

Agir pour et avec vous

Établissement Public Territorial Grand-Orly Seine Bièvre

Arrêté n° A2022 787 en date du 16/11/2022

Objet : Arrêté de prescription de la modification n°2 du PLU de Rungis.

Le Président de l'Etablissement Public Territorial Grand-Orly Seine Bièvre,

Vu le décret n° 2015-1665 du 11 décembre 2015 relatif à la métropole du Grand Paris et fixant le périmètre de l'Etablissement Public Territorial « Grand-Orly Seine Bièvre » dont le siège est à Vitry-sur-Seine ;

Vu le Code général des collectivités territoriales, notamment l'article L. 5219-5 relatif à la compétence en matière de Plan Local de l'Urbanisme, exercée de plein droit par l'Etablissement Public Territorial depuis le 1er ianvier 2016 :

Vu le code général des collectivités territoriales, et notamment ses articles L.2121-29, L.5211-9 et L.5211-10 et L.5219-2 et suivants ;

Vu le Code de l'urbanisme et notamment les articles L.153-36 à 44 relatifs à la procédure de modification du Plan Local d'Urbanisme :

Vu la délibération n°15-059 du Conseil municipal de Rungis en date du 14 décembre 2015 approuvant le PLU de Rungis ;

Vu la délibération n°2020-02-25-1801 du Conseil Territorial de l'Etablissement Public Territorial Grand-Orly Seine Bièvre en date du 25 février 2020 approuvant la modification n°1 du Plan Local d'Urbanisme de Rungis ;

Vu la délibération n°22-073 du Conseil municipal de Rungis en date du 6 octobre 2022 approuvant les objectifs de la modification n°2 du Plan Local d'Urbanisme de Rungis et donnant un avis favorable à sa prescription par l'Etablissement Public Territorial Grand-Orly Seine Bièvre;

Considérant la nécessité de modifier le PLU de la Commune de Rungis, notamment pour introduire une Orientation d'Aménagement et de Programmation (OAP), ajuster le règlement de certaines zones, préciser certaines prescriptions du règlement, rectifier le plan de zonage et intégrer de nouvelles annexes ;

Considérant que l'ensemble des modifications apportées ne sont pas de nature à :

- Changer les orientations du projet d'aménagement et de développement durable,
- Réduire un espace boisé classé, une zone agricole ou une zone naturelle et forestière,
- Réduire une protection édictée en raison des risques de nuisance, de la qualité des sites, des paysages ou des milieux naturels, ou d'une évolution de nature à induire de graves risques de nuisance
- Ouvrir à l'urbanisation une zone à urbaniser, qui, dans les neufs ans suivant sa création, n'a pas été ouverte à l'urbanisation ou n'a pas fait l'objet d'acquisitions foncières significatives de la part de la commune ou de l'établissement public de coopération intercommunale compétent, directement ou par l'intermédiaire d'un opérateur foncier;

Considérant en conséquence que cette modification n'entre pas dans le champ d'application de la procédure de révision ;

Considérant dès lors que la procédure à engager est celle de la modification de droit commun ;

Arrête

Article 1er : Il est prescrit une procédure de modification n°2 du Plan Local d'Urbanisme de la Commune de Rungis.

Article 2: Le projet de modification n°2 a pour objet :

- De revoir les règles de constructibilité de la zone Delta élargie,
- Introduire une Örientation d'Aménagement et de Programmation, dans le secteur de l'Estérel visant une mixité des usages, conformément aux objectifs poursuivis par le Projet d'Aménagement et de Développement Durable (PADD).
- De préciser certaines prescriptions du règlement et définition du lexique,
- De compléter le document avec les annexes informatives.

Établissement Public Territorial Grand-Orly Seine Bièvre

Agir pour et ovec vous

Article 3: Conformément aux dispositions de l'article L.153-40 du code de l'urbanisme, le projet de modification du PLU sera notifié aux personnes publiques associées (P.P.A.) mentionnées aux articles L. 132-7 et L. 132-9 pour avis avant le début de l'enquête publique.

Article 4 : Il sera procédé à une enquête publique sur le projet de modification du PLU auquel sera joint, le cas échéant, les avis des P.P.A.

Article 5 : A l'issue de l'enquête publique, le projet de modification, éventuellement, amendé pour tenir compte des avis des P.P.A., des observations du public et du rapport du Commissaire Enquêteur, sera approuvé par délibération du conseil territorial.

Article 6 : Un registre sera mis à la disposition du public afin d'y recueillir les observations, pendant toute la durée de la procédure.

Article 7 : Conformément aux articles R 153-20 et R 153-21 du Code de l'Urbanisme, le présent arrêté fera l'objet d'un affichage au siège de l'Etablissement Public Territorial et en Mairie de Rungis durant un délai d'un mois. Mention de cet affichage sera insérée en caractères apparents dans un journal diffusé dans les Départements du Val de Marne et de l'Essonne. Il sera, en outre, publié au recueil des actes administratifs de la Commune.

Article 8 : Le présent arrêté produira ses effets juridiques dès l'exécution de l'ensemble des formalités prévues ci-dessus, la date à prendre en compte pour l'affichage étant celle du premier jour où il est effectué.

Article 9 : Monsieur le Président de l'Etablissement Public Territorial Grand-Orly Seine Bièvre en ses services et Monsieur le Maire de Rungis en ses services sont chargés, chacun en ce qui le concerne, de l'exécution du présent arrêté dont ampliation sera faite à Madame la Préfète du Val-de-Marne, Monsieur le Préfet de l'Essonne et à Monsieur le Directeur de l'Unité départementale du Val-de-Marne de la Direction régionale et interdépartementale de l'équipement et de l'aménagement d'Ile-de-France.

Le Président

Certifie sous sa responsabilité le caractère exécutoire du présent acte;

 Informe que le présent arrêté peut faire l'objet d'un recours pour excès de pouvoir devant le Tribunal Administratif de Melun dans un délai de deux mois à compter de sa publication et/ou notification

Envoyé en préfecture le : 16/11/2022 Publié le / Affiché le : 16/11/2022 Notifié le : Le Président de l'Etablissement

Public Territorial, Michel Leprêtre

Votre suivi

Lettre Recommandée N° 2C19069174690

+ Enregistrer

Distribué

Mercredi 23 octobre 2024

Votre envoi a été distribué à son destinataire contre sa signature.

Distribué

Votre envoi a été distribué à son destinataire contre sa signature.

Mairie de Rungis A l'attention de Monsieur le Maire M. Marcillaud Hôtel de Ville 5 rue Sainte-Geneviève 94 150 Rungis

Paris, le 16/10/2024

Courrier adressé par LRAR

Et par mail à l'adresse : <u>b.marcillaud@ville-rungis.fr</u>

Objet : Avis sur la remise en état du site lors de l'arrêt définitif des installations

Monsieur le Maire,

Dans le cadre du projet d'implantation de notre futur site (datacenter), rue des Solets à Rungis et conformément à l'article D181-15-2 du Code de l'Environnement, nous sollicitons votre avis sur l'état dans lequel devra être remis le site lors de l'arrêt définitif des installations.

Conformément à l'article R. 512-75-1 du Code de l'Environnement, nous nous engageons, dès l'arrêt de l'exploitation de notre site, à respecter les mesures suivantes afin d'en assurer sa mise en sécurité :

- Évacuation des produits dangereux et des déchets présents sur le site ;
- Interdictions ou limitations d'accès ;
- Suppression des risques d'incendie et d'explosion ;
- Surveillance des effets des installations sur l'environnement.

Nous nous assurerons de réhabiliter ou de remettre en état le site dans un état tel qu'il ne s'y manifestera aucun danger, dès l'arrêt définitif des installations, en vue d'un futur usage industriel.

Dans l'attente de votre avis et de vos éventuelles prescriptions supplémentaires en matière de remise en état du site, nous nous tenons à votre entière disposition pour tout renseignement complémentaire.

Nous vous prions d'agréer, Monsieur le Maire, l'expression de notre considération distinguée.

Bertrand GELOEN

ICADE

Data Center – Ilots Sydney et Adelaïde – Parc d'affaires Paris-Orly-Rungis (94)

ICADE

Pièces n°53 à 56 – Autorisation pour l'émission de Gaz à Effet de Serre (GES)

Version Finale du 28 Octobre 2024

SOMMAIRE

1	Intro	duction / Contexte	3
2	Desc	ription du projet	4
	2.1	Matières premières, combustibles et auxiliaires susceptibles d'émettre des GES	4
	2.2	Sources d'émissions des GES	4
	2.3	Mesures prises pour quantifier les émissions à travers un plan de surveillance	5
3	Résu	mé non technique concernant les combustibles présents	sur
	l'inst	allation électrique	6

Liste des tableaux

Tableau 1 : Bilan des émissions de gaz à effet de serre liées au fonctionnement du site (Source : Ademe)	4
Tableau 2 : Éléments pour l'autorisation pour l'émission de gaz à effet de serre	6

1 Introduction / Contexte

Le projet prévoit la combustion d'énergies fossiles pour une puissance thermique supérieure à 20 MW.

Le projet est donc soumis à autorisation pour l'émission de gaz à effet de serre visée aux articles L. 229 - 5 et L. 229 - 6 du Code de l'Environnement.

Les gaz à effet de serre (GES) sont à l'origine de l'effet de serre. Leur accumulation dans l'atmosphère est responsable de l'augmentation de la température terrestre. Il s'agit notamment du dioxyde de carbone (CO₂), du méthane (CH₄), de l'ozone (O₃), du protoxyde d'azote (N₂O) et des chlorofluocarbures (CFC).

Conformément au point 5 de l'article D. 181-15-2-I, le présent document doit comprendre la description :

- des matières premières, combustibles et auxiliaires susceptibles d'émettre des gaz à effet de serre;
- des différentes sources d'émissions de gaz à effet de serre de l'installation ;
- des mesures prises pour quantifier les émissions à travers un plan de surveillance;
- un résumé non technique de ces informations.

