - Réalisé p	ar WESSLING Lyon (Fra	nce)		
Cyanures totaux (CN) Incertitudes de mesure (k=2; 95%)	mg/l E/L		<0,01 (A) ± 20%		<0,01 (A) ± 20%

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

 N° d'échantillon
 22-072805-12
 22-072805-13
 22-072805-14
 22-072805-15

 Désignation d'échantillon
 Unité
 T7 2.5/4
 T8 0/0.5
 T8 1/2
 T9 0/0.5

Fraction solubilisée

Mercure - (calculé d'éluat à solide (1:10)) - Réalisé par WESSLING Paris (France)

Moroare (balcale a claat a conae (1:10)) 1	Cance par TTECCENTO	Tano (Trance)			
Mercure (Hg)	mg/kg MS	<0,001	<0,001	<0,001	<0,001
Carbone organique total (COT) - (calculé d'é	luat à solide (1:10)) - R	Réalisé par WESSLING P	aris (France)		
Carbone organique total (COT)	mg/kg MS	<16,0	61,0	<16,0	70,0
Sulfates (SO4) - (calculé d'éluat à solide (1:	10)) - Réalisé par WES	SLING Paris (France)			
Sulfates (SO4)	mg/kg MS	110	<100	<100	<100
,					
Indice Phénol total - (calculé d'éluat à solide	(1:10)) - Réalisé par W	VESSLING Paris (France)		
Phénol (indice)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Fraction soluble - Calcul d'ap. résidu sec - R	Réalisé par WESSLING	Paris (France)			
Fraction soluble	mg/kg MS	<1000	<1000	<1000	<1000
Anions dissous - (calculé d'éluat à solide (1:	10)) - Réalisé par WES	SSLING Paris (France)			
Fluorures (F)	mg/kg MS	14	7,0	12	6,0
Chlorures (CI)	mg/kg MS	<100	<100	<100	<100
Cyanure total - (calculé d'éluat à solide (1:10))) - Réalisé par WESS	SLING Paris (France)			
Cyanures totaux (CN)	mg/kg MS		<0,1		<0,1
Métaux sur lixiviat - (calculé d'éluat à solide	(1·10)) - Réalisé nar W	/ESSLING Paris (France)		
Chrome (Cr)	mg/kg MS	<0.05	<0.05	<0.05	<0.05
Nickel (Ni)	mg/kg MS	<0,03	<0,03	<0,03	<0,03
Cuivre (Cu)	mg/kg MS	<0,1	<0.05	<0.05	<0.05
Zinc (Zn)	mg/kg MS	<0,5	<0,5	<0,5	<0,5
Arsenic (As)	mg/kg MS	<0.03	<0,03	<0.03	<0.03
Sélénium (Se)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Cadmium (Cd)	mg/kg MS	<0,015	<0.015	<0.015	<0.015
Baryum (Ba)	mg/kg MS	0,07	0.06	0,09	<0.05
Plomb (Pb)	mg/kg MS	<0,1	<0,1	<0.1	<0,1
Molybdène (Mo)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Antimoine (Sb)	mg/kg MS	<0.05	<0.05	<0.05	<0.05
	33	-,	-,	-,	-,

MB : Matières brutes MS : Matières sèches E/L : Eau/lixiviat

Informations sur les échantillons

Date de réception :	10.05.2022	10.05.2022	10.05.2022	10.05.2022
Type d'échantillon :	Sol / remblais	Sol / remblais	Sol / remblais	Sol / remblais
Date de prélèvement :	10.05.2022	10.05.2022	10.05.2022	10.05.2022
Heure de prélèvement :	00:00	00:00	00:00	00:00
Récipient :	2*250ml VBrun WES002	2*250ml VBrun WES002	250ml VBrun WES002	2*250ml VBrun WES002
Température à réception (C°) :	20°C	20°C	20°C	20°C
Début des analyses :	10.05.2022	10.05.2022	10.05.2022	10.05.2022
Fin des analyses :	20.05.2022	20.05.2022	20.05.2022	20.05.2022

< : résultat inférieur à la limite de quantification

Quality of Life

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-16	22-072805-17	22-072805-18	22-072805-18
Désignation d'échantillon	Unité	T9 0.5/1	T10 0/1	T10 1.5/2	T10 1.5/2

Analyse physique

Matières sèches - NF ISO 11465 - Réalisé par WESSLING Lyon (France)

Matière sèche	0/ MD	82,6 (A)	86,5 (A)	85,9 (A)	85,9 (A)
Incertitudes de mesure (k=2; 95%)	% masse MB	± 9%	± 9%	± 9%	± 9%

Paramètres globaux / Indices

Carbone organique total sur mat. solide (combustion sèche) - NF ISO 10694 - Réalisé par WESSLING Lyon (France)

Carbone organique total (COT)	mg/kg MS	3000 (A)	1000 (A)	<500 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg M3	± 35%	± 35%	± 35%

Indice Hydrocarbures (C10-C40) (Agitation mécanique, purification au Florisil) - NF EN ISO 16703 - Réalisé par WESSLING Lyon (France)

Indice hydrocarbure C10-C40 Incertitudes de mesure (k=2; 95%)	mg/kg MS	<20 (A) ± 23%	<20 (A) ± 23%	<20 (A) ± 23%	
Hydrocarbures > C10-C12	mg/kg MS	<20	<20	<20	
Hydrocarbures > C12-C16	mg/kg MS	<20	<20	<20	
Hydrocarbures > C16-C21	mg/kg MS	<20	<20	<20	
Hydrocarbures > C21-C35	mg/kg MS	<20	<20	<20	
Hydrocarbures > C35-C40	mg/kg MS	<20	<20	<20	

Métaux lourds

Métaux - Méthode interne : METAUX-ICP/MS - Réalisé par WESSLING Lyon (France)

Chrome (Cr) Incertitudes de mesure (k=2; 95%)	mg/kg MS	51 (A) ± 20%	12 (A) ± 20%	18 (A) ± 20%	
Nickel (Ni) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	12 (A) ± 21%	6,0 (A) ± 21%	9,0 (A) ± 21%	
Cuivre (Cu) Incertitudes de mesure (k=2; 95%)	mg/kg MS	9,0 (A) ± 20%	10 (A) ± 20%	9,0 (A) ± 20%	
Zinc (Zn) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	30 (A) ± 20%	38 (A) ± 20%	66 (A) ± 20%	
Arsenic (As) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	16 (A) ± 9%	9,0 (A) ± 9%	17 (A) ± 9%	
Sélénium (Se) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<1,0 (A) ± 12%	<1,0 (A) ± 12%	<1,0 (A) ± 12%	
Molybdène (Mo) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<1,0 (A) ± 14%	<1,0 (A) ± 14%	<1,0 (A) ± 14%	
Cadmium (Cd) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,4 (A) ± 10%	<0,4 (A) ± 10%	<0,4 (A) ± 10%	
Antimoine (Sb) Incertitudes de mesure (k=2; 95%)	mg/kg MS	<1,0 (A) ± 10%	<1,0 (A) ± 10%	<1,0 (A) ± 10%	
Baryum (Ba) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	51 (A) ± 23%	47 (A) ± 23%	160 (A) ± 22%	
Mercure (Hg) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 29%	0,1 (A) ± 29%	0,1 (A) ± 29%	
Plomb (Pb) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	17 (A) ± 20%	39 (A) ± 20%		710 (A) ± 16%

Quality of Life

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-16	22-072805-17	22-072805-18	22-072805-18
Désignation d'échantillon	Unité	T9 0.5/1	T10 0/1	T10 1.5/2	T10 1.5/2

Hydrocarbures halogénés volatils (COHV)

Composés organohalogénés volatils - Méthode interne : COHV-HS/GC/MS - Réalisé par WESSLING Lyon (France)

1,1-Dichloroéthane	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2 ; 95%)	3 3 -	± 16%	± 16%	± 16%	
1,1-Dichloroéthylène	manuficat NAC	<0,1 (A)	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 23%	± 23%	± 23%	
Dichlorométhane	malka MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 30%	± 30%	± 30%	
Tétrachloroéthylène	ma/ka MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 28%	± 28%	± 28%	
1,1,1-Trichloroéthane	ma/ka MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 20%	± 20%	± 20%	
Tétrachlorométhane	ma/ka MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 24%	± 24%	± 24%	
Trichlorométhane	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	Hig/kg ivio	± 18%	± 18%	± 18%	
Trichloroéthylène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	rrig/kg ivis	± 27%	± 27%	± 27%	
Chlorure de vinyle	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	Hig/kg ivio	± 45%	± 45%	± 45%	
cis-1,2-Dichloroéthylène	ma/ka MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 22%	± 22%	± 22%	
trans-1,2-Dichloroéthylène	ma/ka MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 21%	± 21%	± 21%	
Somme des COHV	mg/kg MS	-/-	-/-	-/-	

Benzène et aromatiques (CAV - BTEX)

Benzène et aromatiques - Méthode interne : BTEX-HS/GC/MS - Réalisé par WESSLING Lyon (France)

Benzène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 38%	<0,1 (A) ± 38%	<0,1 (A) ± 38%	
Toluène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 29%	<0,1 (A) ± 29%	<0,1 (A) ± 29%	
Ethylbenzène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 18%	<0,1 (A) ± 18%	<0,1 (A) ± 18%	
m-, p-Xylène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 21%	<0,1 (A) ± 21%	<0,1 (A) ± 21%	
o-Xylène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 23%	<0,1 (A) ± 23%	<0,1 (A) ± 23%	
Cumène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 25%	<0,1 (A) ± 25%	<0,1 (A) ± 25%	
m-, p-Ethyltoluène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 27%	<0,1 (A) ± 27%	<0,1 (A) ± 27%	
Mésitylène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 30%	<0,1 (A) ± 30%	<0,1 (A) ± 30%	
o-Ethyltoluène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 29%	<0,1 (A) ± 29%	<0,1 (A) ± 29%	
Pseudocumène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 28%	<0,1 (A) ± 28%	<0,1 (A) ± 28%	
Somme des CAV	mg/kg MS	-/-	-/-	-/-	

Quality of Life

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

 N° d'échantillon
 22-072805-16
 22-072805-17
 22-072805-18
 22-072805-18

 Désignation d'échantillon
 Unité
 T9 0.5/1
 T10 0/1
 T10 1.5/2
 T10 1.5/2

Hydrocarbures aromatiques polycycliques (HAP)

HAP (16) - NF ISO 18287 - Réalisé par WESSLING Lyon (France)

	7	<u> </u>			
Naphtalène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	
Incertitudes de mesure (k=2 ; 95%) Acénaphtylène		± 17% <0.05 (A)	± 17% <0.05 (A)	± 17% <0.05 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 20%	± 20%	± 20%	
Acénaphtène	ma/ka MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 18%	± 18%	± 18%	
Fluorène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,05 (A) ± 19%	<0,05 (A) ± 19%	<0,05 (A) ± 19%	
Phénanthrène Incertitudes de mesure (k=2; 95%)	mg/kg MS	<0,05 (A) ± 18%	0,10 (A) ± 18%	<0,05 (A) ± 18%	
Anthracène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,05 (A) ± 19%	<0,05 (A) ± 19%	<0,05 (A) ± 19%	
Fluoranthène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,05 (A) ± 20%	0,37 (A) ± 24%	0,14 (A) ± 20%	
Pyrène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,05 (A) ± 21%	0,40 (A) ± 21%	0,12 (A) ± 21%	
Benzo(a)anthracène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,05 (A) ± 19%	0,21 (A) ± 19%	0,07 (A) ± 19%	
Chrysène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,05 (A) ± 18%	0,17 (A) ± 18%	0,07 (A) ± 18%	
Benzo(b)fluoranthène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,05 (A) ± 21%	0,31 (A) ± 22%	0,17 (A) ± 21%	
Benzo(k)fluoranthène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,05 (A) ± 20%	0,13 (A) ± 20%	<0,05 (A) ± 20%	
Benzo(a)pyrène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,05 (A) ± 30%	0,24 (A) ± 30%	0,12 (A) ± 30%	
Dibenzo(a,h)anthracène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,05 (A) ± 32%	<0,05 (A) ± 32%	<0,05 (A) ± 32%	
Indéno(1,2,3,c,d)pyrène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,05 (A) ± 32%	0,16 (A) ± 32%	0,09 (A) ± 32%	
Benzo(g,h,i)pérylène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,05 (A) ± 25%	0,17 (A) ± 25%	0,09 (A) ± 25%	
Somme des HAP	mg/kg MS	-/-	2,3	0,87	

Polychlorobiphényles (PCB)

PCB - Méthode interne : HAP-PCB-GC/MS - Réalisé par WESSLING Lyon (France)

PCB n° 28 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 28%	<0,01 (A) ± 28%	<0,01 (A) ± 28%	
PCB n° 52 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 23%	<0,01 (A) ± 23%	<0,01 (A) ± 23%	
PCB n° 101 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 24%	<0,01 (A) ± 24%	<0,01 (A) ± 24%	
PCB n° 118 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 36%	<0,01 (A) ± 36%	<0,01 (A) ± 36%	
PCB n° 138 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 33%	<0,01 (A) ± 33%	<0,01 (A) ± 33%	
PCB n° 153 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 37%	<0,01 (A) ± 37%	<0,01 (A) ± 37%	
PCB n° 180 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 45%	<0,01 (A) ± 45%	<0,01 (A) ± 45%	
Somme des 7 PCB	mg/kg MS	-/-	-/-	-/-	