2 Description du projet

2.1 Matières premières, combustibles et auxiliaires susceptibles d'émettre des GES

Les matières premières, combustibles ou auxiliaires susceptibles d'émettre des GES dans le cadre du projet sont listées dans le Tableau 1 ci-dessous avec les émissions qu'ils génèrent annuellement.

Poste d'émission GES		Equivalent Carbone	Emissions générées	
HVO (Huile Végétale hydrotraitée)	663 t/an	0,912 kg CO₂ eq/kg	605 t CO ₂ eq/an	
Fuites de R1234ze ¹	1 550 t/an	0,007 t CO ₂ eq/t	10,9 t CO ₂ eq/an	30 000 t CO ₂ eq/an
Consommation électrique	920 GWh/an	0,032 kg CO ₂ eq/kWh	29 400 t CO ₂ eq/an	
Dans le cas où 100 % de HVO est remplacé par du gazole				
Gazole	688 t/an	3,84 kg CO ₂ eq/kg	2 640 t CO ₂ eq/an	32 100 t CO ₂ eq/an

Tableau 1 : Bilan des émissions de gaz à effet de serre liées au fonctionnement du site (Source : Ademe²)

2.2 Sources d'émissions des GES

Les émissions directes de gaz à effet de serre sur le site du projet seront principalement dues :

- à la consommation de carburant par les groupes électrogènes lors des différents tests de maintenance (19 heures de fonctionnement par année);
- à la production et la consommation d'électricité sur site ;
- aux émissions diffuses de fluide frigorigène (R1234ze) lors des recharges des installations de réfrigération, ou par le biais de fuites non réparées.

NB: Les systèmes de refroidissement et électriques utiliseront du R1234ze, un fluide qui, s'il est relâché à l'air libre, contribue à l'effet de serre. Cependant, ils seront toujours utilisés en circuit fermé et les seuls rejets à l'atmosphère seront dus aux fuites, estimés dans notre cas à environ 10 %.

¹ Le taux de fuite sur lequel s'est basé le calcul est de 10%.

² https://prod-basecarbonesolo.ademe-dri.fr/documentation/UPLOAD DOC FR/index.htm?new liquides.htm

2.3 Mesures prises pour quantifier les émissions à travers un plan de surveillance

L'estimation des émissions de gaz à effet de serre (en équivalent CO₂) est présentée dans le Tableau 1 ciavant. D'après la base de données d'Airparif, la quantité de CO₂ générée en Ile-de-France en 2019 était de 38 Mt. Par conséquent, le projet ICADE entrainerait une augmentation d'environ 0,08 % des émissions de gaz à effet de serre de la région.

En ce qui concerne les émissions de gaz à effet de serre pour l'EPT de Grand-Orly Seine Bièvre, il est de 2,20 Mt CO₂. Le projet ICADE entrainerait donc une augmentation d'environ 1,4 % des émissions de gaz à effet sur le périmètre de l'EPT.

À noter que l'utilisation du fioul dans les mêmes quantités que l'HVO génèrerait près de 2 640 t CO₂ / an soit 4,4 fois plus que le HVO (cf. Tableau 1). **Le choix de l'HVO permet ainsi un évitement non négligeable d'émission de CO₂.**

Résumé non technique concernant les combustibles présents sur l'installation électrique

Une synthèse des éléments mentionnées ci-avant est présentée dans le Tableau 2 suivant.

Combustible	Huile végétale hydrotraitée (HVO) ou gazole		
Sources d'émission de gaz à effet de serre	Émissions liées au fonctionnement des groupes électrogènes		
Principales mesures de surveillance	 Maintenance régulière des groupes électrogènes, du système de traitement des NOx, des cuves et des tuyauteries; Tests de fonctionnement périodiques (maximum 19 h par an par groupe électrogène); Analyses régulières des rejets des groupes électrogènes; Suivi du rendement et des paramètres de combustion; Échantillonnage périodique de la qualité du gazole. 		
Plan de surveillance	 Plan de surveillance mis en œuvre à l'issue de l'obtention de l'arrêté préfectoral d'autorisation et au démarrage de l'activité ; Déclaration annuelle sous GEREP avec un tableau de suivi des émissions de gaz à effet de serre. 		
Estimations des rejets de gaz à effet de serre liés à la combustion de carburant	 HVO: 605 t CO₂ éq / an Gazole: 2 640 t CO₂ éq / an 		

Tableau 2 : Éléments pour l'autorisation pour l'émission de gaz à effet de serre

Data Center – Ilots Sydney et Adelaïde – Parc d'affaires Paris-Orly-Rungis (94)

ICADE

Pièces spécifiques aux activités IED – Analyse des Meilleures Techniques Disponibles (MTD)

Version Finale du 28 Octobre 2024

SOMMAIRE

1	Contexte réglementaire		4
2	Positio	onnement sur la rubrique IED principale	5
3	Propos	sition de conclusions sur les meilleures techniques disponibles	6
4	Compa	araison des BREF transversaux avec le fonctionnement	des
	install	ations	7
	4.1	BREF EFS – Emissions dues au stockage des matières dangereuses ou en vrac	7
	4.2 BREF ENE – Efficacité énergétique		

Annexe 1 : Argumentaire technique relatif aux raisons du choix des groupes électrogènes mis en place (puissance et nombre) ainsi qu'au nombre de points de rejet (cheminée)

Liste des tableaux

Tableau 1 : Classement du projet en rubrique 3110	5
Tableau 2 : Comparaison au BREF EFS (Source : AIDA – Ineris)	23
Tableau 3 : Techniques d'amélioration de l'efficacité énergétique pour les alimentations électriques	34
Tableau 4 : Techniques d'amélioration de l'efficacité énergétique pour les systèmes de pompage	36
Tableau 5 : Techniques d'amélioration de l'efficacité énergétique pour les systèmes de chauffage, ventila et climatisation	ation 37
Tableau 6 : Techniques d'amélioration de l'efficacité énergétique pour les systèmes d'éclairage	38
Tableau 7 : Comparaison au BREF ENE (Source : AIDA - Ineris)	38

1 Contexte réglementaire

La directive européenne IED (« Industrial Emissions Directive », directive 2010/75/UE du 24 novembre 2010) réglemente les industries polluantes et vise en particulier à prévenir et réduire les pollutions de l'air, de l'eau et du sol causées par ces installations. Elle a été adaptée en France par l'ordonnance n°2012-7 du 5 janvier 2012 pour la partie législative, et par divers textes comme le décret n°2013-374 du 2 mai 2013, et les articles L. 515-28 à L. 515-31 et R. 515-58 à R. 515-84 pour la partie réglementaire.

Les textes de mai 2013 reprend le chapitre II de la directive IED concernant les activités visées dans son annexe I, à savoir les activités soumises auparavant à la directive relative à la prévention et à la réduction intégrée de la pollution (IPPC), ainsi que les activités manipulant des substances dangereuses tels que définis à l'article 3 du règlement dit CLP (« Classification, Labelling, Packaging »).

Afin de permettre une meilleure identification des installations visées, le décret n°2013-375 a créé 40 nouvelles rubriques dans la nomenclature des Installations Classées pour la Protection de l'Environnement (ICPE), établie à l'article R. 511-9 du Code de l'Environnement. L'ensemble des activités énumérées dans l'annexe I de la directive est ainsi classé dans les rubriques « 3000 ».

2 Positionnement sur la rubrique IED principale

Conformément à l'article R515-59 du Code de l'environnement, la demande d'autorisation environnementale portant sur une installation IED doit comprendre « *Une proposition motivée de rubrique principale choisie parmi les rubriques 3000 à 3999 qui concernent les installations ou équipements visés à l'Article R515-58* ».

Le projet est concerné par la rubrique IED suivante :

Rubrique	Intitulé de la rubrique	Caractéristiques de l'installation	Classement
3110	Combustion de combustibles dans des installations d'une puissance thermique nominale totale égale ou supérieure à 50 MW	Afin d'assurer la continuité de service du data center en cas de rupture d'alimentation électrique, le projet comprend 59 groupes électrogènes d'une puissance thermique unitaire de 7,889 MWth. Puissance thermique nominale totale ¹= 465,45 MWth Afin d'intégrer un dimensionnement technique supérieur lié à l'intégration par le futur exploitant d'un système de refroidissement le plus efficient possible, la puissance thermique nominale totale demandée par ICADE est de 505 MWth.	Autorisation IED

Tableau 1 : Classement du projet en rubrique 3110

ICADE projette de développer un data center, autrement appelé centre de données, au sein de son Parc tertiaire Paris-Orly-Rungis, sur la commune de Rungis (94). Un data center est un bâtiment qui abrite des équipements informatiques tels que des serveurs, du stockage de données, des équipements de réseau, et d'autres composants essentiels pour le traitement, le stockage et la gestion des données. Il regroupe donc quatre fonctions :

- des salles informatiques qui seront aménagées pour recevoir les équipements informatiques destinés au stockage, traitement et partage des données;
- des locaux techniques nécessaires au fonctionnement du bâtiment ;
- des bureaux pour les équipes d'exploitation du centre de données et la conduite des équipements informatiques;
- des zones de livraison et stockage permettant l'approvisionnement et le retrait de matériel.

Le projet porté par ICADE est concerné par la directive IED. En effet, comme indiqué dans le Tableau 1, les activités du projet sont classées au titre de la rubrique IED 3110 du fait de l'utilisation des groupes électrogènes, en cas de rupture de l'alimentation électrique. Il s'agit de la rubrique principale du projet.

¹ **Puissance thermique nominale totale** = somme des puissances thermiques nominales de tous les appareils de combustion unitaires de puissance thermique nominale supérieure ou égale à 1 MW qui composent l'installation de combustion.

3 Proposition de conclusions sur les meilleures techniques disponibles

Conformément à l'article R515-59 du Code de l'environnement, la demande d'autorisation environnementale portant sur une installation IED doit comprendre « Une proposition motivée de conclusions sur les Meilleures Techniques Disponibles relatives à la rubrique principale ».