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

 N° d'échantillon
 22-072805-16
 22-072805-17
 22-072805-18
 22-072805-18

 Désignation d'échantillon
 Unité
 T9 0.5/1
 T10 0/1
 T10 1.5/2
 T10 1.5/2

Préparation d'échantillon

Minéralisation à l'eau régale	- Méthode interne	· MINERALISATION METALIX	- Réalisé par WESSLING Lyon (France)

Minéralisation à l'eau régale	MS	13/05/2022 (A)	13/05/2022 (A)		30/05/2022 (A)		
Lixiviation							
Lixiviation - Méthode interne : LIXIVIATION 1X2	4H - Réalisé par V	VESSLING Lyon (France)					
Masse totale de l'échantillon	g	78 (A)	99 (A)		81 (A)		
Masse de la prise d'essai	g	21 (A)	21 (A)		21 (A)		
Refus >4mm	g	65 (A)	57 (A)		68 (A)		
pH / Conductivité - NF T 90-008 / NF EN 27888 - Réalisé par WESSLING Lyon (France)							
pH		8 à 21,6°C (A)	8 à 21,5°C (A)		7,7 à 21,2°C (A)		
Conductivité [25°C]	μS/cm	42 (A)	160 (A)		1700 (A)		

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-16	22-072805-17	22-072805-18	22-072805-18
Désignation d'échantillon	Unité	T9 0.5/1	T10 0/1	T10 1.5/2	T10 1.5/2

Sur lixiviat filtré

Résidu sec après filtration à	105+/-5°C - NF T90-029 - Réalisé	nar WESSLING Lyon (France)

Résidu sec après filtration Incertitudes de mesure (k=2 ; 95%)	mg/l E/L	<100 (A) ± 15%	120 (A) ± 15%		1900 (A) ± 15%
· · · · · · · · · · · · · · · · · · ·					± 1376
Anions dissous (filtration à 0,2 µm) - Méthode	interne : ANIONS -	· IC - Réalisé par WESSL	ING Lyon (France)		
Chlorures (CI)	mg/l E/L	<10 (A)	<10 (A)		<10 (A)
Incertitudes de mesure (k=2 ; 95%)	1119/1 22	± 11%	± 11%		± 11%
Sulfates (SO4)	mg/l E/L	<10 (A)	32 (A)		1400 (A)
ncertitudes de mesure (k=2 ; 95%)		± 11%	± 11%		± 11%
Fluorures (F)	mg/l E/L	0,3 (A)	0,5 (A)		0,9 (A)
Phénol total (indice) après distillation sur eau /	lixiviat - NF EN IS	O 14402 - Réalisé par W	ESSLING Lyon (France)		
Phénol (indice)	μg/l E/L	<10 (A)	<10 (A)		<10 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/I E/L	± 15%	± 15%		± 15%
Carbone organique total (COT) - NF EN 1484 -	Réalisé par WES	SLING Lyon (France)			
Carbone organique total (COT)		7,1 (A)	6,9 (A)		3,8 (A)
ncertitudes de mesure (k=2 ; 95%)	mg/l E/L	± 11%	± 11%		± 20%
Métaux dissous sur eaux / lixiviat (ICP-MS) - N	IF EN ISO 17294-2	2 - Réalisé par WESSLIN	G Lyon (France)		
Chrome (Cr)		<5,0 (A)	<5,0 (A)		<5,0 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 24%	± 24%		± 24%
lickel (Ni)		<10 (A)	<10 (A)		<10 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 27%	± 27%		± 27%
Cuivre (Cu)		<5,0 (A)	<5,0 (A)		<5,0 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 43%	± 43%		± 43%
Zinc (Zn)		<50 (A)	<50 (A)		<50 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/I E/L	± 17%	± 17%		± 17%
Arsenic (As)		<3,0 (A)	<3,0 (A)		<3,0 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 27%	± 27%		± 27%
Sélénium (Se)		<10 (A)	<10 (A)		<10 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 25%	± 25%		± 25%
Cadmium (Cd)		<1,5 (A)	<1,5 (A)		<1,5 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 43%	± 43%		± 43%
Baryum (Ba)		<5,0 (A)	35 (A)		100 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/I E/L	± 23%	± 23%		± 23%
Plomb (Pb)		<10 (A)	<10 (A)		22 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 24%	± 24%		± 24%
Molybdène (Mo)	" — "	<10 (A)	<10 (A)		<10 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/I E/L	± 23%	± 23%		± 23%
Antimoine (Sb)	n = n	<5,0 (A)	<5,0 (A)		<5,0 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 24%	± 24%		± 24%
Mercure (Hg)	" — "	<0,1 (A)	<0,1 (A)		<0,1 (A)
ncertitudes de mesure (k=2 ; 95%)	μg/I E/L	± 31%	± 31%		± 31%
Cyanure total sur eau et lixiviat - NF EN ISO 1	4403-2 - Réalisé p	ar WESSLING Lyon (Fra	ince)		
Cyanures totaux (CN)				<0.01 (A)	
Incertitudes de mesure (k=2 · 95%)	mg/l E/L			+ 20%	

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

 N° d'échantillon
 22-072805-16
 22-072805-17
 22-072805-18
 22-072805-18

 Désignation d'échantillon
 Unité
 T9 0.5/1
 T10 0/1
 T10 1.5/2
 T10 1.5/2

Fraction solubilisée

Mercure - (calculé d'éluat à solide (1:10)) - Réalisé par WESSLING Paris (France)

Mercare (calcule a cluat a conde (1:10)) Trea	100 pai WEGGEIIV	er and (France)							
Mercure (Hg)	mg/kg MS	<0,001	<0,001		<0,001				
Carbone organique total (COT) - (calculé d'éluat à solide (1:10)) - Réalisé par WESSLING Paris (France)									
Carbone organique total (COT)	mg/kg MS	71,0	69,0		38,0				
Sulfates (SO4) - (calculé d'éluat à solide (1:10)) - Réalisé par WESSLING Paris (France)									
Sulfates (SO4)	mg/kg MS	<100	320		14000				
,									
Indice Phénol total - (calculé d'éluat à solide (1:	10)) - Réalisé par	WESSLING Paris (France)						
Phénol (indice)	mg/kg MS	<0,1	<0,1		<0,1				
Fraction soluble - Calcul d'ap. résidu sec - Réa	lisé par WESSLIN	G Paris (France)							
Fraction soluble	mg/kg MS	<1000	1200		19000				
Anions dissous - (calculé d'éluat à solide (1:10)) - Réalisé par WE	SSLING Paris (France)							
Fluorures (F)	mg/kg MS	3,0	5,0		9,0				
Chlorures (CI)	mg/kg MS	<100	<100		<100				
Cyanure total - (calculé d'éluat à solide (1:10))	- Réalisé par WES	SLING Paris (France)							
Cyanures totaux (CN)	mg/kg MS			<0,1					
Métaux sur lixiviat - (calculé d'éluat à solide (1:	10)) - Réalisé par '	WESSLING Paris (France))						
Chrome (Cr)	mg/kg MS	<0,05	<0.05		<0.05				
Nickel (Ni)	mg/kg MS	<0,1	<0,1		<0,1				
Cuivre (Cu)	mg/kg MS	<0.05	<0.05		<0.05				
Zinc (Zn)	mg/kg MS	<0,5	<0,5		<0,5				
Arsenic (As)	mg/kg MS	<0.03	<0.03		<0.03				
Sélénium (Se)	mg/kg MS	<0,1	<0,1		<0,1				
Cadmium (Cd)	mg/kg MS	<0,015	<0,015		<0,015				
Baryum (Ba)	mg/kg MS	<0,05	0,35		1,0				
Plomb (Pb)	mg/kg MS	<0,1	<0,1		0,22				
Molybdène (Mo)	mg/kg MS	<0,1	<0,1		<0,1				
Antimoine (Sb)	mg/kg MS	<0,05	<0,05		<0,05				

MB : Matières brutes MS : Matières sèches E/L : Eau/lixiviat

Informations sur les échantillons

Date de réception :	10.05.2022	10.05.2022	10.05.2022	10.05.2022
Type d'échantillon :	Sol / remblais	Sol / remblais	Sol / remblais	Sol / remblais
Date de prélèvement :	10.05.2022	10.05.2022	10.05.2022	10.05.2022
Heure de prélèvement :	00:00	00:00	00:00	00:00
Récipient :	2*250ml VBrun WES002	2*250ml VBrun WES002	2*250ml VBrun WES002	2*250ml VBrun WES002
Température à réception (C°) :	20°C	20°C	20°C	20°C
Début des analyses :	10.05.2022	10.05.2022	10.05.2022	23.05.2022
Fin des analyses :	20.05.2022	20.05.2022	20.05.2022	03.06.2022
Préleveur :				client

< : résultat inférieur à la limite de quantification

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-19	22-072805-20	22-072805-21	22-072805-22
Désignation d'échantillon	Unité	T11 0/0.5	T13 0/0.6	T14 1.5/2	T15 0/1

Analyse physique

Matières sèches - NF ISO 11465 - Réalisé par WESSLING Lyon (France)

Matière sèche	% masse MB	89,2 (A)	92,1 (A)	91,9 (A)	88,6 (A)
Incertitudes de mesure (k=2; 95%)	70 IIIasse IVID	± 9%	± 8%	± 8%	± 9%

Paramètres globaux / Indices

Carbone organique total sur mat. solide (combustion sèche) - NF ISO 10694 - Réalisé par WESSLING Lyon (France)

Carbone organique total (COT)	mg/kg MS	16000 (A)	11000 (A)	<500 (A)	14000 (A)
Incertitudes de mesure (k=2; 95%)	rrig/kg ivis	± 6%	± 6%	± 35%	± 6%

Indice Hydrocarbures (C10-C40) (Agitation mécanique, purification au Florisil) - NF EN ISO 16703 - Réalisé par WESSLING Lyon (France)

Indice hydrocarbure C10-C40 Incertitudes de mesure (k=2; 95%)	mg/kg MS	67 (A) ± 23%	25 (A) ± 23%	<20 (A) ± 23%	120 (A) ± 23%
Hydrocarbures > C10-C12	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C12-C16	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C16-C21	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C21-C35	mg/kg MS	49	<20	<20	97
Hydrocarbures > C35-C40	mg/kg MS	<20	<20	<20	<20

Métaux lourds

Métaux - Méthode interne : METAUX-ICP/MS - Réalisé par WESSLING Lyon (France)

Motadax Motified Miterine : ME 17 text for 7Me	Treamed par WEGG	Elito Eyon (France)			
Chrome (Cr) Incertitudes de mesure (k=2; 95%)	mg/kg MS	13 (A) ± 20%	14 (A) ± 20%	36 (A) ± 20%	10 (A) ± 20%
Nickel (Ni) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	9,0 (A) ± 21%	9,0 (A) ± 21%	14 (A) ± 21%	7,0 (A) ± 21%
Cuivre (Cu) Incertitudes de mesure (k=2; 95%)	mg/kg MS	14 (A) ± 20%	17 (A) ± 20%	10 (A) ± 20%	20 (A) ± 20%
Zinc (Zn) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	110 (A) ± 20%	83 (A) ± 20%	32 (A) ± 20%	110 (A) ± 20%
Arsenic (As) Incertitudes de mesure (k=2; 95%)	mg/kg MS	6,0 (A) ± 9%	7,0 (A) ± 9%	25 (A) ± 9%	7,0 (A) ± 9%
Sélénium (Se) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<1,0 (A) ± 12%	<1,0 (A) ± 12%	<1,0 (A) ± 12%	<1,0 (A) ± 12%
Molybdène (Mo) Incertitudes de mesure (k=2; 95%)	mg/kg MS	<1,0 (A) ± 14%	<1,0 (A) ± 14%	<1,0 (A) ± 14%	<1,0 (A) ± 14%
Cadmium (Cd) Incertitudes de mesure (k=2; 95%)	mg/kg MS	<0,4 (A) ± 10%	<0,4 (A) ± 10%	<0,4 (A) ± 10%	0,5 (A) ± 10%
Antimoine (Sb) Incertitudes de mesure (k=2; 95%)	mg/kg MS	2,0 (A) ± 10%	<1,0 (A) ± 10%	<1,0 (A) ± 10%	<1,0 (A) ± 10%
Baryum (Ba) Incertitudes de mesure (k=2; 95%)	mg/kg MS	60 (A) ± 23%	79 (A) ± 22%	58 (A) ± 23%	79 (A) ± 22%
Mercure (Hg) Incertitudes de mesure (k=2; 95%)	mg/kg MS	<0,1 (A) ± 29%	0,3 (A) ± 29%	<0,1 (A) ± 29%	0,3 (A) ± 29%
Plomb (Pb) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	50 (A) ± 20%	52 (A) ± 20%	27 (A) ± 20%	83 (A) ± 16%

Quality of Life

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-19	22-072805-20	22-072805-21	22-072805-22
Désignation d'échantillon	Unité	T11 0/0.5	T13 0/0.6	T14 1.5/2	T15 0/1

Hydrocarbures halogénés volatils (COHV)

Composés organohalogénés volatils - Méthode interne : COHV-HS/GC/MS - Réalisé par WESSLING Lyon (France)

1,1-Dichloroéthane	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg WO	± 16%	± 16%	± 16%	± 16%
1,1-Dichloroéthylène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg WS	± 23%	± 23%	± 23%	± 23%
Dichlorométhane	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)	mg/kg ivis	± 30%	± 30%	± 30%	± 30%
Tétrachloroéthylène	malka MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 28%	± 28%	± 28%	± 28%
1,1,1-Trichloroéthane	manufact MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 20%	± 20%	± 20%	± 20%
Tétrachlorométhane	manufact MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 24%	± 24%	± 24%	± 24%
Trichlorométhane	mallea MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 18%	± 18%	± 18%	± 18%
Trichloroéthylène	manufact MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 27%	± 27%	± 27%	± 27%
Chlorure de vinyle	mallea MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 45%	± 45%	± 45%	± 45%
cis-1,2-Dichloroéthylène	malka MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 22%	± 22%	± 22%	± 22%
trans-1,2-Dichloroéthylène	mallea MC	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 21%	± 21%	± 21%	± 21%
Somme des COHV	mg/kg MS	-/-	-/-	-/-	-/-

Benzène et aromatiques (CAV - BTEX)

Benzène et aromatiques - Méthode interne : BTEX-HS/GC/MS - Réalisé par WESSLING Lyon (France)

Benzène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 38%	± 38%	± 38%	± 38%
Toluène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 29%	± 29%	± 29%	± 29%
Ethylbenzène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 18%	± 18%	± 18%	± 18%
m-, p-Xylène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 21%	± 21%	± 21%	± 21%
o-Xylène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 23%	± 23%	± 23%	± 23%
Cumène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 25%	± 25%	± 25%	± 25%
m-, p-Ethyltoluène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 27%	± 27%	± 27%	± 27%
Mésitylène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 30%	± 30%	± 30%	± 30%
o-Ethyltoluène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 29%	± 29%	± 29%	± 29%
Pseudocumène	mg/kg MS	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 28%	± 28%	± 28%	± 28%
Somme des CAV	mg/kg MS	-/-	-/-	-/-	-/-

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

22-072805-19 22-072805-21 22-072805-20 22-072805-22 N° d'échantillon T11 0/0.5 T13 0/0.6 T14 1.5/2 T15 0/1 Désignation d'échantillon Unité

Hydrocarbures aromatiques polycycliques (HAP)

HAP (16) - NF ISO 18287 - Réalisé par WESSLING Lyon (France)

(10) 111 100 10201 1100 pd. 112001	The Control of the Co							
Naphtalène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 17%	± 17%	± 17%	± 17%			
Acénaphtylène	mg/kg MS	0,07 (A)	<0,05 (A)	<0,05 (A)	0,07 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 20%	± 20%	± 20%	± 20%			
Acénaphtène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 18%	± 18%	± 18%	± 18%			
Fluorène	mg/kg MS	<0,05 (A)	<0,05 (A)	<0,05 (A)	<0,05 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 19%	± 19%	± 19%	± 19%			
Phénanthrène	mg/kg MS	0,49 (A)	0,27 (A)	<0,05 (A)	0,16 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 17%	± 17%	± 18%	± 18%			
Anthracène Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	0,16 (A) ± 19%	0,08 (A) ± 19%	<0,05 (A) ± 19%	0,09 (A) ± 19%			
Fluoranthène	mg/kg MS	1,5 (A)	0,56 (A)	<0,05 (A)	0,51 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 24%	± 24%	± 20%	± 24%			
Pyrène	mg/kg MS	1,6 (A)	0,40 (A)	<0,05 (A)	0,41 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 21%	± 21%	± 21%	± 21%			
Benzo(a)anthracène	mg/kg MS	0,74 (A)	0,26 (A)	<0,05 (A)	0,23 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 23%	± 23%	± 19%	± 19%			
Chrysène	mg/kg MS	0,70 (A)	0,26 (A)	<0,05 (A)	0,27 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 18%	± 18%	± 18%	± 18%			
Benzo(b)fluoranthène	mg/kg MS	1,6 (A)	0,45 (A)	<0,05 (A)	0,53 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 22%	± 22%	± 21%	± 22%			
Benzo(k)fluoranthène	mg/kg MS	0,56 (A)	0,17 (A)	<0,05 (A)	0,18 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 18%	± 20%	± 20%	± 20%			
Benzo(a)pyrène	mg/kg MS	1,1 (A)	0,31 (A)	<0,05 (A)	0,33 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 30%	± 30%	± 30%	± 30%			
Dibenzo(a,h)anthracène	mg/kg MS	<0,21 (A)	<0,07 (A)	<0,05 (A)	<0,07 (A)			
Incertitudes de mesure (k=2; 95%)		± 32%	± 32%	± 32%	± 32%			
Indéno(1,2,3,c,d)pyrène	mg/kg MS	0,74 (A)	0,20 (A)	<0,05 (A)	0,23 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 25%	± 32%	± 32%	± 32%			
Benzo(g,h,i)pérylène	mg/kg MS	0,86 (A)	0,22 (A)	<0,05 (A)	0,26 (A)			
Incertitudes de mesure (k=2 ; 95%)		± 17%	± 25%	± 25%	± 24%			
Somme des HAP	mg/kg MS	10,0	3,2	-/-	3,3			

Polychlorobiphényles (PCB)

PCB - Méthode interne : HAP-PCB-GC/MS - Réalisé par WESSLING Lyon (France)

PCB n° 28	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 28%	± 28%	± 28%	± 28%
PCB n° 52	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 23%	± 23%	± 23%	± 23%
PCB n° 101	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 24%	± 24%	± 24%	± 24%
PCB n° 118	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 36%	± 36%	± 36%	± 36%
PCB n° 138	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 33%	± 33%	± 33%	± 33%
PCB n° 153	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 37%	± 37%	± 37%	± 37%
PCB n° 180	mg/kg MS	<0,01 (A)	<0,01 (A)	<0,01 (A)	<0,01 (A)
Incertitudes de mesure (k=2 ; 95%)		± 45%	± 45%	± 45%	± 45%
Somme des 7 PCB	mg/kg MS	-/-	-/-	-/-	-/-

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-19	22-072805-20	22-072805-21	22-072805-22
Désignation d'échantillon	Unité	T11 0/0.5	T13 0/0.6	T14 1.5/2	T15 0/1

Préparation d'échantillon

Minéralisation à l'eau régale	- Méthode interne	· MINERALISATION METALIX	 Réalisé par WESSLING Lvon (France)

Minéralisation à l'eau régale	MS	13/05/2022 (A)	13/05/2022 (A)	13/05/2022 (A)	13/05/2022 (A)
Lixiviation					
Lixiviation - Méthode interne : LIXIVIATION 1X2	4H - Réalisé par V	VESSLING Lyon (France)			
Masse totale de l'échantillon	g	79 (A)	84 (A)	71 (A)	91 (A)
Masse de la prise d'essai	g	21 (A)	20 (A)	20 (A)	20 (A)
Refus >4mm	g	39 (A)	32 (A)	35 (A)	56 (A)
pH / Conductivité - NF T 90-008 / NF EN 27888	3 - Réalisé par WE	ESSLING Lyon (France)			
pH		8 à 21,1°C (A)	8,1 à 21°C (A)	7,4 à 20,9°C (A)	8,1 à 21°C (A)
Conductivité [25°C]	μS/cm	180 (A)	130 (A)	440 (A)	110 (A)

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-19	22-072805-20	22-072805-21	22-072805-22
Désignation d'échantillon	Unité	T11 0/0.5	T13 0/0.6	T14 1.5/2	T15 0/1

Sur lixiviat filtré

Résidu sec après filtration à	105+/-5°C - NF T90-029	- Réalisé par WESSLING Lyon (France	۱د

Résidu sec après filtration	mg/l E/L	130 (A)	<100 (A)	350 (A)	<100 (A)
Incertitudes de mesure (k=2; 95%)		± 15%	± 15%	± 15%	± 15%
Anions dissous (filtration à 0,2 µm) - Méthode	nterne : ANIONS -	IC - Réalisé par WESSLI	NG Lyon (France)		
Chlorures (CI)	mg/l E/L	<10 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2 ; 95%)		± 11%	± 11%	± 11%	± 11%
Sulfates (SO4)	mg/l E/L	19 (A)	<10 (A)	190 (A)	<10 (A)
Incertitudes de mesure (k=2 ; 95%)		± 11%	± 11%	± 11%	± 11%
Fluorures (F)	mg/I E/L	0,5 (A)	0,6 (A)	<0,1 (A)	0,8 (A)
Phénol total (indice) après distillation sur eau / Phénol (indice)	lixiviat - NF EN IS	14402 - Realise par WE <10 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	± 15%	± 15%	± 15%	± 15%
Carbone organique total (COT) - NF EN 1484 -	Réalisé par WESS	SLING Lyon (France)			
Carbone organique total (COT) Incertitudes de mesure (k=2; 95%)	mg/l E/L	6,5 (A) ± 11%	5,1 (A) ± 11%	1,6 (A) ± 20%	5,8 (A) ± 11%
Métaux dissous sur eaux / lixiviat (ICP-MS) - N	F EN ISO 17294-2	Réalisé par WESSLING	G Lyon (France)		
Chrome (Cr)	μg/l E/L	<5,0 (A)	<5,0 (A)	<5,0 (A)	<5,0 (A)
Incertitudes de mesure (k=2 ; 95%)		± 24%	± 24%	± 24%	± 24%
Nickel (Ni)	μg/l E/L	<10 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2 ; 95%)		± 27%	± 27%	± 27%	± 27%
Cuivre (Cu)	μg/l E/L	6,0 (A)	<5,0 (A)	<5,0 (A)	11 (A)
Incertitudes de mesure (k=2 ; 95%)		± 43%	± 43%	± 43%	± 43%
Zinc (Zn)	μg/l E/L	<50 (A)	<50 (A)	<50 (A)	<50 (A)
Incertitudes de mesure (k=2 ; 95%)		± 17%	± 17%	± 17%	± 17%
Arsenic (As)	μg/l E/L	<3,0 (A)	<3,0 (A)	<3,0 (A)	<3,0 (A)
Incertitudes de mesure (k=2 ; 95%)		± 27%	± 27%	± 27%	± 27%
Sélénium (Se)	μg/l E/L	<10 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2 ; 95%)		± 25%	± 25%	± 25%	± 25%
Cadmium (Cd)	μg/l E/L	<1,5 (A)	<1,5 (A)	<1,5 (A)	<1,5 (A)
Incertitudes de mesure (k=2 ; 95%)		± 43%	± 43%	± 43%	± 43%
Baryum (Ba)	μg/l E/L	25 (A)	29 (A)	20 (A)	42 (A)
Incertitudes de mesure (k=2 ; 95%)		± 23%	± 23%	± 23%	± 23%
Plomb (Pb)	μg/l E/L	<10 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2 ; 95%)		± 24%	± 24%	± 24%	± 24%
Molybdène (Mo)	μg/l E/L	<10 (A)	<10 (A)	<10 (A)	<10 (A)
Incertitudes de mesure (k=2 ; 95%)		± 23%	± 23%	± 23%	± 23%
Antimoine (Sb) Incertitudes de mesure (k=2; 95%)	μg/l E/L	6,0 (A) ± 24%	<5,0 (A) ± 24%	<5,0 (A) ± 24%	<5,0 (A) ± 24%
Mercure (Hg)	μg/l E/L	<0,1 (A)	<0,1 (A)	<0,1 (A)	<0,1 (A)
Incertitudes de mesure (k=2 ; 95%)		± 31%	± 31%	± 31%	± 31%
Cyanure total sur eau et lixiviat - NF EN ISO 1	4403-2 - Réalisé p	ar WESSLING Lyon (Fran	nce)		
Cyanures totaux (CN) Incertitudes de mesure (k=2 ; 95%)	mg/l E/L	<0,01 (A) ± 20%	<0,01 (A) ± 20%		

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

N° d'échantillon		22-072805-19	22-072805-20	22-072805-21	22-072805-22
Désignation d'échantillon	Unité	T11 0/0.5	T13 0/0.6	T14 1.5/2	T15 0/1

Fraction solubilisée

Mercure - (calculé d'éluat à solide (1:10)) - Réalisé par WESSLING Paris (France)