La <u>rubrique 3110</u> (Combustion de combustibles dans des installations d'une puissance thermique nominale totale égale ou supérieure à 50 MW) est la rubrique IED principale du projet de data center d'ICADE. Par conséquent, il doit faire l'objet d'un positionnement vis-à-vis des conclusions sur les Meilleures Techniques Disponibles (MTD) relatives aux grandes installations de combustion (BREF² LCP).

Ces conclusions servant de référence pour déterminer les conditions d'exploitation du site, sont présentées dans la Décision d'exécution (UE) 2021/2326 de la Commission du 30 novembre 2021 établissant les conclusions sur les meilleures techniques disponibles (MTD), au titre de la Directive 2010/75/UE du Parlement européen et du Conseil, pour les grandes installations de combustion.

Champ d'application

La Décision d'exécution définit les installations de combustion ainsi :

« Tout dispositif technique dans lequel des combustibles sont oxydés afin d'utiliser la chaleur ainsi produite. Aux fins des présentes conclusions sur les MTD, une combinaison :

- de deux installations de combustion ou plus, dont les fumées sont rejetées par une cheminée commune.
- ou d'installations de combustion distinctes autorisées pour la première fois le 1er juillet 1987 ou ultérieurement, ou dont les exploitants ont introduit une demande d'autorisation à cette date ou ultérieurement, implantées de telle façon que, compte tenu de certains facteurs techniques et économiques, leurs fumées pourraient, d'après l'autorité compétente, être rejetées par une cheminée commune,

est considérée comme une seule installation de combustion.

Pour calculer la puissance thermique nominale totale d'une telle combinaison, il convient d'additionner la capacité de toutes les unités de combustion d'une puissance thermique nominale égale ou supérieure à 15 MW concernées. »

Dans le cadre du projet, chaque groupe électrogène possède sa propre cheminée et donc constitue une unité de combustion à lui seul. Or, la puissance thermique unitaire de ces groupes électrogènes est de 7,889 MW, soit inférieure à 15 MW. Par conséquent, la puissance thermique nominale totale de cette combinaison serait donc de 0 MW puisque les capacités de ces unités de combustion ne peuvent pas être additionnées.

Ainsi les conclusions sur les MTD relatives aux grandes installations de combustion ne s'appliquent pas au projet.

Un argumentaire technique relatif aux raisons du choix des groupes électrogènes mis en place (puissance et nombre) ainsi qu'au nombre de points de rejet (cheminée) est joint annexe du présent document.

Il existe cependant des BREF transversaux qui s'appliquent au projet, en particulier les deux BREF suivants :

- BREF EFS sur les émissions dues au stockage des matières dangereuses ou en vrac. En effet, le projet comporte des stockages enterrés et aériens de HVO (huile végétale hydrotraitée) / gazole et AdBlue ;
- BREF ENE sur l'efficacité énergétique, puisque le data center est une installation énergivore où la question de l'efficacité énergétique est un enjeu capital.

Page 6 sur 39

² BREF = Best available techniques REFerence documents = les documents techniques établis par la Commission européenne et la profession concernée, servant d'outil de référence à l'industriel afin qu'il puisse se positionner par rapport aux meilleures techniques disponibles (MTD).

4 Comparaison des BREF transversaux avec le fonctionnement des installations

Parmi les BREF non sectoriels, le projet est concerné par les BREF ENE (efficacité énergétique) et EFS (émissions dues au stockage des matières dangereuses ou en vrac).

Les

Tableau 2 et Tableau 7 ci-après établissent la conformité du projet vis-à-vis de ces BREF.

4.1 BREF EFS – Emissions dues au stockage des matières dangereuses ou en vrac

Description de la MTD Conformité du site			
5.1 STOCKAGE DES LIQUIDES ET DES GAZ LIQUEFIES			
5.1.1 RESERVOIRS			
5.1.1.1 PRINCIPES GENERAUX POUR EVITER ET REDUIRE LES EMISSIONS			
Conception du réservoir La MTD spécifique à la conception des réservoirs doit prendre en considération au moins les éléments suivants :	CONFORME		

- Les propriétés physico-chimiques de la substance stockée
- Le mode d'exploitation du stockage, le niveau d'instrument nécessaire, le nombre d'opérateurs requis et la charge de travail de chacun
- Le mode d'information des opérateurs de toute déviation des conditions normales d'utilisation (alarmes)
- Le mode de protection du stockage contre toute déviation des conditions normales d'utilisation (instructions de sécurité, systèmes de verrouillage, clapets de décharge, détection des fuites et confinement, etc.)
- L'équipement à installer, en prenant en considération les expériences passées du produit (matériaux de construction, qualité des soupapes, etc.)
- Le plan de maintenance et d'inspection à mettre en œuvre, ainsi que le mode de simplification du travail de maintenance et d'inspection (accès, agencement, etc.)
- Le mode de gestion des situations d'urgence (éloignement par rapport aux autres réservoirs, installations et limite, protection anti-incendie, accès aux services d'urgence, notamment les sapeurs-pompiers, etc.)

L'annexe 8.19 donne un exemple de liste de contrôle.

Le projet comprend :

- 22 cuves enterrées d'HVO/gazole d'une capacité de 120 000 L ;
- 3 cuves enterrées d'AdBlue de 80 000 L;
- 59 cuves aériennes d'HVO ou gazole d'une capacité de 1 600 L chacune.

Les cuves enterrées sont en acier ou en matière composite, à double enveloppe. Elles sont munies d'un système de détection de fuite entre les deux enveloppes, qui déclenche automatiquement une alarme visuelle et sonore en cas de fuite. L'arrêt du remplissage est automatique lorsque le niveau maximum d'utilisation est atteint. Enfin, elles sont équipées d'évent(s), dont les orifices débouchent à l'air libre en un endroit visible depuis le point de livraison à au moins 4 m au-dessus du niveau de l'aire de stationnement du camion-citerne.

Les cuves aériennes sont localisées dans les locaux des groupes électrogènes munis d'un système de détection incendie, d'extinction automatique et de murs. Elles sont alimentées par des canalisations munies d'une deuxième enveloppe externe étanche et à pente descendante vers les cuves enterrées. Un point bas permet de recueillir tout écoulement de produit en cas de fuite de la tuyauterie. Il est pourvu d'un regard.

Description de la MTD	Conformité du site
Inspection et entretien La MTD consiste à utiliser un outil permettant de déterminer les plans d'entretien proactif et de mettre en place des plans d'inspection centrés sur l'évaluation des risques, comme l'approche de maintenance centrée sur le risque et sur la fiabilité (voir section 4.1.2.2.1). Le travail d'inspection peut être divisé en inspections de routine, en inspections externes en service et en inspections internes hors service; ces différentes inspections sont décrites en détail à la section 4.1.2.2.2.	CONFORME Une maintenance préventive par le biais d'inspection de routine, d'inspection de services et d'inspection interne hors service sera réalisée. Par ailleurs, des tests et vérifications des systèmes de détection de fuite seront réalisés conformément à la réglementation.
La localisation et l'agencement des nouveaux réservoirs doivent être déterminés avec soin, les zones de protection de l'eau et de captage d'eau doivent être notamment évitées dans la mesure du possible (voir section 4.1.2.3). La MTD consiste à localiser un réservoir fonctionnant à la pression atmosphérique aérienne ou à une pression proche. En revanche, un site stockant des liquides inflammables et disposant d'un espace limité peut utiliser des réservoirs enterrés. Les gaz liquéfiés peuvent être stockés dans des réservoirs enterrés, partiellement enterrés ou des sphères, selon le volume de stockage.	CONFORME Une partie du stockage de HVO / gazole sera réalisée dans des cuves enterrées, et l'autre dans des cuves aériennes localisées au sein des locaux des groupes électrogènes.
Couleur du réservoir La MTD consiste à appliquer une couleur de réservoir ayant une réflectivité du rayonnement thermique ou lumineux d'au moins 70 %, ou un bouclier solaire sur des réservoirs aériens contenant des substances volatiles (voir respectivement les sections 4.1.3.6 et 4.1.3.7).	CONFORME Les cuves aériennes seront localisées dans les containers groupes électrogènes à l'abri de la lumière solaire. Les cuves enterrées ne sont pas concernées par cette MTD.
Principe de réduction maximale des émissions lors du stockage en réservoirs La MTD consiste à réduire les émissions dues au stockage en réservoirs, au transport et à la manipulation ayant un impact négatif sur l'environnement, comme décrit à la section 4.1.3.1. Cette technique est applicable aux grandes installations de stockage dans lesquelles un délai de mise en œuvre est autorisé.	NON CONCERNE Le site d'ICADE n'est pas une grande installation de stockage. Il n'y a pas d'émissions particulières lors du stockage des combustibles nécessaires à l'alimentation du data center.
Surveillance des COV Lorsque des émissions de COV significatives sont prévues, la MTD prévoit le calcul régulier des émissions de COV. Le modèle de calcul peut parfois nécessiter une validation par l'utilisation d'une méthode de mesure (voir section 4.1.2.2.3).	NON CONCERNE
Systèmes spécialisés La MTD consiste à utiliser des systèmes spécialisés (voir section 4.1.4.4).	CONFORME Les cuves sont utilisées pour le stockage d'un unique produit. Les cuves seront dédiées au HVO/gazole ou au liquide AdBLue.