Mercure - (calcule d'eluat à solide (1.10)) -	Realise par WESSLING F	rans (France)			
Mercure (Hg)	mg/kg MS	<0,001	<0,001	<0,001	<0,001
Carbone organique total (COT) - (calculé c	d'éluat à solide (1:10)) - R∉	éalisé par WESSLING Pa	aris (France)		
Carbone organique total (COT)	mg/kg MS	65,0	51,0	16,0	58,0
	1.40\\\ B((N. N.O. D (5			
Sulfates (SO4) - (calculé d'éluat à solide (
Sulfates (SO4)	mg/kg MS	190	<100	1900	<100
Indice Phénol total - (calculé d'éluat à solic	de (1:10)) - Réalisé par Wi	ESSLING Paris (France))		
Phénol (indice)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
5 " 111 01 1 1 (11	D. F. A. WESSLING	D : (F)			
Fraction soluble - Calcul d'ap. résidu sec -		· · ·			
Fraction soluble	mg/kg MS	1300	<1000	3500	<1000
Anions dissous - (calculé d'éluat à solide (1:10)) - Réalisé par WESS	SLING Paris (France)			
Fluorures (F)	mg/kg MS	5,0	6,0	<1,0	8,0
Chlorures (CI)	mg/kg MS	<100	<100	<100	<100
Cyanure total - (calculé d'éluat à solide (1:	:10)) - Réalisé par WESSL	_ING Paris (France)			
Cyanures totaux (CN)	mg/kg MS	<0,1	<0,1		
Métaux sur lixiviat - (calculé d'éluat à solid	de (1:10)) - Réalisé par Wi	ESSLING Paris (France)	1		
Chrome (Cr)	mg/kg MS	<0.05	<0.05	<0.05	<0.05
Nickel (Ni)	mg/kg MS	<0,1	<0,1	<0.1	<0,1
Cuivre (Cu)	mg/kg MS	0,06	<0,05	<0,05	0,11
Zinc (Zn)	mg/kg MS	<0,5	<0,5	<0,5	<0,5
Arsenic (As)	mg/kg MS	<0,03	<0,03	<0,03	<0,03
Sélénium (Se)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Cadmium (Cd)	mg/kg MS	<0,015	<0,015	<0,015	<0,015
Baryum (Ba)	mg/kg MS	0,25	0,29	0,2	0,42
Plomb (Pb)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Molybdène (Mo)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Antimoine (Sb)	mg/kg MS	0,06	<0,05	<0,05	<0,05

MB : Matières brutes MS : Matières sèches E/L : Eau/lixiviat

Informations sur les échantillons

Date de réception :	10.05.2022	10.05.2022	10.05.2022	10.05.2022
Type d'échantillon :	Sol / remblais	Sol / remblais	Sol / remblais	Sol / remblais
Date de prélèvement :	10.05.2022	10.05.2022	10.05.2022	10.05.2022
Heure de prélèvement :	00:00	00:00	00:00	00:00
Récipient :	2*250ml VBrun WES002	2*250ml VBrun WES002	250ml VBrun WES002	2*250ml VBrun WES002
Température à réception (C°) :	20°C	20°C	20°C	20°C
Début des analyses :	10.05.2022	10.05.2022	10.05.2022	10.05.2022
Fin des analyses :	20.05.2022	20.05.2022	20.05.2022	20.05.2022

< : résultat inférieur à la limite de quantification

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

 N° d'échantillon
 22-072805-24
 22-072805-25

 Désignation d'échantillon
 Unité
 T16 0/1
 T19 0/1

Analyse physique

Matières sèches - NF ISO 11465 - Réalisé par WESSLING Lyon (France)

Matière sèche		90,6 (A)	91 6 (A)	
	% masse MB	00,0 ()	0.,0 ()	
Incertitudes de mesure (k=2 : 95%)	70 Masse MB	± 8%	± 8%	

Paramètres globaux / Indices

Carbone organique total sur mat. solide (combustion sèche) - NF ISO 10694 - Réalisé par WESSLING Lyon (France)

Carbone organique total (COT) mg/kg MS 6100 (A) <500 (A)
Incertitudes de mesure (k=2 : 95%) ± 28% ± 35%

Indice Hydrocarbures (C10-C40) (Agitation mécanique, purification au Florisil) - NF EN ISO 16703 - Réalisé par WESSLING Lyon (France)

Indice hydrocarbure C10-C40 Incertitudes de mesure (k=2; 95%)	mg/kg MS	25 (A) ± 23%	<20 (A) ± 23%
Hydrocarbures > C10-C12	mg/kg MS	<20	<20
Hydrocarbures > C12-C16	mg/kg MS	<20	<20
Hydrocarbures > C16-C21	mg/kg MS	<20	<20
Hydrocarbures > C21-C35	mg/kg MS	<20	<20
Hydrocarbures > C35-C40	mg/kg MS	<20	<20

Métaux lourds

Métaux - Méthode interne : METAUX-ICP/MS - Réalisé par WESSLING Lyon (France)

Chrome (Cr) Incertitudes de mesure (k=2; 95%)	mg/kg MS	14 (A) ± 20%	15 (A) ± 20%	
Nickel (Ni) Incertitudes de mesure (k=2; 95%)	mg/kg MS	8,0 (A) ± 21%	9,0 (A) ± 21%	
Cuivre (Cu) Incertitudes de mesure (k=2; 95%)	mg/kg MS	12 (A) ± 20%	5,0 (A) ± 20%	
Zinc (Zn) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	27 (A) ± 20%	26 (A) ± 20%	
Arsenic (As) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	9,0 (A) ± 9%	5,0 (A) ± 9%	
Sélénium (Se) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<1,0 (A) ± 12%	<1,0 (A) ± 12%	
Molybdène (Mo) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<1,0 (A) ± 14%	<1,0 (A) ± 14%	
Cadmium (Cd) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,4 (A) ± 10%	<0,4 (A) ± 10%	
Antimoine (Sb) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<1,0 (A) ± 10%	<1,0 (A) ± 10%	
Baryum (Ba) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	39 (A) ± 23%	51 (A) ± 23%	
Mercure (Hg) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,1 (A) ± 29%	<0,1 (A) ± 29%	
Plomb (Pb) Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	19 (A) ± 20%	14 (A) ± 20%	

Quality of Life

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

 N° d'échantillon
 22-072805-24
 22-072805-25

 Désignation d'échantillon
 Unité
 T16 0/1
 T19 0/1

Hydrocarbures halogénés volatils (COHV)

Composés organohalogénés volatils - Méthode interne : COHV-HS/GC/MS - Réalisé par WESSLING Lyon (France)

4.4.00.1170		.0.4 (1)	.0.4 (1)	
1,1-Dichloroéthane	mg/kg MS	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/kg me	± 16%	± 16%	
1,1-Dichloroéthylène		<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 23%	± 23%	
Dichlorométhane	mg/kg MS	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2 ; 95%)		± 30%	± 30%	
Tétrachloroéthylène	// 140	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 28%	± 28%	
1,1,1-Trichloroéthane		<0,1 (A)	<0,1 (A)	
	mg/kg MS	,	, , ,	
Incertitudes de mesure (k=2 ; 95%)	J J	± 20%	± 20%	
Tétrachlorométhane	malka MC	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 24%	± 24%	
Trichlorométhane		<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 18%	± 18%	
,				
Trichloroéthylène	mg/kg MS	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/ng mo	± 27%	± 27%	
Chlorure de vinyle		<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 45%	± 45%	
· · · · · · · · · · · · · · · · · · ·				
cis-1,2-Dichloroéthylène	mg/kg MS	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2 ; 95%)	3 3 -	± 22%	± 22%	
trans-1,2-Dichloroéthylène	malka MC	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 21%	± 21%	
Somme des COHV	mg/kg MS	-/-	-/-	

Benzène et aromatiques (CAV - BTEX)

Benzène et aromatiques - Méthode interne : BTEX-HS/GC/MS - Réalisé par WESSLING Lyon (France)

Benzène	mg/kg MS	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2 ; 95%)	Hig/kg ivio	± 38%	± 38%	
Toluène	malka MC	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 29%	± 29%	
Ethylbenzène	malka MC	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 18%	± 18%	
m-, p-Xylène	malka MC	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 21%	± 21%	
o-Xylène	malka MC	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 23%	± 23%	
Cumène	malka MC	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 25%	± 25%	
m-, p-Ethyltoluène	malka MC	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 27%	± 27%	
Mésitylène	malka MC	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 30%	± 30%	
o-Ethyltoluène	malka MC	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 29%	± 29%	
Pseudocumène	ma/ka MC	<0,1 (A)	<0,1 (A)	
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 28%	± 28%	
Somme des CAV	mg/kg MS	-/-	-/-	

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

 N° d'échantillon
 22-072805-24
 22-072805-25

 Désignation d'échantillon
 Unité
 T16 0/1
 T19 0/1

Hydrocarbures aromatiques polycycliques (HAP)

HAP (16) - NF ISO 18287 - Réalisé par WESSLING Lyon (France)

111 (10) 11 100 10201 11001100 pai 11200		1		
Naphtalène	mg/kg MS	<0,05 (A)	<0,05 (A)	
Incertitudes de mesure (k=2 ; 95%)		± 17%	± 17%	
Acénaphtylène	mg/kg MS	<0,05 (A)	<0,05 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/ng we	± 20%	± 20%	
Acénaphtène	mg/kg MS	<0,05 (A)	<0,05 (A)	
Incertitudes de mesure (k=2 ; 95%)	Hig/kg IVIS	± 18%	± 18%	
Fluorène		<0,05 (A)	<0,05 (A)	
Incertitudes de mesure (k=2; 95%)	mg/kg MS	± 19%	± 19%	
Phénanthrène	" 140	<0,05 (A)	<0,05 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 18%	± 18%	
Anthracène		<0.05 (A)	<0.05 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 19%	± 19%	
Fluoranthène		0.09 (A)	<0.05 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 20%	± 20%	
Pyrène		0.08 (A)	<0.05 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 21%	± 21%	
Benzo(a)anthracène		<0.05 (A)	<0,05 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 19%	± 19%	
, , ,		<0.05 (A)	<0.05 (A)	
Chrysène	mg/kg MS	<0,03 (A) ± 18%	<0,03 (A) ± 18%	
Incertitudes de mesure (k=2 ; 95%)				
Benzo(b)fluoranthène	mg/kg MS	0,10 (A)	<0,05 (A)	
Incertitudes de mesure (k=2 ; 95%)	0 0	± 21%	± 21%	
Benzo(k)fluoranthène	mg/kg MS	<0,05 (A)	<0,05 (A)	
Incertitudes de mesure (k=2 ; 95%)		± 20%	± 20%	
Benzo(a)pyrène	mg/kg MS	0,06 (A)	<0,05 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/ng we	± 30%	± 30%	
Dibenzo(a,h)anthracène	mg/kg MS	<0,05 (A)	<0,05 (A)	
Incertitudes de mesure (k=2 ; 95%)	Hig/kg MS	± 32%	± 32%	
Indéno(1,2,3,c,d)pyrène	malka MC	<0,05 (A)	<0,05 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 32%	± 32%	
Benzo(g,h,i)pérylène	malka MC	<0,05 (A)	<0,05 (A)	
Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	± 25%	± 25%	
Somme des HAP	mg/kg MS	0,32	-/-	
	5 0			

Polychlorobiphényles (PCB)

PCB - Méthode interne : HAP-PCB-GC/MS - Réalisé par WESSLING Lyon (France)

PCB n° 28 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 28%	<0,01 (A) ± 28%	
PCB n° 52 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 23%	<0,01 (A) ± 23%	
PCB n° 101 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 24%	<0,01 (A) ± 24%	
PCB n° 118 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 36%	<0,01 (A) ± 36%	
PCB n° 138 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 33%	<0,01 (A) ± 33%	
PCB n° 153 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 37%	<0,01 (A) ± 37%	
PCB n° 180 Incertitudes de mesure (k=2 ; 95%)	mg/kg MS	<0,01 (A) ± 45%	<0,01 (A) ± 45%	
Somme des 7 PCB	mg/kg MS	-/-	-/-	

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

 N° d'échantillon
 22-072805-24
 22-072805-25

 Désignation d'échantillon
 Unité
 T16 0/1
 T19 0/1

Préparation d'échantillon

Minéralisation à l'eau régale	- Méthode interne	· MINERALISATION METALIX	- Réalisé par WESSLING Lyon (France)

Minéralisation à l'eau régale	MS	13/05/2022 (A)	13/05/2022 (A)				
Lixiviation							
Lixiviation - Méthode interne : LIXIVIATION 1X24H - Réalisé par WESSLING Lyon (France)							
Masse totale de l'échantillon	g	74 (A)	72 (A)				
Masse de la prise d'essai	g	20 (A)	20 (A)				
Refus >4mm	g	52 (A)	35 (A)				
pH / Conductivité - NF T 90-008 / NF EN 27888 - Réalisé par WESSLING Lyon (France)							
pH		8 à 20,8°C (A)	8 à 20,8°C (A)				
Conductivité [25°C]	μS/cm	140 (A)	19 (A)				

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

 N° d'échantillon
 22-072805-24
 22-072805-25

 Désignation d'échantillon
 Unité
 T16 0/1
 T19 0/1

Sur lixiviat filtré

Résidu sec anrès filtration à	105+/-5°C - NF T90-029	- Réalisé par WESSLING Lyon (France	٠,
itesidu sec apres ilitiation a	1001/-0 0 - 101 100-020	- INCALISE PAL VILOGELING LYOLI (I TALICE	