5.1.1.2 CONSIDERATIONS SPECIFIQUES AUX RESERVOIRS	
Réservoirs à ciel ouvert Recouvrir les réservoirs à ciel ouvert en utilisant un toit flottant, un toit souple ou flexible, un toit rigide. Le type de couverture et l'installation éventuelle d'un système de traitement de vapeur dépendent des substances stockées et doivent être déterminées au cas par cas. Les boues stockées doivent également être mélangées à l'aide de mélangeurs à force centrifuge ou à jet (économiquement plus rentables), pour éviter tout dépôt nécessitant une étape de nettoyage supplémentaire. (voir § 4.1.5.1).	
Réservoir à toit flottant externe	
(a) Utiliser des toits flottants à contact direct (double ponts) ou des toits flottants existants sans contacts (ponton) ;	NON CONCERNE
(b) Autres équipements permettant de réduire les émissions : flotteur autour du mât de guidage rainuré, manchon sur le mât de guidage rainuré, « chaussettes » sur les jambes de toit ;	
(c) Utiliser un dôme contre les mauvaises conditions météorologiques (vents forts, pluies, chutes de neige);	
(d) Pour les liquides à taux élevé de particules (ex. pétrole), mélanger la substance stockée par mélangeur à force centrifuge ou à jet, pour éviter des dépôts à nettoyer.	
Réservoirs à toit fixe	
Les réservoirs à toit fixe sont utilisés pour le stockage des liquides inflammables et autres liquides, comme les produits pétroliers et chimiques quel que soit le niveau de toxicité (voir section 3.1.3).	NON CONCERNE
Pour le stockage des substances volatiles toxiques (T), très toxiques (T+) ou cancérogènes, mutagènes et toxiques pour la reproduction (CMR) des catégories 1 et 2 dans un réservoir à toit fixe, la MTD consiste à installer un dispositif de traitement de la vapeur.	
Cette MTD ne fait pas l'unanimité parmi les professionnels pour les raisons suivantes :	
(a) Le présent BREF ne donne pas de définition du terme « volatile » ;	
(b) Aucun test ne permet de déterminer l'impact environnemental ;	
(c) Les produits potentiellement nocifs pour l'environnement, mais considérés comme non toxiques, ne sont pas récupérés ;	
(d) D'autres mesures de limitation des émissions permettent d'atteindre un niveau plus élevé de protection environnementale en tenant compte des coûts et des avantages des différentes techniques ;	
(e) Il n'existe aucun critère de performance reconnu pour une installation de traitement de la vapeur ;	
(f) Cette technique ne tient pas compte du coût ou des avantages d'autres techniques ;	
 (g) Elle ne permet pas de tenir compte du cout ou des avantages d'autres techniques; (g) Elle ne permet pas de tenir compte des caractéristiques techniques de l'installation concernée, de son emplacement géographique et des conditions environnementales locales; 	

Pour d'autres substances, la MTD consiste à utiliser une installation de traitement de la vapeur ou à installer un toit flottant interne (voir respectivement les sections 4.1.3.15 et 4.1.3.10). Les toits flottants avec contact et les toits flottants sans contact sont des MTD. Aux Pays-Bas, cette technique est une MTD si la substance a une pression de vapeur (à 20 °C) de 1 kPa et si le réservoir a un volume ≥ à 50 m³. En Allemagne, ces MTD ne doivent être utilises que si la substance a une pression de vapeur (à 20 °C) de 1,3 kPa et si le volume du réservoir est ≥ 300 m³.

Pour les réservoirs < 50 m³, la MTD consiste à utiliser un clapet de décharge à la valeur la plus élevée possible en accord avec les critères de conception du réservoir.

Le choix de la technologie de traitement de la vapeur doit être basé sur des critères comme le coût, la toxicité du produit, l'efficacité de la réduction, les quantités d'émissions au repos et les possibilités de récupération du produit ou de l'énergie et effectué au cas par cas. La réduction des émissions associée à la MTD est d'au moins 98 % (par rapport à un réservoir à toit fixe sur lequel aucune mesure n'est prévue) (voir section 4.1.3.15).

La réduction des émissions réalisable pour un grand réservoir utilisant un toit flottant interne est d'au moins 97 % (par rapport à un réservoir à toit fixe sur lequel aucune mesure n'est prévue); pour ce faire, au moins 95 % de la circonférence de l'espace entre le toit et la paroi doit faire moins de 3,2 mm et les joints d'étanchéité doivent être de type hydraulique ou mécanique. L'installation de joints primaires hydrauliques et de joints de bordure secondaires permet d'obtenir des réductions d'émissions supérieures. En revanche, plus le réservoir est petit, plus le nombre de renouvellements est limité et moins le toit flottant est efficace (voir respectivement les annexes 8.22 et 8.23).

Les études de cas de l'annexe 8.13 montrent que les réductions d'émission réalisables dépendent de plusieurs éléments, notamment de la substance stockée, des conditions météorologiques, du nombre de renouvellements et du diamètre du réservoir. Les calculs montrent qu'avec un réservoir à toit flottant interne, une réduction des émissions comprise entre 62,9 et 97,6 % peut être obtenue (par rapport à un réservoir à toit fixe sur lequel aucune mesure n'est prévue) ; 62,9 % correspond à un réservoir de 100 m³ équipé uniquement de joints primaires et 97,6 % à un réservoir de 10 263 m³ équipé de joints primaires et secondaires.

Pour les liquides contenant un taux élevé de particules (par ex., du pétrole brut), la MTD consiste à mélanger la substance stockée pour éviter le dépôt qui nécessiterait la réalisation d'une étape de nettoyage supplémentaire (voir section 4.1.5.1).

Réservoirs horizontaux atmosphériques

Pour les substances volatiles toxiques (T), très toxiques (T+), cancérogènes, mutagènes et toxiques pour la reproduction de catégorie 1 et 2, installer un dispositif de traitement de la vapeur.

Pour les autres substances, utiliser en totalité ou en partie les techniques suivantes, selon les substances stockées :

- clapets de décharge et soupapes de décompression (Pressure and Vacuum Relief Valves ou PVRV) ;
- pression interne jusqu'à 56 mbar;
- équilibrage de la vapeur ;
- réservoir à espace variable pour la vapeur ;
- traitement de la vapeur.

NON CONCERNE

NON CONCERNE

Aucun réservoir horizontal atmosphérique n'est mis en place dans le cadre du projet.

Stockage sous pression La MTD applicable dépend du type de réservoir : il peut s'agir d'un dispositif de vidange fermé raccordé à une installation de traitement de la vapeur.	NON CONCERNE Aucun stockage sous pression n'est mis en place dans le cadre du projet.
Réservoirs à toit respirant Utiliser : un réservoir à membrane flexible équipé de clapets de décharge/soupapes de décompression (3.1.9); un réservoir à toit respirant équipé de clapets de décharge/soupapes de décompression et raccordé à un système de traitement de la vapeur.	NON CONCERNE Aucun réservoir à toit fixe respirant n'est mis en place dans le cadre du projet.
Réservoirs cryogéniques Ce type de réservoir n'est associé à aucune émission particulière.	NON CONCERNE Aucun réservoir à toit fixe respirant n'est mis en place dans le cadre du projet.
Réservoirs enterrés et partiellement enterrés Pour les substances volatiles toxiques (T), très toxiques (T+), cancérogènes, mutagènes et toxiques pour la reproduction, il convient installer un dispositif de traitement de la vapeur. Pour les autres substances, utiliser en totalité ou en partie les techniques suivantes, selon les substances stockées : clapets de décharge et soupapes de décompression (Pressure and Vacuum Relief Valves ou PVRV) ; pression interne jusqu'à 56 mBars ; équilibrage de la vapeur ; réservoir à espace variable pour la vapeur ; traitement de la vapeur.	CONFORME Le projet comprend : 22 cuves enterrées d'HVO/gazole d'une capacité de 120 000 L; 3 cuves enterrées d'AdBlue de 80 000 L. Ces cuves enterrées sont équipées d'évent(s), dont les orifices débouchent à l'air libre en un endroit visible depuis le point de livraison à au moins 4 m au-dessus du niveau de l'aire de stationnement du camion-citerne.

5.1.1.3 PREVENTION DES INCIDENTS ET DES ACCIDENTS (MAJEURS)

Sécurité et gestion des risques

La directive Seveso II (directive du Conseil 96/82/CE du 9 décembre 1996 concernant la maîtrise des accidents majeurs liés à des substances dangereuses) exige que les sociétés prennent toutes les mesures nécessaires pour prévenir et limiter les conséquences des accidents majeurs. Elles doivent, dans tous les cas, posséder une politique de prévention des accidents majeurs (PPAM) et un système de gestion de la sécurité pour la mise en œuvre de la PPAM. Les sociétés manipulant de grandes quantités de substances dangereuses, dites de premier niveau, doivent également rédiger un rapport de sécurité et un plan d'urgence sur site et conserver une liste à jour des substances. Néanmoins, les usines n'entrant pas dans le cadre de la directive Seveso II peuvent également être à l'origine d'émissions dues à des incidents et à des accidents. L'utilisation d'un système de gestion de la sécurité similaire, mais peut-être moins détaillé, constitue la première étape d'un programme de prévention et de limitation de ces incidents/accidents.

La MTD pour la prévention des incidents et des accidents consiste à utiliser le système de gestion de la sécurité décrit à la section 4 1 6 1

Procédures opérationnelles et formation

La MTD consiste à mettre en œuvre et à suivre des mesures d'organisation adéquates et à organiser la formation et l'instruction des employés pour un fonctionnement sûr et responsable de l'installation, comme décrit à la section 4.1.6.1.1.

Fuites dues à la corrosion et/ou à l'érosion

La corrosion est l'une des principales causes de défaillance matérielle ; elle peut concerner toute surface métallique interne ou externe (voir section 4.1.6.1.4). La MTD consiste à prévenir la corrosion en :

- Choisissant des matériaux de construction résistant au produit stocké ;
- Utilisant des méthodes de construction adaptées :
- Empêchant la pénétration de l'eau de pluie ou des eaux souterraines dans le réservoir et, si nécessaire, en évacuant l'eau accumulée dans le réservoir :
- Appliquant une gestion des eaux de pluies grâce à un mur de protection ;
- Appliquant une maintenance préventive :
- Le cas échéant, en ajoutant des inhibiteurs de corrosion ou en appliquant une protection cathodique à l'intérieur du réservoir.

CONFORME

Un système de management environnemental sera déployé sur l'ensemble du site.

CONFORME

Avant toute opération de dépotage, un protocole de sécurité sera établi, communiqué et signé par les transporteurs et l'exploitant du site. Les chauffeurs seront tous formés au TMD (Transport des Marchandises Dangereuses) avec l'option transport en citerne.

Concernant le dépotage, la procédure inclut l'arrêt du moteur. De plus, ils se feront uniquement sous la surveillance d'un personnel interne au site et seront interdits en dehors des heures ouvrées.

Par ailleurs, lors d'un dépotage la vanne située sur le réseau d'eaux pluviales est fermée.

CONFORME

Des contrôles périodiques seront réalisés sur les cuves conformément à la réalementation.

Les cuves enterrées ne peuvent pas être remplies d'eau de pluie et sont installées de façon à empêcher d'éventuelles remontées d'eaux souterraines. Elles sont en acier ou en matière composite, à double enveloppe.

Les réservoirs aériens sont abrités au sein des locaux des groupes électrogènes où ils sont implantés.

De plus, pour un réservoir enterré, la MTD consiste à appliquer à l'extérieur du réservoir :

Un revêtement résistant à la corrosion
Un plaquage et/ou
Un système de protection cathodique

La corrosion fissurante sous tension (CFS) est un problème propre aux sphères, aux réservoirs semi-cryogéniques et aux réservoirs cryogéniques contenant de l'ammoniaque. La MTD consiste à prévenir la CFS en :

Relâchant la tension par un traitement de réchauffage après soudage (voir section 4.1.6.1.4);
Effectuant une inspection centrée sur le risque comme décrit à la section 4.1.2.2.1

Procédures opérationnelles et instrumentation pour éviter les débordements

La MTD consiste à mettre en œuvre et à appliquer des procédures opérationnelles au moyen, par exemple, d'un système de gestion, comme décrit à la section 4.1.6.1.5, pour garantir :

- L'installation d'instruments de niveau élevée ou à haute pression dotés de réglages d'alarme et/ou d'une fermeture automatique des soupapes;
- L'application d'instructions d'utilisation correctes pour empêcher tout débordement pendant une opération de remplissage du réservoir;
- La disponibilité d'un creux suffisant pour recevoir un remplissage de lot.

Une alarme autonome nécessite une intervention manuelle et des procédures appropriées; des soupapes automatiques doivent être intégrées en amont de la conception du procédé pour éviter tout effet indirect de la fermeture. Le type d'alarme à utiliser doit être déterminé pour chaque réservoir (voir section 4.1.6.1.6).

Instrumentation et automatisation pour éviter les fuites

Les quatre techniques de base pouvant être utilisées pour détecter les fuites sont les suivantes :

- Système de barrière pour prévenir les déversements
- Vérifications des stocks
- Méthode d'émission acoustique
- Surveillance de la vapeur dans le sol

La MTD consiste à utiliser une détection des fuites sur les réservoirs de stockage contenant des liquides pouvant potentiellement provoquer une pollution du sol. L'applicabilité des différentes techniques dépend du type de réservoir et est détaillée à la section 4.1.6.1.7.

CONFORME

Le site possède sur l'ensemble de ses stockages les sécurités nécessaires et suffisantes conformément à ses arrêtés préfectoraux et aux arrêtés ministériels qui lui sont opposables. En outre, les différentes sécurités ont été étudiées notamment au travers de l'étude de danger tenue à jour.

À titre d'exemple, nous retrouvons les dispositifs de sécurité ci-après sur les équipements (liste non exhaustive) :

- Procédures de dépotage ;
- Détection de niveau visuel et/ou automatique ;
- Soupape ou déversement du trop-plein dans la rétention ;
- Formation des chauffeurs aux TMD (Transport des Matières Dangereuses).

CONFORME

Toutes les cuves seront munies de doubles enveloppes avec un système de détection de fuite et report d'alarme au PC sécurité.

Les cuves enterrées sont en acier ou en matière composite, à double enveloppe. Elles sont munies d'un système de détection de fuite entre les deux enveloppes, qui déclenche automatiquement une alarme visuelle et sonore en cas de fuite. L'arrêt du remplissage est automatique lorsque le niveau maximum d'utilisation est atteint.

Approche fondée sur l'analyse des risques en ce qui concerne les émissions dans le sol sous les réservoirs

L'approche fondée sur l'analyse des risques en ce qui concerne les émissions dans le sol depuis un réservoir de stockage aérien à fond plat et vertical contenant des liquides risquant de polluer le sol, consiste à appliquer des mesures de protection du sol à un niveau tel que le risque de pollution du sol due à des fuites depuis le fond du réservoir ou depuis un joint d'étanchéité au niveau de la jonction entre le fond et la paroi est « négligeable ». La section 4.1.6.1.8 explique cette approche et les niveaux de risque.

La MTD consiste à atteindre un « niveau de risque négligeable » de pollution du sol depuis le fond et les raccords fondparoi des réservoirs de stockage aériens. En revanche, dans certains cas, un niveau de risque « acceptable » peut être suffisant.

L'étude de dangers du site est mise à jour conformément à la réglementation. Elle inclut l'analyse du risque de fuite sur les réservoirs et présente des mesures de maîtrise des risques associées.

CONFORME

Protection du sol autour des réservoirs (confinement)

La MTD pour les réservoirs aériens contenant des liquides inflammables ou des liquides pouvant potentiellement provoquer une pollution du sol ou une pollution significative des cours d'eau adjacents consiste à prévoir un confinement secondaire, notamment :

- Des merlons autour des réservoirs à paroi unique (voir section 4.1.6.1.11);
- Des réservoirs à double paroi (voir section 4.1.6.1.13);
- Des réservoirs coquilles (voir section 4.1.6.1.14);
- Des réservoirs à double paroi avec évacuation par le bas surveillée (voir section 4.1.6.1.15).

Pour les nouveaux réservoirs à paroi unique contenant des liquides pouvant être à l'origine d'une pollution significative du sol ou d'une pollution significative des cours d'eau adjacents, la MTD consiste à mettre en place une barrière étanche complète dans le merlon (voir section 4.1.6.1.10).

Pour les réservoirs existants dotés d'un merlon, la MTD consiste à appliquer une approche fondée sur l'analyse des risques, prenant en considération l'importance du risque de déversement du produit dans le sol, afin de déterminer si une barrière doit être installée et de choisir la barrière la mieux adaptée. Cette approche fondée sur l'évaluation des risques peut être également appliquée pour déterminer si une barrière étanche partielle dans un merlon suffit ou si l'ensemble du merlon doit être équipé d'une barrière étanche (voir section 4.1.6.1.11).

Parmi les barrières étanches, on peut citer :

- Une membrane flexible, comme du PEHD :
- Un matelas d'argile ;
- Une surface en asphalte ;
- Une surface en béton.

Pour les solvants d'hydrocarbure chloré (HCC) dans des réservoirs à paroi unique, la MTD consiste à appliquer sur les barrières en béton (ou les confinements) des plaqués étanches aux HCC, à base de résines phénoliques ou furanniques. Une forme de résine époxyde est également étanche aux HCC (voir section 4.1.6.1.12).

CONFORME

Les réservoirs aériens de stockage sont implantés dans les locaux des groupes électrogènes et n'ont dont pas d'influence sur les sols.

Les cuves enterrées sont en acier ou en matière composite, à double enveloppe. Elles sont munies d'un système de détection de fuite entre les deux enveloppes, qui déclenche automatiquement une alarme visuelle et sonore en cas de fuite. L'arrêt du remplissage est automatique lorsque le niveau maximum d'utilisation est atteint.

NON CONCERNE

Le projet n'est pas concerné par le stockage d'hydrocarbure chloré.

 Utiliser un réservoir à double paroi avec détection des fuites (voir section 4.1.6.1.16); Utiliser un réservoir à paroi unique avec confinement secondaire et détection des fuites (voir section 4.1.6.1.17). Zones d'explosivité et sources d'inflammation Voir la section 4.1.6.2.1 et la directive ATEX 1999/92/EC. 	Les réservoirs de stockage enterrés sont à double paroi et avec système de détection de fuite. CONFORME Une étude de zonage ATEX sera réalisée lors des études de détails de conception. Si nécessaire, du matériel ATEX sera installé conformément au zonage.
Protection contre l'incendie La mise en place éventuelle de mesures de protection contre l'incendie doit être déterminée au cas par cas. Ces mesures de protection contre l'incendie peuvent prévoir, par exemple (voir section 4.1.6.2.2): Des parements ou des revêtements résistant au feu ; Des murs coupe-feu ; Des refroidisseurs à eau.	CONFORME Une étude de dangers de l'installation a été réalisée (pièce PJ49 du dossier de demande d'autorisation environnementale). Les cuves aériennes sont implantées dans les locaux où sont localisés les groupes électrogènes. Ces locaux sont munis d'un système d'extinction automatique d'incendie (sprinkler) et sont compartimentés par des parois et planchers coupefeu 2 heures.
Équipements de lutte contre l'incendie La mise en place éventuelle d'équipements de lutte contre l'incendie et le choix de ces équipements doivent être effectués au cas par cas en accord avec les sapeurs-pompiers locaux. La section 4.1.6.2.3 donnent quelques exemples.	CONFORME Un système de sprinklage est mis en place dans les locaux du data center (salles informatiques et locaux techniques et stockage) ainsi que dans le bâtiment des groupes électrogènes. Le système de sprinklage est alimenté en eau par 3 cuves de 120 m³. Les cuves de sprinklage sont remplies en eau par le réseau public d'eau potable.

Confinement des produits extincteurs contaminés

La capacité de confinement des produits extincteurs contaminés dépend de la situation locale, notamment des substances stockées et de la distance entre le stockage et les cours d'eaux et/ou son emplacement dans un captage d'eau (voir section 4.1.6.2.4).