Résidu sec après filtration Incertitudes de mesure (k=2 ; 95%)	mg/l E/L	120 (A) ± 15%	<100 (A) ± 15%				
Anions dissous (filtration à 0,2 μm) - Méthode interne : ANIONS - IC - Réalisé par WESSLING Lyon (France)							
Chlorures (Cl) Incertitudes de mesure (k=2 ; 95%)	mg/l E/L	<10 (A) ± 11%	<10 (A) ± 11%				
Sulfates (SO4) Incertitudes de mesure (k=2 ; 95%)	mg/l E/L	10 (A) ± 11%	<10 (A) ± 11%				
Fluorures (F)	mg/l E/L	0,3 (A)	<0,1 (A)				
Phénol total (indice) après distillation sur eau / lixiviat - NF EN ISO 14402 - Réalisé par WESSLING Lyon (France)							
Phénol (indice) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	<10 (A) ± 15%	<10 (A) ± 15%				
Carbone organique total (COT) - NF EN 1484 -	Réalisé par WESS	SLING Lyon (France)					
Carbone organique total (COT) Incertitudes de mesure (k=2 ; 95%)	mg/l E/L	13 (A) ± 11%	14 (A) ± 11%				
Métaux dissous sur eaux / lixiviat (ICP-MS) - N	F EN ISO 17294-2	: - Réalisé par WESSLING	S Lyon (France)				
Chrome (Cr) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	<5,0 (A) ± 24%	6,0 (A) ± 24%				
Nickel (Ni) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	<10 (A) ± 27%	<10 (A) ± 27%				
Cuivre (Cu) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	6,0 (A) ± 43%	<5,0 (A) ± 43%				
Zinc (Zn) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	<50 (A) ± 17%	<50 (A) ± 17%				
Arsenic (As) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	<3,0 (A) ± 27%	<3,0 (A) ± 27%				
Sélénium (Se) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	<10 (A) ± 25%	<10 (A) ± 25%				
Cadmium (Cd) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	<1,5 (A) ± 43%	<1,5 (A) ± 43%				
Baryum (Ba) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	31 (A) ± 23%	12 (A) ± 23%				
Plomb (Pb) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	<10 (A) ± 24%	<10 (A) ± 24%				
Molybdène (Mo) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	<10 (A) ± 23%	<10 (A) ± 23%				
Antimoine (Sb) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	<5,0 (A) ± 24%	<5,0 (A) ± 24%				
Mercure (Hg) Incertitudes de mesure (k=2 ; 95%)	μg/l E/L	<0,1 (A) ± 31%	<0,1 (A) ± 31%				
Cyanure total sur eau et lixiviat - NF EN ISO 14	1403-2 - Réalisé p	ar WESSLING Lyon (Fran	nce)				
Cyanures totaux (CN) Incertitudes de mesure (k=2 ; 95%)	mg/l E/L	<0,01 (A) ± 20%					

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 16.06.2022

 N° d'échantillon
 22-072805-24
 22-072805-25

 Désignation d'échantillon
 Unité
 T16 0/1
 T19 0/1

Fraction solubilisée

Mercure -	(calculé d'élua	t à solide	(1.10)) -	Réalisé pa	ar WESSLING	Paris (France)

Mercure - (calculé d'éluat à solide (1:10)) - Réal	ise par WESSLING	3 Paris (France)		
Mercure (Hg)	mg/kg MS	<0,001	<0,001	
Carbone organique total (COT) - (calculé d'éluat	: à solide (1:10)) -	Réalisé nar WESSI ING P	aris (France)	
			<u> </u>	
Carbone organique total (COT)	mg/kg MS	130	140	
Sulfates (SO4) - (calculé d'éluat à solide (1:10))	- Réalisé par WE	SSLING Paris (France)		
Sulfates (SO4)	mg/kg MS	100	<100	
Indice Phénol total - (calculé d'éluat à solide (1:	10)) - Réalisé par	WESSLING Paris (France)	
Phénol (indice)	mg/kg MS	<0,1	<0,1	
Fraction soluble - Calcul d'ap. résidu sec - Réal	isé par WESSLIN	G Paris (France)		
Fraction soluble	mg/kg MS	1200	<1000	
Anions dissous - (calculé d'éluat à solide (1:10))) - Réalisé par WE	SSLING Paris (France)		
Fluorures (F)	mg/kg MS	3,0	<1,0	
Chlorures (CI)	mg/kg MS	<100	<100	
Cyanure total - (calculé d'éluat à solide (1:10)) -	Réalisé par WES	SLING Paris (France)		
Cyanures totaux (CN)	mg/kg MS	<0,1		
Métaux sur lixiviat - (calculé d'éluat à solide (1:1	10)) - Réalisé par '	WESSLING Paris (France)		
Chrome (Cr)	mg/kg MS	<0,05	0,06	
Nickel (Ni)	mg/kg MS	<0,1	<0,1	
Cuivre (Cu)	mg/kg MS	0,06	<0,05	
Zinc (Zn)	mg/kg MS	<0,5	<0,5	
Arsenic (As)	mg/kg MS	<0,03	<0,03	
Sélénium (Se)	mg/kg MS	<0,1	<0,1	
Cadmium (Cd)	mg/kg MS	<0,015	<0,015	
Baryum (Ba)	mg/kg MS	0,31	0,12	
Plomb (Pb)	mg/kg MS	<0,1	<0,1	
Molybdène (Mo)	mg/kg MS	<0,1	<0,1	
Antimoine (Sb)	mg/kg MS	<0,05	<0,05	

MB : Matières brutes MS : Matières sèches E/L : Eau/lixiviat

Informations sur les échantillons

Date de réception :	10.05.2022	10.05.2022
Type d'échantillon :	Sol / remblais	Sol / remblais
Date de prélèvement :	10.05.2022	10.05.2022
Heure de prélèvement :	00:00	00:00
Récipient :	2*250ml VBrun	2*250ml VBrun
Recipient.	WES002	WES002
Température à réception (C°) :	20°C	20°C
Début des analyses :	10.05.2022	10.05.2022
Fin des analyses :	20.05.2022	20.05.2022

< : résultat inférieur à la limite de quantification

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56 labo@wessling.fr · www.wessling.fr

Le 16.06.2022

Informations sur vos résultats d'analyses :

Les seuils de quantification fournis n'ont pas été recalculés d'après la matière sèche de l'échantillon. Les seuils sont susceptibles d'être augmentés en fonction de la nature chimique de la matrice.

Limite de quantification augmentée en raison du résultat de blanc de lixiviation supérieur à la limite de quantification de la méthode : -Carbone organique total (COT), Carbone organique total (COT) : Valable pour les échantillons 22-072805-02, -03, -08, -10, -12, -14

Lixiviation: La prise d'essai effectuée sur l'échantillon brut en vue de la lixiviation est réalisée au carottier sans quartage préalable. La quantité de prise d'essai effectuée sur l'échantillon est de 20 g après homogénéisation, séchage et broyage en respectant le ratio 1/10.

Ce rapport est une version modifiée. Il annule et remplace les rapports d'essai n°UPA22-019260-1 et UPA22-021744-1 que nous vous demandons de détruire pour éviter toute utilisation malencontreuse

Motif amendement: Remplacement des résultats de la 1ère analyse pour le chrome total lixiviable, par les résultats de la contre-analyse de l'échantillon 22-072805-10, et remplacement des résultats de la 1ère analyse pour les paramètres lixiviables et plomb sur brut, par les résultats de la contre-analyse de l'échantillon 22-072805-18

Signataire approbateur :

Guillaume OLIVIER

Responsable de laboratoire environnement

ANNEXE 8:

COUPES DES PIEZAIRS

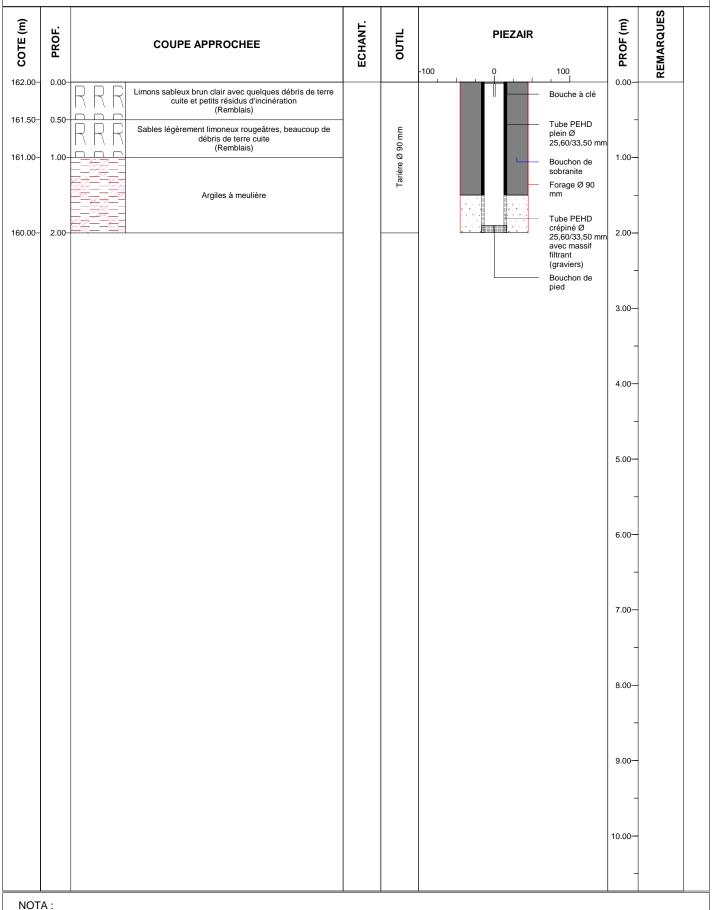
Cette annexe contient 4 pages

G220360-001A	CITALLIOS	Ammaria
INFOS DIAG	rue Francis de Pressencé– CHÂTENAY-MALABRY (92)	Annexe