Pour les substances toxiques, cancérigènes ou toute autre substance dangereuse, la MTD consiste à appliquer un confinement total.

CONFORME

La quantité de liquides à collecter en cas d'incendie est déterminée selon le document technique D9A. Le calcul donne un volume de 1 030 m³ de liquides à collecter. Le calcul est présenté en annexe 13.

En cas de déversement accidentel de produits polluants ou d'incendie, la vanne de barrage motorisée implantée sur le réseau d'eaux pluviales en amont du bassin d'infiltration sera fermée automatiquement via la GTB (Gestion Technique du Bâtiment et redirigera les eaux vers le bassin de rétention enterré de 290 m³ puis le trop-plein débordera dans le bassin enterré de 740 m³.

La station de relevage permettant d'envoyer les eaux du bassin de rétention enterré de 290 m³ vers le réseau public d'eaux pluviales sera également arrêtée.

Après analyse, les eaux d'extinction d'incendie seront soit pompées et évacuées vers une filière de traitement agréée soit rejetées vers le réseau public d'eaux pluviales si elles ne présentent pas de risque pour l'environnement.

5.1.2 STOCKAGE DES SUBSTANCES DANGEREUSES CONDITIONNEES

Sécurité et gestion des risques

Le stockage de substances dangereuses conditionnées n'est associé à aucune perte opérationnelle. Les seules émissions possibles sont dues à des incidents et à des accidents (majeurs). Les sociétés qui entrent dans le cadre de la directive Seveso II doivent prendre toutes les mesures nécessaires pour prévenir et limiter les conséquences des accidents majeurs. Elles doivent, dans tous les cas, mettre en place une politique de prévention des accidents majeurs (PPAM), ainsi qu'un système de gestion de la sécurité pour la mise en œuvre de la PPAM. Les sociétés de la catégorie à haut risque (annexe I de la directive) doivent également rédiger un rapport de sécurité et un plan d'urgence sur site et tenir à jour une liste des substances. Néanmoins, les sociétés stockant des substances dangereuses n'entrant pas dans le cadre de la directive Seveso II peuvent également provoquer des émissions dues à des incidents et à des accidents. L'application d'un système de gestion de la sécurité similaire, mais peut-être moins détaillé, constitue la première étape d'un programme de prévention et de limitation des incidents et des accidents.

La MTD pour la prévention des incidents et des accidents consiste à appliquer un système de gestion de la sécurité, selon la description de la section 4.1.6.1.

Le niveau de détail du système dépend de différents facteurs et notamment : des quantités de substances stockées, des dangers spécifiques associés aux substances et de la localisation du stockage. En revanche, la MTD doit au minimum prévoir l'évaluation des risques d'accidents et d'incidents sur le site à l'aide des cinq étapes décrites à la section 4.1.6.1

NON CONCERNE

Le site d'ICADE n'est pas classé SEVESO.

CONFORME Formation et responsabilité La MTD consiste à nommer la ou les personnes responsables du fonctionnement du stockage. Le personnel en charge des installations sera sensibilisé au risque chimique en interne. Les autres personnels seront informés des risques. La MTD consiste à apporter à la personne responsable ou aux personnes responsables la formation spécifique et la formation de reclassement pour les procédures d'urgence, selon la description de la section 4.1.7.1 et à informer les autres employés du site des risques associés au stockage de substances dangereuses conditionnées et des précautions nécessaires pour le stockage sécurisé des substances présentant différents dangers. **CONFORME** Zone de stockage La MTD consiste à utiliser un bâtiment de stockage et/ou une zone de stockage extérieure couverte d'un toit, comme décrit à la section 4.1.7.2. Pour le stockage de quantités inférieures à 2 500 litres ou kilogrammes de substances Les cuves aériennes seront localisées dans les locaux des groupes électrogènes. dangereuses, l'utilisation d'un compartiment de stockage, tel que décrit à la section 4.1.7.2, est également une MTD. Des produits de maintenance des locaux pour toutes les installations techniques, tels que de l'huile de moteur pour les groupes électrogènes ou des produits d'entretien seront aussi présents sur le site. Les zones de stockages sont couvertes d'un toit. Le volume stocké sera faible Séparation et isolement CONFORME La MTD consiste à séparer la zone ou le bâtiment de stockage de substances dangereuses conditionnées des autres stockages, des sources d'inflammation et des autres bâtiments du site et extérieurs au site en respectant un éloignement Les groupes électrogènes sont situés dans des locaux techniques dédiés, dont les suffisant et en ajoutant, parfois, des murs anti-feu. Les EM n'utilisent pas tous les mêmes distances entre le stockage parois seront coupe-feu REI120 (2 heures). (extérieur) de substances dangereuses conditionnées et d'autres objets sur le site et extérieur au site ; la section 4.1.7.3 donne quelques exemples. La MTD consiste à séparer et/ou à isoler les substances incompatibles. L'annexe 8.3 donne la liste des combinaisons compatibles et incompatibles. Les EM n'utilisent pas tous les mêmes distances et/ou cloisonnement pour le stockage des substances incompatibles: la section 4.1.7.4 donne quelques exemples. Confinement des fuites et des produits extincteurs contaminés **CONFORME** La MTD consiste à installer un réservoir étanche aux liquides selon la section 4.1.7.5, pouvant contenir tout ou partie des liquides dangereux stockés au-dessus d'un tel réservoir. La nécessité de contenir tout ou partie des fuites dépend des La capacité des 2 bassins de rétention enterrés est de 910 m³ (1 bassin de 290 m³ substances stockées et de la localisation du stockage (par ex., dans un captage d'eau) et ne peut être décidée qu'au cas et 1 bassin de 740 m³). Ils auront la capacité suffisante pour collecter le volume de liquide à mettre en rétention en cas d'incendie (estimé à 1 030 m³ selon le calcul par cas. D9A). La MTD consiste à installer un dispositif de récupération des produits extincteurs étanche aux liquides dans les bâtiments de stockage et les zones de stockage selon la section 4.1.7.5. La capacité de récupération dépend des substances stockées, de la quantité de substances stockées, du type de conditionnement utilisé et du système de lutte contre l'incendie utilisé; elle ne peut être décidée qu'au cas par cas.

Équipement de lutte contre l'incendie La MTD consiste à utiliser un niveau de protection adapté aux mesures de prévention de l'incendie et de lutte contre l'incendie décrites à la section 4.1.7.6. Le niveau de protection approprié doit être déterminé au cas par car en accord avec les sapeurs-pompiers locaux.	CONFORME En cas d'incendie, les moyens internes pourront être complétés par l'intervention des sapeurs-pompiers. Le site disposera en effet d'un matériel important adapté aux risques, et d'un personnel compétent et entraîné aux différentes situations de risque.
Prévention de l'inflammation	CONFORME
La MTD consiste à prévenir l'inflammation à la source, comme décrit à la section 4.1.7.6.1.	Toute intervention sur site sera encadrée par une utilisation rigoureuse du permis de travail et du permis feu.
	Le site dispose des éléments suffisants et adéquats pour lutter contre les sources d'inflammation : Les fumeurs auront l'interdiction de fumer sur tout le site sauf au niveau des points fumeurs indiqués ; Les alimentations électriques seront en adéquation avec les risques grâce aux matériels ATEX et seront contrôlées périodiquement afin d'assurer leur conformité ; Le travail de maintenance, en particulier tout travail à haute température, nécessitera un permis feu et un plan de prévention. Un permis et un plan de prévention sera aussi ; Pour limiter le risque d'incendie volontaire, un système de surveillance du site, poste de garde, contrôle des accès, etc. seront mis en place ; Les systèmes de chauffage avec flammes ouvertes : permis et plan de prévention (sinon en fonctionnement normal le site ne dispose pas d'installation avec flamme ouverte), etc.

5.1.3 BASSINS ET FOSSES

CONFORME

Le site dispose d'un bassin d'infiltration pour les eaux pluviales. En cas de déversements accidentels ou d'incendie, une vanne fermée automatiquement permet de dévier l'eau vers les bassins de rétention enterré. Ces bassin de rétention enterrés sont dimensionnés pour collecter les eaux d'extinction d'incendies (calcul D9A donnant un volume de liquide à confiner de 1 030 m³): un bassin de rétention enterré de 290 m³ dont le trop-plein déborde dans le bassin de rétention enterré de 740 m³. La pompe de relevage située entre le bassin enterré et le réseau public d'eaux pluviales est également arrêtée automatiquement afin de confiner les eaux contaminées.

5.1.4 CAVITES MINEES ATMOSPHERIQUES

NON CONCERNE

Le site ne dispose pas de cavité minée atmosphérique.

5.1.5 CAVITES MINEES SOUS PRESSION

NON CONCERNE

Le site ne dispose pas de cavité minée sous pression.

5.1.6	CAVITES SALINES			
NON CONCERNE				
_	Le site ne dispose pas de cavité saline.			
5.1.7	STOCKAGE FLOTTANT			
	NON CONCERNE			
	Le site ne dispose pas de stockage flotte	ant.		
5.2	TRANSFERT ET MANIPULATION DE LIQUIDES ET DE GAZ LIQUEFIES			
5.2.1	PRINCIPES GENERAUX POUR PREVENIR ET REDUIRE LES EMISSIONS			
Inspection	n et entretien	CONFORME		
	siste à utiliser un outil permettant d'établir des plans d'entretien proactif et de mettre en place des plans fondés sur l'évaluation des risques, comme l'approche d'entretien centrée sur le risque et sur la fiabilité (voir 2 2 1)	Une maintenance préventive systématique de certains équipements (avec remplacement si nécessaire) est effectuée sur le site.		
3000011 4. 1.2		Des contrôles réglementaires sur les cuves sont également réalisés périodiquement.		
Programn	ne de détection et de réparation des fuites	CONFORME		
Sur les grandes installations de stockage, la MTD consiste à mettre en place un programme de détection des fuites et de réparation adaptée aux propriétés des produits stockés. L'accent doit être mis sur les situations les plus susceptibles de		Le programme de détection et réparation des fuites comprend la vérification des fuites et la réparation des fuites identifiées.		
	es émissions (comme les gaz/liquides légers, systèmes sous pression et/ou fonctionnement à des es très élevées) (voir section 4.2.1.3).	Un contrôle visuel régulier sera aussi réalisé dans les conteneurs groupes électrogènes et les détections de fuites seront reportées au PC sécurité (présence 24h/24).		
Principe d	le réduction maximale des émissions lors du stockage en réservoirs	CONFORME		
	nsiste à réduire les émissions dues au stockage en réservoirs, au transfert et à la manipulation ayant un connemental négatif significatif, comme décrit à la section 4.1.3.1.	Des canalisations fermées et étanches permettront le dépotage, le stockage et les transferts de HVO ou gazole vers les réservoirs.		
Cette MTD	s'applique aux grandes installations de stockage sur lesquelles un délai de mise en œuvre est autorisé.			
Sécurité e	t gestion des risques	NON CONCERNE		
La MTD poula section 4.	ur la prévention des incidents et des accidents consiste à utiliser un système de gestion de la sécurité décrit à 1.6.1.	Le site n'est pas classé SEVESO.		

Procédures opérationnelles et formation

La MTD consiste à mettre en œuvre et à suivre des mesures d'organisation adéquates et de favoriser la formation et l'instruction des employés pour un fonctionnement sûr et responsable de l'installation, comme décrit à la section 4.1.6.1.1.

CONFORME

La formation et instruction des employés sera réalisée de façon régulière. Chaque opérateur suivra régulièrement une formation spécifique à la sécurité.

5.2.2 CONSIDERATIONS RELATIVES AUX TECHNIQUES DE TRANSPORT ET DE MANIPULATION

5.2.2.1 CANALISATIONS

La MTD consiste à utiliser des canalisations aériennes fermées dans les nouvelles installations (voir section 4.2.4.1). Pour les canalisations enterrées existantes, la MTD consiste à utiliser une approche d'entretien fondée sur l'évaluation des risques et de la fiabilité, comme décrit à la section 4.1.2.2.1.

Les brides boulonnées et les assemblages à joint sont des sources importantes d'émission fugaces. La MTD consiste à réduire au maximum le nombre de brides en les remplaçant par des raccords soudés, dans la limite des exigences opérationnelles pour l'entretien de l'équipement ou la flexibilité du système de transport (voir section 4.2.2.1).

La MTD pour les raccords avec bride boulonnée (voir section 4.2.2.2.) prévoit :

- L'installation de brides pleines sur des accessoires rarement utilisés pour prévenir toute ouverture accidentelle
- Le remplacement des soupapes par des bouchons ou des tampons sur les conduites ouvertes ;
- La vérification de l'utilisation de joints appropriés à l'application du procédé ;
- La vérification de l'installation correcte du joint ;
- La vérification de l'assemblage et du chargement corrects du joint de bride :
- L'installation, en cas de transport de substances toxiques, cancérogènes ou autre substance dangereuse, de joints très fiables, comme les joints spiralés, les joints kammprofile ou les joints annulaires.

La corrosion interne peut être due à la nature corrosive du produit transporté (voir section 4.2.3.1). La MTD consiste à prévenir la corrosion en :

- Choisissant des matériaux de construction résistant au produit ;
- Utilisant des méthodes de construction adaptées ;
- Utilisant la maintenance préventive ;
- Le cas échéant, appliquant un revêtement interne ou ajoutant des inhibiteurs de corrosion.

Pour protéger la conduite de toute corrosion externe, la MTD consiste à appliquer un système de revêtement à une, deux ou trois couches selon les conditions spécifiques du site (par ex., à proximité de la mer). Le revêtement n'est généralement pas appliqué sur des conduites en plastique ou en acier inoxydable (voir section 4.2.3.2).

CONFORME

Les canalisations reliant les cuves enterrées et les cuves aériennes sont munies d'une deuxième enveloppe externe étanche et sont installées à pente descendante vers les cuves enterrées. Un point bas permet de recueillir tout écoulement de produit en cas de fuite de la tuyauterie. Il est pourvu d'un regard. Ces canalisations seront enterrées.

5.2.2.2 TRAITEMENT DE LA VAPEUR

La MTD consiste à utiliser l'équilibrage ou le traitement de la vapeur en cas d'émissions significatives lors du chargement et du déchargement de substances volatiles dans (ou depuis) des camions, des barges et des bateaux.

L'importance de ces émissions dépend de la substance et du volume émis et doit être déterminée au cas par cas.

Pour plus de détails, consultez la section 4.2.8. Selon les réglementations hollandaises, l'émission de méthanol est significative lorsqu'elle dépasse 500 kg/an.

NON CONCERNE

L'HVO et gazole ont une pression de vapeur qui reste modérée, donc un taux d'émission à l'atmosphère en phase de stockage modérée. Par ailleurs, les réservoirs seront globalement peu sollicités.

Les émissions de COV ne seront donc pas significatives.

5.2.2.3 SOUPAPES

La MTD pour les soupapes comprend les éléments suivants :

- Sélection du matériau de conditionnement et de la construction adaptée à l'application du procédé
- Surveillance centrée sur les soupapes présentant le plus grand risque (par exemple les vannes de régulation à tige montante utilisées en continu)
- Utilisation de vannes de régulation rotatives ou de pompes à vitesse variable à la place des vannes de régulation à tige montante
- En présence de substances toxiques, cancérogènes ou d'autres substances dangereuses, installation de soupapes à diaphragme, à soufflet ou à double paroi
- Acheminement des clapets de décharge vers le système de transport ou de stockage ou vers le système de traitement de la vapeur

Voir sections 3.2.2.6 et 4.2.9.

NON CONCERNE

5.2.2.4 POMPES ET COMPRESSEURS

Installation et entretien des pompes et compresseurs

La conception, l'installation et le fonctionnement d'une pompe ou d'un compresseur ont un impact important sur la durée de vie et la fiabilité du dispositif d'étanchéité. Parmi les principaux éléments d'une MTD, on peut citer :

- La fixation correcte de la pompe ou de l'unité de compression à sa plaque de base ou au châssis ;
- Forces du tuyau de raccordement conformes aux recommandations du fabricant ;
- Conception adéquate des canalisations d'aspiration pour réduire au maximum le déséquilibre hydraulique;
- Alignement de l'arbre et du boîtier conforme aux recommandations du fabricant :
- Alignement de l'entraînement/pompe ou du couplage du compresseur conforme aux recommandations du fabricant. le cas échéant :
- Niveau correct d'équilibre des pièces rotatives ;
- Amorçage efficace des pompes et des compresseurs avant le démarrage.

Fonctionnement de la pompe et du compresseur conforme à la plage de performances recommandée par le fabricant (les performances optimales sont atteintes au niveau de son meilleur point de rendement).

Le niveau de la NPSH (Net Positive Suction Head : valeur de la pression mesurée à l'entrée de la pompe) disponible doit toujours être en supplément de la pompe ou du compresseur.

Surveillance et entretien réguliers de l'équipement rotatif et des dispositifs d'étanchéité, associés à un programme de réparation et de remplacement.

Dispositif d'étanchéité dans les pompes

La MTD consiste à choisir la pompe et les types de dispositif d'étanchéité adaptés à l'application du procédé, de préférence des pompes technologiquement conçues pour être étanches, comme les électropompes à stator chemisé, les pompes à couplage magnétique, les pompes à garnitures mécaniques multiples et système d'arrosage ou de butée, les pompes avec garnitures mécaniques multiples et joints étanches à l'atmosphère, des pompes à diaphragme ou les pompes à soufflet. Pour plus de détails, voir les sections 3.2.2.2, 3.2.4.1 et 4.2.9.

CONFORME

Les pompes et compresseurs du site sont correctement dimensionnés au besoin, entretenus et suivis. Le suivi se fait notamment sur les points de cette MTD.

CONFORME

Le choix des technologies de pompe est réalisé suivant la performance attendue et le type de produit pompé.

Dispositifs d'étanchéité dans les compresseurs	NON CONCERNE	
La MTD pour les compresseurs transportant des gaz non toxiques consiste à utiliser des joints mécaniques à lubrification par gaz. La MTD pour les compresseurs transportant des gaz toxiques consiste à utiliser des joints doubles avec barrière liquide ou gazeuse et à purger le côté procédé du joint de confinement avec un gaz tampon inerte. En cas de fonctionnement à très haute pression, la MTD consiste à utiliser un système de joint tandem triple. Pour plus de détails, voir les sections 3.2.3 et 4.2.9.13.		
5.2.2.5 RACCORDS D'ECHANTILLONNAGE		
La MTD pour les points d'échantillonnage de produits volatiles consiste à utiliser un robinet d'échantillonnage de type piston hydraulique ou un robinet à aiguille et un robinet-vanne de sectionnement. Si les conduites d'échantillonnage doivent être purgées, la MTD consiste à utiliser des conduites d'échantillonnage en circuit fermé (voir section 4.2.9.14).		
5.3 STOCKAGE DES SOLIDES		
NON CONCERNE		

Tableau 2 : Comparaison au BREF EFS (Source : AIDA – Ineris)