Secteur de la Butte Rouge - Avenue Francis de Pressencé

INGENIERIE Exécution du 10/05/22

Machine: Socomafor 65


Z: 162 m X: 1645148 Y: 8174332

Maître d'ouvrage : CITALLIOS

au 10/05/22

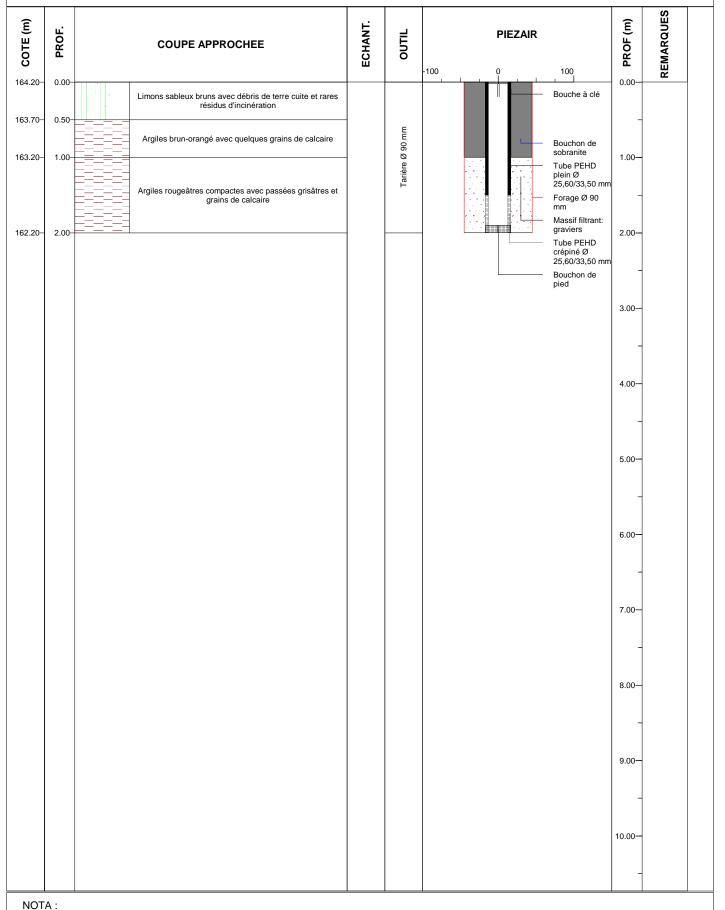
Inclinaison:0°

Pza T1 **PIEZAIR** Profondeur: 2,00 m Echelle: 1/50

Secteur de la Butte Rouge - Avenue Francis de Pressencé

INGENIERIE Exécution du 10/05/22
DES SOLS ET FONDATIONS

Machine: Socomafor 65


Z: 164,2 m X: 1645220

Maître d'ouvrage : CITALLIOS

au 10/05/22

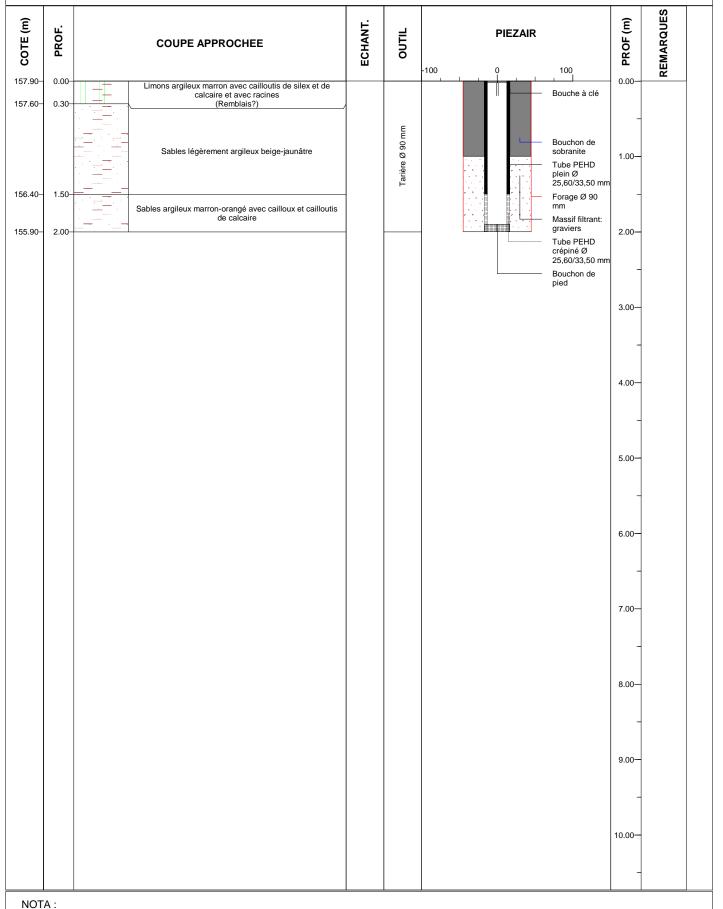
Inclinaison: 0° Y: 8174305

Echelle: 1/50 PIEZAIR Pza T5 Profondeur: 2,00 m

Secteur de la Butte Rouge - Avenue Francis de Pressencé

INGENIERIE Exécution du 10/05/22

Machine: Socomafor 50


Z: 157,9 m X: 1645320

Maître d'ouvrage : CITALLIOS

au 10/05/22

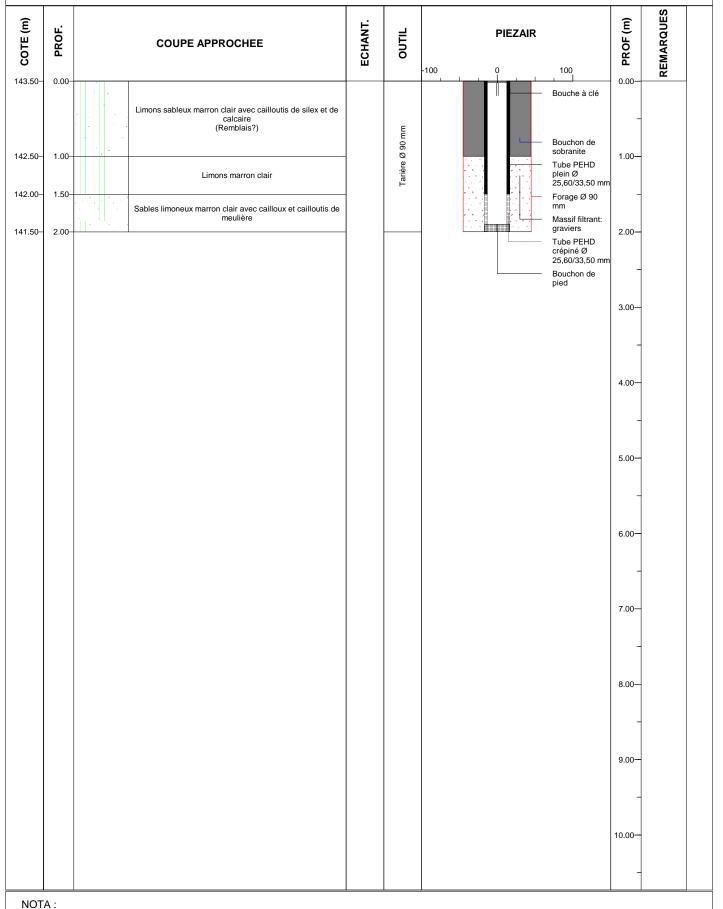
Inclinaison: 0° Y: 8174213

Echelle: 1/50 PIEZAIR Pza T10 Profondeur: 2,00 m

Secteur de la Butte Rouge - Avenue Francis de Pressencé

INGENIERIE Exécution du 10/05/22

Machine: Socomafor 50


Z: 143,5 m X: 1645348 Y: 8174139

Maître d'ouvrage : CITALLIOS

au 10/05/22

Inclinaison : 0 °

Echelle: 1/50 PIEZAIR Pza T14 Profondeur: 2,00 m

ANNEXE 9:

FICHES DE PRELEVEMENT DE L'AIR DES SOLS

Cette annexe contient 4 pages

G220360-001A	CITALLIOS	Ammaria
INFOS DIAG	rue Francis de Pressencé– CHÂTENAY-MALABRY (92)	Annexe

Lieu : CHATENAY MALABRY

PZA T1

Date: 27/05/2022

N° de dossier : G220360

Opérateur : **PAS**

Nº du piézogaz :

	Descr	iption du point de	e mesure		
photo(s)					
	Pompe o	de purge nº:	P3-021	Débit:	2.046
	Débi	mètre n°:	36810MLWB-01		
	Р	ID n°:	6		
Diamètre du tube (mm) :	1 pouce (interieur	: 25,6 / exterieur : 33,	5)		
Profondeur de tube plein (m) :	de	0	à	1.5	
Profondeur de tube crépiné (m) :	de	1.5	à	2	
Nature du sol superficiel :	gazon				
		ption du prélèver			
Nature de l'étanchéité en tête d			Cimentation		
detecteur n°-G01	LEL (0):0	H2S (0):0	CO (0) :0	CO2 (*)	O2 (🕽)
Recouvrement des sols de surfa	ce (si oui, nature et su	rface):	✓ NON ☐ C	OUI :	
Volume calculé du piézair (l) : (3,1416 x (rayon du piézogaz)² x h	auteur du piézogaz)			1.03	
Temps de vidange (5 fois le volui	me du piézogaz calcu	<i>lé)</i> (min) :		3	
Résultat de la me	esure préalabe au F	PID dans le piézogaz :	0/0	Air ambiant :	0/0
Identification de l'échantillon :	PZA T1 3H		BLANC CA		
Laboratoire:		Wessli	ng	-	
Nature de l'analyse à réaliser :	TPH/COHV/BTEX'N				
Type de support :	Charbon actif				
Nom de la pompe mise en	P3-074				
place :	(prélèvement actif)				
Heure de début du pompage :	10H26				
Débit début pompage (I/min):	0,52600				
Heure de fin de pompage :	13H26				
Débit fin pompage (I/min) :	0,517				
Temps de pompage (min) :	180				
	Con	ditions atmosphe	ériques		
Heures :	10H00	11H00	12H00		
Météorologie :	COUVERT	COUVERT	COUVERT		
Hygrométrie (%):	76	75	72		
Températures (°C) :	16	17	18		
Pression (hPa) :	1007	1007	1007		
Date des dernières pluies :			23/05/2022		
	Flaconna	age, description e			
Méthode de stockage :			box		
Observations:			aucune		

Date: 27/05/2022 N° de dossier: G220360

Lieu: CHATENAY MALABRY

Opérateur : PAS

N° du piézogaz : PZA T5

	Descr	iption du point d	e mesure		
			La La Maria		7
		No. of the last of			
photo(s)					
piloto(s)					
		- All rates			
	Pompe	de purge nº:	P3-021	Débit:	2.046
		imètre nº:	36810MLWB-01		
	P	PID n°:	6		
Diamètre du tube (mm) :	1 pouce (interieur	: 25,6 / exterieur : 33,5	5)		
Profondeur de tube plein (m) :	de	0	à	1.5	
Profondeur de tube crépiné (m) :	de	1.5	à	2	
`	gazon				
	Descri	ption du prélèver	ment d'air		
Nature de l'étanchéité en tête d	u piézogaz :		Cimentati	on	
detecteur n°-G01	LEL (0):0	H2S (0):0	CO (0) :0	CO2 (*)	02 (🕯)
Recouvrement des sols de surfa	ace <i>(si oui, nature et su</i>	ırface) :	✓ NON ☐ C	DUI :	
Volume calculé du piézair (l) : (3,1416 x (rayon du piézogaz)² x h	nauteur du niézogaz)			1,03	
Temps de vidange <i>(5 fois le volu</i>		<i>ulé)</i> (min) :		3	
· · · · · · · · · · · · · · · · · · ·		PID dans le piézogaz :	0/0	Air ambiant :	0/0
Identification de	 I	<u> </u>			,
l'échantillon :	PZA T5 3H	<u> </u>	BLANC CA		
Laboratoire :	TPH/COHV/BTEX'N	Wessli	ng T	1	
Nature de l'analyse à réaliser : Type de support :	Charbon actif				
Nom de la pompe mise en	P3-076				
place :	(prélèvement actif)				
Heure de début du pompage :	10H19				
Débit début pompage (l/min):	0,526				
Heure de fin de pompage :	13H19				
Débit fin pompage (I/min) :	0,485				
Temps de pompage (min) :	180				
	Con	ditions atmosph	ériques		
Heures :	10H00	11H00	12H00		
Météorologie :	COUVERT	COUVERT	COUVERT		
Hygrométrie (%):	76	75	72		
Températures (°C) :	16	17	18		
Pression (hPa) :	1007	1007	1007		
Date des dernières pluies :			23/05/2022		
	Flaconn	age, description (et transport		
Méthode de stockage :			box		

N° de dossier :

Date :

27/05/2022 G220360

Lieu: CHATENAY MALABRY

Opérateur : PAS

Nº du piézogaz :	PZA T10
------------------	---------

	Desci	ription du point de	e mesure		
photo(s)		de purge n°:	P3-021	Débit:	2.046
		imètre n°:	36810MLWB-01	Debici	2.0 10
		PID n°:	6		
Diamètre du tube (mm) :		: 25,6 / exterieur : 33,!		<u> </u>	
Profondeur de tube plein (m) :	de	0	à	1.5	
Profondeur de tube crépiné (m) :	de	1.5	à	2	
Nature du sol superficiel :	gazon				
	Descri	iption du prélèver	nent d'air		
Nature de l'étanchéité en tête d		F	Cimentatio	on	
detecteur n°-G01	LEL (0):0	H2S (0):0	CO (0) :0	CO2 (*)	02 (🕽)
Recouvrement des sols de surfa	` ′	• • • •		DUI:	, ,
Volume calculé du piézair (l) : (3,1416 x (rayon du piézogaz)² x h	auteur du piézogaz)			1.03	
Temps de vidange (5 fois le volui	me du piézogaz calcu	<i>ulé)</i> (min) :		3	
Résultat de la me	esure préalabe au	PID dans le piézogaz :	0/0	Air ambiant :	0/0
Identification de l'échantillon :	PZA T10 3H		BLANC CA		
Laboratoire :		Wessli	ng		
Nature de l'analyse à réaliser :	TPH/COHV/BTEX'N				
Type de support :	Charbon actif				
Nom de la pompe mise en	P3-075				
place :	(prélèvement actif)				
Heure de début du pompage :	9H55				
Débit début pompage (l/min):	0,527				
Heure de fin de pompage :	12H55				
Débit fin pompage (l/min) :	0,502				
Temps de pompage (min) :	180				
	Cor	nditions atmosphe	ériques		
Heures :	10H00	11H00	12H00		
Météorologie :	COUVERT	COUVERT	COUVERT		
Hygrométrie (%):	76	75	72		
Températures (°C) :	16	17	18		
Pression (hPa):	1007	1007	1007		
Date des dernières pluies :			23/05/2022		
	Flaconn	age, description e	et transport		
Méthode de stockage :			box		
Observations :			aucune		

Date : N° de dossier : 27/05/2022 G220360

Lieu: CHATENAY MALABRY

Opérateur : PAS

N° du piézogaz : PZA T14

	Docar	intion du point de	n magura		
photo(s)	Descr	iption du point de	e mesure		
	Pompe	de purge n°:	P3-021	Débit:	2.046
		mètre n°:	36810MLWB-01		-
	P	PID n°:	6		
Diamètre du tube (mm) :	1 pouce (interieur	: 25,6 / exterieur : 33,5	5)	•	
Profondeur de tube plein (m) :	de	0	à	1.5	
Profondeur de tube crépiné (m) :	de	1.5	à	2	
Nature du sol superficiel :	gazon				
	Descri	ption du prélèver	nent d'air		
Nature de l'étanchéité en tête d	u piézogaz :		Cimentation	on	
	LEL (0):0	H2S (0):0	CO (0) :0	CO2 (*)	02 (🕯)
Recouvrement des sols de surfa	ce <i>(si oui, nature et su</i>	ırface) :	✓ NON ☐ C	DUI :	
Volume calculé du piézair (l) : <i>x (rayon du piézogaz)² x hauteur d</i>	(3,1416		1.03		
Temps de vidange <i>(5 fois le volui</i>	me du piézogaz calcu	<i>ılé)</i> (min) :		3	
Résultat de la me	esure préalabe au l	PID dans le piézogaz :	0/0	Air ambiant :	0/0
Identification de l'échantillon :	PZA T14 3H		BLANC CA		
Laboratoire :		Wessli	ng	1	
Nature de l'analyse à réaliser : Type de support :	TPH/COHV/BTEX'N Charbon actif				
Nom de la pompe mise en	P3-073				
place :	(prélèvement actif)				
Heure de début du pompage :	10H07				
Débit début pompage (I/min):	0,513				
Heure de fin de pompage :	13H07				
Débit fin pompage (l/min) :	0,525				
Temps de pompage (min) :	180				
	Con	ditions atmosphé	ériques		
Heures :	10H00	11H00	12H00		
Météorologie :	COUVERT	COUVERT	COUVERT		
Hygrométrie (%):	76	75	72		
Températures (°C) :	16	17	18		
Pression (hPa) :	1007	1007	1007		
Date des dernières pluies :			23/05/2022		
	Flaconn	age, description e	et transport		
Méthode de stockage :			box		
Observations:					

ANNEXE 10:

BORDEREAU DES ANALYSES DE L'AIR DES SOLS

Cette annexe contient 11 pages

G220360-001A	CITALLIOS	Ammaya
INFOS DIAG	rue Francis de Pressencé- CHÂTENAY-MALABRY (92)	Annexe

Accréditation n°1-1364 Portée disponible sur www.cofrac.fr

WESSLING France S.A.R.L. Z.I. de Chesnes Tharabie · 40 rue du Ruisseau BP 50705 · 38297 Saint-Quentin-Fallavier Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56 $labo@wessling.fr \cdot www.wessling.fr\\$

Suivi par :

WESSLING France S.A.R.L, 3 Avenue de Norvège, ZA de Courtaboeuf, 91140 Villebon-Sur-Yvette

GEOLIA Monsieur Laurent REVEL 119/131 Avenue René Morin 91410 MORANGIS

UPA22-020946-1 N° rapport d'essai UPA-07263-22 N° commande Interlocuteur (interne) D. Cardon Téléphone +33 164 471 475

Courrier électronique David.Cardon@wessling.fr

03.06.2022

Rapport d'essai

G220360 CHATENAY MALABRY

Les résultats ne se rapportent qu'aux échantillons soumis à l'essai et tels qu'ils ont été reçus. Les résultats des paramètres couverts par l'accréditation EN ISO/CEI 17025 sont marqués d'un (A).

La portée d'accréditation COFRAC n°1-1364 essais du laboratoire WESSLING de Lyon (St Quentin Fallavier) est disponible sur le site www.cofrac.fr pour les résultats accrédités par ce laboratoire.

Le COFRAC est signataire des accords de reconnaissance mutuels de l'ILAC et de l'EA pour les activités d'essai.

Les organismes d'accréditation signataires de ces accords pour les activités d'essai reconnaissent comme dignes de confiance les rapports couverts par l'accréditation des autres organismes

d'accréditation signataires des accords des activités d'essai.

Ce rapport d'essai ne peut être reproduit que sous son intégralité et avec l'autorisation des laboratoires WESSLING.
Les laboratoires WESSLING autorisent leurs clients à extraire tout ou partie des résultats d'essai envoyés à titre indicatif sous format excel uniquement à des fins de retraitement, de suivi et d'interprétation de données sans faire allusion à l'accréditation des résultats d'essai. Les données fournies par le client sont sous sa responsabilité et identifiées en italique.

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 03.06.2022

N° d'échantillon

22-082188-01

22-082188-01-1

22-082188-02

22-082188-02-1

22-082188-02-1

22-082188-02-1

PZAT1 3H couche de mesure

de contrôle

Désignation d'échantillon

Unité

PZAT5 3H couche de mesure

de contrôle

Hydrocarbures volatils

Indice hydrocarbures volatils C5 à C16 - Méthode interne : AIR ACTIF-TPH-COHV-BTEX-GC/MS - Réalisé par WESSLING Lyon (France)

D. t. II. t. t.	The internet of the control of the c	00/05/0000	OC 10 T 10 CC		00/05/0000
Date d'extraction		30/05/2022	30/05/2022	30/05/2022	30/05/2022
Type de support / N° de lot		Anasorb 747 -	Anasorb 747 -	Anasorb 747 -	Anasorb 747
11. de de		13782	13782	13782	13782
Hydrocarbures aromatiques C6-C7	μg	<1,0	<1,0	<1,0	<1,0
Hydrocarbures aromatiques C7-C8	μg	1,6	<1,0	<1,0	<1,0
Hydrocarbures aromatiques C8-C9	μg	2,4	<1,0	1,4	<1,0
Hydrocarbures aromatiques C9-C10	μg	2,0	<1,0	1,5	<1,0
Hydrocarbures aromatiques C10-C11	μg	<1,0	<1,0	<1,0	<1,0
Hydrocarbures aromatiques C11-C12	μg	<1,0	<1,0	<1,0	<1,0
Hydrocarbures aromatiques C12-C13	μg	<1,0	<1,0	<1,0	<1,0
Hydrocarbures aromatiques C13-C14	μg	<1,0	<1,0	<1,0	<1,0
Hydrocarbures aromatiques C14-C15	μg	<1,0	<1,0	<1,0	<1,0
Hydrocarbures aromatiques C15-C16	μg	<1,0	<1,0	<1,0	<1,0
Indice Hydrocarbures Aromatiques		6,0 (A)	<5,0 (A)	<5,0 (A)	<5,0 (A)
C6-C16	μg	± 20%	± 20%	± 20%	± 20%
Incertitudes de mesure (k=2 ; 95%)					
Hydrocarbures aliphatiques C5-C6	μg	<5,0	<5,0	<5,0	<5,0
Hydrocarbures aliphatiques C6-C7	μg	<5,0	<5,0	<5,0	<5,0
Hydrocarbures aliphatiques C7-C8	μg	<5,0	<5,0	<5,0	<5,0
Hydrocarbures aliphatiques C8-C9	μg	<5,0	<5,0	<5,0	<5,0
Hydrocarbures aliphatiques C9-C10	μg	12	<5,0	9,9	<5,0
Hydrocarbures aliphatiques C10-C11	μg	14	<5,0	15	<5,0
Hydrocarbures aliphatiques C11-C12	μg	15	<5,0	26	<5,0
Hydrocarbures aliphatiques C12-C13	μg	<5,0	<5,0	<5,0	<5,0
Hydrocarbures aliphatiques C13-C14	μg	<5,0	<5,0	<5,0	<5,0
Hydrocarbures aliphatiques C14-C15	μg	<5,0	<5,0	<5,0	<5,0
Hydrocarbures aliphatiques C15-C16	μg	<5,0	<5,0	<5,0	<5,0
Indice Hydrocarbures Aliphatiques C5-C16 Incertitudes de mesure (k=2; 95%)	μg	40 (A) ± 28%	<25 (A) ± 28%	51 (A) ± 28%	<25 (A) ± 28%

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 03.06.2022

N° d'échantillon

22-082188-01

22-082188-01-1

22-082188-02

22-082188-02-1

22-082188-02-1

22-082188-02-1

PZAT1 3H couche de mesure

Désignation d'échantillon

Unité

PZAT1 3H couche de mesure

Désignation d'échantillon

Unité

PZAT1 3H couche de contrôle

Désignation d'échantillon

PZAT5 3H couche de mesure

Désignation d'échantillon

Hydrocarbures halogénés volatils (COHV)

Hydrocarbures halogénés volatils - Méthode interne : AIR ACTIF-TPH-COHV-BTEX-GC/MS - Réalisé par WESSLING Lyon (France)

Date d'extraction		30/05/2022	30/05/2022	30/05/2022	30/05/2022
Type de support / N° de lot		Anasorb 747 - 13782	Anasorb 747 - 13782	Anasorb 747 - 13782	Anasorb 747 - 13782
Chlorure de vinyle	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 29%	± 29%	± 29%	± 29%
1,1-Dichloroéthylène	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Dichlorométhane	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 26%	± 26%	± 26%	± 26%
trans-1,2-Dichloroéthylène	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 25%	± 25%	± 25%	± 25%
1,1-Dichloroéthane	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 25%	± 25%	± 25%	± 25%
cis-1,2-Dichloroéthylène	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 26%	± 26%	± 26%	± 26%
Trichlorométhane	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 24%	± 24%	± 24%	± 24%
Tétrachlorométhane	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 26%	± 26%	± 26%	± 26%
1,1,1-Trichloroéthane	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 26%	± 26%	± 26%	± 26%
Trichloroéthylène	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 30%	± 30%	± 30%	± 30%
Tétrachloroéthylène	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 36%	± 36%	± 36%	± 36%
Somme des COHV	μg	-/-	-/-	-/-	-/-

Benzène et aromatiques (CAV - BTEX)

Benzene et aromatiques (CAV-BTEX) - Méthode interne : AIR ACTIF-TPH-COHV-BTEX-GC/MS - Réalisé par WESSLING Lyon (France)

Date d'extraction		30/05/2022	30/05/2022	30/05/2022	30/05/2022
Type de support / N° de lot		Anasorb 747 - 13782	Anasorb 747 - 13782	Anasorb 747 - 13782	Anasorb 747 - 13782
Benzène	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Toluène Incertitudes de mesure (k=2 ; 95%)	μg	1,6 (A) ± 22%	<0,2 (A)	0,6 (A) ± 22%	<0,2 (A)
Ethylbenzène Incertitudes de mesure (k=2 ; 95%)	μg	0,28 (A) ± 27%	<0,2 (A)	<0,2 (A)	<0,2 (A)
m-, p-Xylène Incertitudes de mesure (k=2 ; 95%)	μg	1,3 (A) ± 19%	<0,2 (A)	0,73 (A) ± 19%	<0,2 (A)
o-Xylène Incertitudes de mesure (k=2 ; 95%)	μg	0,79 (A) ± 19%	<0,2 (A)	0,55 (A) ± 19%	<0,2 (A)
Cumène	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
m-, p-Ethyltoluène Incertitudes de mesure (k=2 ; 95%)	μg	0,64 (A) ± 20%	<0,2 (A)	0,46 (A) ± 20%	<0,2 (A)
1,3,5-Triméthylbenzène (Mésitylène)	μg	0,21 (A)	<0,2 (A)	0,22 (A)	<0,2 (A)
o-Ethyltoluène	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
1,2,4-Triméthylbenzène (Pseudocumène) Incertitudes de mesure (k=2 ; 95%)	μg	0,85 (A) ± 21%	<0,2 (A)	0,62 (A) ± 21%	<0,2 (A)
Naphtalène	μg	<0,2	<0,2	<0,2	<0,2
Somme des CAV	μg	5,63	-/-	3,18	-/-

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 03.06.2022

N° d'échantillon

22-082188-01

22-082188-01-1

22-082188-02

22-082188-02-1

22-082188-02-1

22-082188-02-1

PZAT1 3H couche de mesure

de contrôle

Désignation d'échantillon

Unité

PZAT5 3H couche de mesure

de contrôle

Informations sur les échantillons

Date de réception :	27.05.2022	27.05.2022	27.05.2022	27.05.2022
Type d'échantillon :	Gaz du sol	Gaz du sol	Gaz du sol	Gaz du sol
Date de prélèvement :	27.05.2022	27.05.2022	27.05.2022	27.05.2022
Heure de prélèvement :	00:00	00:00	00:00	00:00
Récipient :	1 charbon actif	1 charbon actif	1 charbon actif	1 charbon actif
Température à réception (C°) :	19°C	19°C	19°C	19°C
Début des analyses :	27.05.2022	27.05.2022	27.05.2022	27.05.2022
Fin des analyses :	01.06.2022	01.06.2022	01.06.2022	01.06.2022
Préleveur :	client	client	client	client

< : résultat inférieur à la limite de quantification

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 03.06.2022

22-082188-03 22-082188-03-1 22-082188-04 22-082188-04-1 N° d'échantillon PZAT10 3H PZAT10 3H PZAT14 3H PZAT14 3H Désignation d'échantillon Unité couche de mesure couche de couche de mesure couche de contrôle contrôle

Hydrocarbures volatils

Indice hydrocarbures volatils C5 à C16 - Méthode interne : AIR ACTIF-TPH-COHV-BTEX-GC/MS - Réalisé par WESSLING Lyon (France)

indice nydrocarbures volatils 65 a 616 - Metho	740 11101110 . 7111171	JIII IIII GOIN BIEX G	Office Par WEec	<u> </u>	
Date d'extraction		30/05/2022	30/05/2022	30/05/2022	30/05/2022
Type de support / N° de lot		Anasorb 747 - 13782	Anasorb 747 - 13782	Anasorb 747 - 13782	Anasorb 747 - 13782
Hydrocarbures aromatiques C6-C7	μg	<1,0	<1,0	<1,0	<1,0
Hydrocarbures aromatiques C7-C8	μg	1,3	<1,0	<1,0	<1,0
Hydrocarbures aromatiques C8-C9	μg	1,1	<1,0	58	<1,0
Hydrocarbures aromatiques C9-C10	μg	<1,0	<1,0	1,4	<1,0
Hydrocarbures aromatiques C10-C11	μg	<1,0	<1,0	<1,0	<1,0
Hydrocarbures aromatiques C11-C12	μg	<1,0	<1,0	<1,0	<1,0
Hydrocarbures aromatiques C12-C13	μg	<1,0	<1,0	<1,0	<1,0
Hydrocarbures aromatiques C13-C14	μg	<1,0	<1,0	<1,0	<1,0
Hydrocarbures aromatiques C14-C15	μg	<1,0	<1,0	<1,0	<1,0
Hydrocarbures aromatiques C15-C16	μg	<1,0	<1,0	<1,0	<1,0
Indice Hydrocarbures Aromatiques C6-C16 Incertitudes de mesure (k=2 : 95%)	μg	<5,0 (A) ± 20%	<5,0 (A) ± 20%	60 (A) ± 20%	<5,0 (A) ± 20%
Hydrocarbures aliphatiques C5-C6	μg	<5,0	<5,0	<5,0	<5,0
Hydrocarbures aliphatiques C6-C7	μg	<5,0	<5,0	<5,0	<5,0
Hydrocarbures aliphatiques C7-C8	μg	<5,0	<5,0	<5,0	<5,0
Hydrocarbures aliphatiques C8-C9	μg	<5,0	<5,0	<5,0	<5,0
Hydrocarbures aliphatiques C9-C10	μg	11	<5,0	<5,0	<5,0
Hydrocarbures aliphatiques C10-C11	μg	<5,0	<5,0	5,4	<5,0
Hydrocarbures aliphatiques C11-C12	μg	21	<5,0	16	<5,0
Hydrocarbures aliphatiques C12-C13	μg	<5,0	<5,0	<5,0	<5,0
Hydrocarbures aliphatiques C13-C14	μg	<5,0	<5,0	<5,0	<5,0
Hydrocarbures aliphatiques C14-C15	μg	<5,0	<5,0	<5,0	<5,0
Hydrocarbures aliphatiques C15-C16	μg	<5,0	<5,0	<5,0	<5,0
Indice Hydrocarbures Aliphatiques C5-C16 Incertitudes de mesure (k=2; 95%)	μg	32 (A) ± 28%	<25 (A) ± 28%	<25 (A) ± 28%	<25 (A) ± 28%

Quality of Life

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 03.06.2022

22-082188-03 22-082188-03-1 22-082188-04 22-082188-04-1 N° d'échantillon PZAT10 3H PZAT10 3H PZAT14 3H PZAT14 3H Désignation d'échantillon Unité couche de mesure couche de couche de mesure couche de contrôle contrôle

Hydrocarbures halogénés volatils (COHV)

Hydrocarbures halogénés volatils - Méthode interne : AIR ACTIF-TPH-COHV-BTEX-GC/MS - Réalisé par WESSLING Lyon (France)

Date d'extraction		30/05/2022	30/05/2022	30/05/2022	30/05/2022
Type de support / N° de lot		Anasorb 747 - 13782	Anasorb 747 - 13782	Anasorb 747 - 13782	Anasorb 747 - 13782
Chlorure de vinyle	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 29%	± 29%	± 29%	± 29%
1,1-Dichloroéthylène	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Dichlorométhane	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 26%	± 26%	± 26%	± 26%
trans-1,2-Dichloroéthylène	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 25%	± 25%	± 25%	± 25%
1,1-Dichloroéthane	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 25%	± 25%	± 25%	± 25%
cis-1,2-Dichloroéthylène	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 26%	± 26%	± 26%	± 26%
Trichlorométhane	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 24%	± 24%	± 24%	± 24%
Tétrachlorométhane	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 26%	± 26%	± 26%	± 26%
1,1,1-Trichloroéthane	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 26%	± 26%	± 26%	± 26%
Trichloroéthylène	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 30%	± 30%	± 30%	± 30%
Tétrachloroéthylène	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Incertitudes de mesure (k=2 ; 95%)		± 36%	± 36%	± 36%	± 36%
Somme des COHV	μg	-/-	-/-	-/-	-/-

Benzène et aromatiques (CAV - BTEX)

Benzene et aromatiques (CAV-BTEX) - Méthode interne : AIR ACTIF-TPH-COHV-BTEX-GC/MS - Réalisé par WESSLING Lyon (France)

Date d'extraction		30/05/2022	30/05/2022	30/05/2022	30/05/2022
Type de support / N° de lot		Anasorb 747 - 13782	Anasorb 747 - 13782	Anasorb 747 - 13782	Anasorb 747 - 13782
Benzène	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
Toluène Incertitudes de mesure (k=2 ; 95%)	μg	1,3 (A) ± 22%	<0,2 (A)	0,83 (A) ± 22%	<0,2 (A)
Ethylbenzène Incertitudes de mesure (k=2 ; 95%)	μg	<0,2 (A)	<0,2 (A)	3,9 (A) ± 27%	<0,2 (A)
m-, p-Xylène Incertitudes de mesure (k=2 ; 95%)	μg	0,66 (A) ± 19%	<0,2 (A)	24 (A) ± 19%	<0,2 (A)
o-Xylène Incertitudes de mesure (k=2 ; 95%)	μg	0,3 (A) ± 19%	<0,2 (A)	31 (A) ± 19%	<0,2 (A)
Cumène Incertitudes de mesure (k=2 ; 95%)	μg	<0,2 (A)	<0,2 (A)	0,67 (A) ± 20%	<0,2 (A)
m-, p-Ethyltoluène Incertitudes de mesure (k=2 ; 95%)	μg	0,34 (A) ± 20%	<0,2 (A)	0,29 (A) ± 20%	<0,2 (A)
1,3,5-Triméthylbenzène (Mésitylène)	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
o-Ethyltoluène	μg	<0,2 (A)	<0,2 (A)	<0,2 (A)	<0,2 (A)
1,2,4-Triméthylbenzène (Pseudocumène) Incertitudes de mesure (k=2 ; 95%)	μg	0,37 (A) ± 21%	<0,2 (A)	0,29 (A) ± 21%	<0,2 (A)
Naphtalène	μg	<0,2	<0,2	<0,2	<0,2
Somme des CAV	μg	2,96	-/-	60,29	-/-

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 03.06.2022

N° d'échantillon		22-082188-03	22-082188-03-1	22-082188-04	22-082188-04-1
Désignation d'échantillon	Unité	PZAT10 3H couche de mesure	PZAT10 3H couche de contrôle	PZAT14 3H couche de mesure	PZAT14 3H couche de contrôle

< : résultat inférieur à la limite de quantification

Informations sur les échantillons

Date de réception :	27.05.2022	27.05.2022	27.05.2022	27.05.2022
Type d'échantillon :	Gaz du sol	Gaz du sol	Gaz du sol	Gaz du sol
Date de prélèvement :	27.05.2022	27.05.2022	27.05.2022	27.05.2022
Heure de prélèvement :	00:00	00:00	00:00	00:00
Récipient :	1 charbon actif	1 charbon actif	1 charbon actif	1 charbon actif
Température à réception (C°) :	19°C	19°C	19°C	19°C
Début des analyses :	27.05.2022	27.05.2022	27.05.2022	27.05.2022
Fin des analyses :	01.06.2022	01.06.2022	01.06.2022	01.06.2022
Préleveur :	client	client	client	client

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 03.06.2022

N° d'échantillon 22-082188-05 22-082188-05-1

Désignation d'échantillon

Unité

BLANC CA

couche de mesure

couche de

contrôle

Hydrocarbures volatils

Indice hydrocarbures volatils C5 à C16 - Méthode interne : AIR ACTIF-TPH-COHV-BTEX-GC/MS - Réalisé par WESSLING Lyon (France)

•			•	
Date d'extraction		30/05/2022	30/05/2022	
Type de support / N° de lot		Anasorb 747 - 13782	Anasorb 747 - 13782	
Hydrocarbures aromatiques C6-C7	μg	<1,0	<1,0	
ydrocarbures aromatiques C7-C8	μg	<1,0	<1,0	
ydrocarbures aromatiques C8-C9	μg	<1,0	<1,0	
ydrocarbures aromatiques C9-C10	μg	<1,0	<1,0	
drocarbures aromatiques C10-C11	μg	<1,0	<1,0	
drocarbures aromatiques C11-C12	μg	<1,0	<1,0	
ydrocarbures aromatiques C12-C13	μg	<1,0	<1,0	
drocarbures aromatiques C13-C14	μg	<1,0	<1,0	
drocarbures aromatiques C14-C15	μg	<1,0	<1,0	
drocarbures aromatiques C15-C16	μg	<1,0	<1,0	
dice Hydrocarbures Aromatiques 6-C16 certitudes de mesure (k=2 ; 95%)	μg	<5,0 (A) ± 20%	<5,0 (A) ± 20%	
drocarbures aliphatiques C5-C6	μg	<5,0	<5,0	
Irocarbures aliphatiques C6-C7	μg	<5,0	<5,0	
drocarbures aliphatiques C7-C8	μg	<5,0	<5,0	
drocarbures aliphatiques C8-C9	μg	<5,0	<5,0	
drocarbures aliphatiques C9-C10	μg	<5,0	<5,0	
drocarbures aliphatiques C10-C11	μg	<5,0	<5,0	
drocarbures aliphatiques C11-C12	μg	<5,0	<5,0	
drocarbures aliphatiques C12-C13	μg	<5,0	<5,0	
drocarbures aliphatiques C13-C14	μg	<5,0	<5,0	
drocarbures aliphatiques C14-C15	μg	<5,0	<5,0	
drocarbures aliphatiques C15-C16	μg	<5,0	<5,0	
dice Hydrocarbures Aliphatiques 5-C16 certitudes de mesure (k=2 ; 95%)	μg	<25 (A) ± 28%	<25 (A) ± 28%	

Quality of Life

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 03.06.2022

N° d'échantillon 22-082188-05 22-082188-05-1

Désignation d'échantillon

Unité

BLANC CA

couche de mesure

couche de

contrôle

Hydrocarbures halogénés volatils (COHV)

Hydrocarbures halogénés volatils - Méthode interne : AIR ACTIF-TPH-COHV-BTEX-GC/MS - Réalisé par WESSLING Lyon (France)

Date d'extraction		30/05/2022	30/05/2022	
Type de support / N° de lot		Anasorb 747 - 13782	Anasorb 747 - 13782	
Chlorure de vinyle Incertitudes de mesure (k=2 ; 95%)	μg	<0,2 (A) ± 29%	<0,2 (A) ± 29%	
1,1-Dichloroéthylène	μg	<0,2 (A)	<0,2 (A)	
Dichlorométhane ncertitudes de mesure (k=2 ; 95%)	μg	<0,2 (A) ± 26%	<0,2 (A) ± 26%	
ans-1,2-Dichloroéthylène certitudes de mesure (k=2 ; 95%)	μg	<0,2 (A) ± 25%	<0,2 (A) ± 25%	
1-Dichloroéthane certitudes de mesure (k=2 ; 95%)	μg	<0,2 (A) ± 25%	<0,2 (A) ± 25%	
is-1,2-Dichloroéthylène ncertitudes de mesure (k=2 ; 95%)	μg	<0,2 (A) ± 26%	<0,2 (A) ± 26%	
richlorométhane certitudes de mesure (k=2 ; 95%)	μg	<0,2 (A) ± 24%	<0,2 (A) ± 24%	
étrachlorométhane certitudes de mesure (k=2 ; 95%)	μg	<0,2 (A) ± 26%	<0,2 (A) ± 26%	
1,1-Trichloroéthane certitudes de mesure (k=2 ; 95%)	μg	<0,2 (A) ± 26%	<0,2 (A) ± 26%	
richloroéthylène ncertitudes de mesure (k=2 ; 95%)	μg	<0,2 (A) ± 30%	<0,2 (A) ± 30%	
étrachloroéthylène certitudes de mesure (k=2 ; 95%)	μg	<0,2 (A) ± 36%	<0,2 (A) ± 36%	
Somme des COHV	μg	-/-	-/-	

Benzène et aromatiques (CAV - BTEX)

Benzene et aromatiques (CAV-BTEX) - Méthode interne : AIR ACTIF-TPH-COHV-BTEX-GC/MS - Réalisé par WESSLING Lyon (France)

Date d'extraction		30/05/2022	30/05/2022	
Type de support / N° de lot		Anasorb 747 - 13782	Anasorb 747 - 13782	
enzène	μg	<0,2 (A)	<0,2 (A)	
ōluène	μg	<0,2 (A)	<0,2 (A)	
thylbenzène	μg	<0,2 (A)	<0,2 (A)	
n-, p-Xylène	μg	<0,2 (A)	<0,2 (A)	
-Xylène	μg	<0,2 (A)	<0,2 (A)	
Cumène	μg	<0,2 (A)	<0,2 (A)	
ı-, p-Ethyltoluène	μg	<0,2 (A)	<0,2 (A)	
3,5-Triméthylbenzène (Mésitylène)	μg	<0,2 (A)	<0,2 (A)	
-Ethyltoluène	μg	<0,2 (A)	<0,2 (A)	
,2,4-Triméthylbenzène ^o seudocumène)	μg	<0,2 (A)	<0,2 (A)	
laphtalène	μg	<0,2	<0,2	
Somme des CAV	μg	-/-	-/-	

< : résultat inférieur à la limite de quantification

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 03.06.2022

N° d'échantillon 22-082188-05 22-082188-05-1

Désignation d'échantillon

BLANC CA

Couche de mesure

couche de contrôle

Informations sur les échantillons

Date de réception :	27.05.2022	27.05.2022	
Type d'échantillon :	Gaz du sol	Gaz du sol	
Date de prélèvement :	27.05.2022	27.05.2022	
Heure de prélèvement :	00:00	00:00	
Récipient :	1 charbon actif	1 charbon actif	
Température à réception (C°) :	19°C	19°C	
Début des analyses :	27.05.2022	27.05.2022	
Fin des analyses :	01.06.2022	01.06.2022	
Préleveur :	client	client	

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 03.06.2022

Informations sur vos résultats d'analyses :

Les résultats fournis et les limites de quantification indiquées ne prennent pas en compte le rendement de désorption du support. Les seuils sont susceptibles d'être augmentés en fonction d'interférences chimiques.

Signataire approbateur :

Sabrina SLIMANI

Responsable Adjointe du Laboratoire Environnement

1