4.2 BREF ENE – Efficacité énergétique

DESCRIPTION DES MTD	SITUATION DU SITE		
 Trois étapes supplémentaires sont à considérer comme des mesures de renfort : la préparation et la publication à intervalles réguliers (si possible avec une validation externe), d'un relevé d'efficacité énergétique décrivant tous les aspects environnementaux importants de l'installation, permettant une comparaison annuelle avec les objectifs et les cibles en matière d'efficacité énergétique et avec les référentiels sectoriels, comme approprié; l'examen et la validation par un organisme de certification accrédité ou par un vérificateur externe du SM2E et de la procédure d'audit; la mise en œuvre et l'adhésion à un système volontaire de management de l'efficacité énergétique reconnu au niveau national ou international tel que: DS2403, IS 393, SS627750, VDI Richtlinie No. 46, etc. en cas d'inclusion d'un SM2E dans un SME Système de management environnemental et d'audit (EMAS) et EN ISO 1400 : 1996. Applicabilité : à toutes les installations. Le champ d'application et la nature (par exemple niveau de détail) de ce SM2E sont fonction du type, de la taille et de la complexité de l'installation ainsi que des besoins en énergie des 			
procédés et des systèmes qui la composent. AMELIORATION ENVIRONNEMEN	NTALE CONTINUE		
2. Minimiser de manière continue l'impact sur l'environnement d'une installation en programmant les actions et les investissements de manière intégrée et à court, moyen long termes, tout en tenant compte du coût et des bénéfices et e des effets croisés.	CONFORME Un plan d'actions sera formalisé chaque année en vue d'améliorer l'efficacité énergétique du site.		
IDENTIFICATION DES ASPECTS PERTINENTS D'UNE INSTALLATION EN MATIERE D'EFFICACITE ENERGETIQUE ET DES OPPORTUNITES D'ECONOMIES D'ENERGIE			
3. Identifier, au moyen d'un audit, les aspects d'une installation qui ont une influence sur l'efficacité énergétique. Champ d'application et nature de l'audit (niveau de détail, intervalle entre les audits) fonction du type, de la taille et de la complexité de l'installation et de la consommation d'énergie des procédés et des systèmes qui la composent.	CONFORME L'identification des aspects exerçant une influence sur l'efficacité énergétique et des opportunités d'économies d'énergie a été menée dès la conception du projet par une mise en place d'équipements ou de choix techniques permettant de baisser la consommation énergétique.		

DESCRIPTION DES MTD	SITUATION DU SITE
4. Lors de la réalisation d'un audit, mettre en évidence les aspects d'une installation qui ont une influence sur l'efficacité énergétique :	Conformément au règlement, des audits énergétiques seront réalisés régulièrement afin d'identifier des actions d'optimisation énergétiques.
(a) type et quantité d'énergie utilisée dans l'installation, dans les systèmes qui la composent et par les différents procédés ;	
(b) équipements consommateurs d'énergie, et type et quantité d'énergie utilisée dans l'installation ;	
(c) possibilités de minimiser la consommation d'énergie, notamment par : i) contrôle/réduction des temps de fonctionnement, par exemple arrêt en dehors des périodes d'utilisation, ii) assurance d'une optimisation de l'isolation, iii) optimisation des utilités, des systèmes, des procédés et des équipements associés.	
(d) possibilités d'utilisation d'autres sources d'énergie plus efficaces, en particulier l'énergie excédentaire provenant d'autres procédés et/ou systèmes,	
(e) possibilités d'application de l'énergie excédentaire à d'autres procédés et/ou systèmes,	
(f) possibilité d'améliorer la qualité de la chaleur.	
Applicable à toutes les installations. Le champ d'application et la nature (par exemple niveau de détail) de l'audit sont fonction du type, de la taille et de la complexité de l'installation ainsi que de la consommation d'énergie des procédés et des systèmes qui la composent.	
5. Utiliser des méthodes ou des outils appropriés pour faciliter la mise en évidence et la quantification des possibilités d'économies d'énergie, notamment :	CONFORME Un système de type GTB sera mis en place.
(a) des modèles, des bases de données et des bilans énergétiques,	Système GTB : La Gestion Technique des Bâtiments étant le système informatique
(b) une technique telle que la méthode de pincement, l'analyse d'exergie ou d'enthalpie, ou la thermoéconomie ;	généralement installé dans des grands bâtiments ou dans des installations industrielles afin de superviser l'ensemble des équipements qui y sont installés.
(c) des estimations et des calculs.	
Applicable à chaque secteur. Le choix des outils appropriés est fonction du secteur, de la taille, de la complexité et de la consommation d'énergie du site.	

DESCRIPTION DES MTD	SITUATION DU SITE
6. Identifier les opportunités d'optimisation de la récupération d'énergie au sein de l'installation, entre les systèmes de l'installation et/ou avec une ou plusieurs tierces parties.	CONFORME
Applicabilité : suppose l'existence d'un usage approprié de la chaleur excédentaire récupérable.	La chaleur fatale produite par le data center sera valorisée dans le réseau de chaleur voisin, celui des MIN de Rungis, géré par DALKIA (jusqu'à 15 MW).
APPROCHE SYSTEMIQUE DU MANAG	EMENT DE L'ENERGIE
7. Optimiser l'efficacité énergétique au moyen d'une approche systémique du management de l'énergie dans l'installation. Les systèmes à prendre en considération en vue d'une optimisation globale sont notamment : (a) les unités de procédés (b) les systèmes de chauffage tels que : i) vapeur ii) eau chaude (c) le refroidissement et le vide (d) les systèmes entraînés par un moteur, tels que: i) air comprimé ii) le pompage (e) l'éclairage (f) le séchage, la séparation et la concentration.	CONFORME Dans les actions mises en place pour optimiser l'efficacité énergétique du projet, on retrouve : Suivi régulier des consommations énergétiques du site avec mise en place d'objectifs; Mise en place de l'indice PUE et WUE; Conception des locaux visant à réduire les besoins de climatisation et d'éclairage artificiel, cloisonnement allées chaudes / froides; Projet de valorisation de la chaleur fatale; Autoconsommation de la production d'électricité issue des panneaux photovoltaïques.
FIXATION ET REEXAMEN D'OBJECTIFS ET D'INDICA	TEURS D'EFFICACITE ENERGETIQUE
 8. Etablir des indicateurs d'efficacité énergétique par la mise en œuvre de toutes les actions suivantes : (a) identification d'indicateurs d'efficacité énergétique appropriés pour l'installation et, si nécessaire, pour les différents procédés, systèmes et/ou unités, et mesure de leur évolution dans le temps ou après mise en œuvre de mesures d'efficacité énergétique; (b) identification et enregistrement de limites appropriées associées aux indicateurs ; (c) identification et enregistrement de facteurs susceptibles d'entraîner une variation de l'efficacité énergétique des procédés, systèmes et/ou unités. Applicable à toutes les installations. Souvent basé sur l'utilisation finale mais possibilité d'utiliser l'énergie primaire ou le bilan carbone. 	CONFORME Les principaux indicateurs de performance énergétique de centre de données tels que : le PUE « Power Usage Effectiveness » (Rapport entre le total de l'énergie consommé de l'installation par rapport à la consommation de la partie informatique) et le WUE « Water Usage Effectiveness » (rapport entre le nombre de litres d'eau consommés par rapport à la consommation d'électricité de l'installation) sont conçus de façon optimisée, IT et mesurée de manière à réduire leur impact environnemental. Ainsi, Icade s'engage à un PUE annuel de 1,25 et un WUE proche de 0.

DESCRIPTION DES MTD	SITUATION DU SITE				
ANALYSE COMPARATIVE					
9. Réaliser des comparaisons systématiques et régulières par rapport à des référentiels sectoriels, nationaux ou régionaux, lorsque des données validées sont disponibles. Applicable à toutes les installations. Pose parfois des problèmes de confidentialité. L'intervalle entre deux analyses comparatives est propre au secteur et généralement long (c'est-à-dire de plusieurs années).	CONFORME Dans le cadre de l'optimisation de l'utilisation d'énergie, le PUE est l'un des indicateurs utilisés afin de valider l'efficacité des actions mises en œuvre visant à améliorer l'efficience énergétique du site. D'après une enquête faite par ENR'CERT pour ATEE en 2016³ sur 87 centres de données en France (représentant 15 % du parc): la majorité des centres de données ont un PUE compris entre 1,13 et 2,50; le PUE moyen actuel du parc est de 1,8; une consommation moyenne d'un centre de données en France = 5,15 MWh/m²/an. Une enquête de l'Uptime Institute réalisée en 2021 a montré que les centres de données de 2019 avaient un PUE moyen de 1,67 contre 1,80 en 2011. Cette enquête a été mise à jour en 2022 et a montré que les datacenters de 2021 avaient un PUE moyen de 1,57 contre 1,80 en 2011. Le PUE tend donc à diminuer avec le temps, montrant les progrès réalisés en termes d'efficacité énergétique de ces bâtiments. La valeur du PUE peut dépasser 2, voire 2,5 pour des centres de données petits ou anciens, ce qui tend à renforcer l'intérêt de développer des centres de données récents et de plus grande taille. Dans le cadre du projet, le PUE moyen visé sera de 1,25. L'efficacité énergétique du site sera donc élevée.				

³ Publication de <u>A.BARBIER</u>, « L'efficacité énergétique dans les data centers – Etude du gisement du parc français », Novembre 2016, ENR'CERT

DESCRIPTION DES MTD SITUATION DU SITE PRISE EN COMPTE DE L'EFFICACITE ENERGETIQUE LORS DE LA CONCEPTION 10. Optimiser l'efficacité énergétique lors de la planification d'une nouvelle installation, CONFORME unité ou système ou d'une modernisation de grande ampleur, selon les modalités suivantes: L'optimisation de l'efficacité énergétique a été intégrée dès la planification et la conception de la création du date center par les mesures suivantes : (a) à prendre en compte dès les premiers stades de la conception, qu'elle soit théorique ou pratique, même si La chaleur fatale produite par le datacenter sera récupérée et injectée sur le les besoins d'investissement ne sont pas encore bien définis, et à intégrer dans la procédure d'appel d'offres réseau urbain de chaleur de la ville de Rungis qui est opéré par Dalkia. Une production d'énergie renouvelable sera assurée par des panneaux photovoltaïques, implantés en sur-toiture sur la bâtiment « Datacenter » et sur des (b) mise au point et/ou sélection de techniques d'efficacité énergétique : ombrières de parking. Il est prévu d'atteindre un PUE (Power Usage Effectiveness) annuel de 1,25, et (c) peut s'avérer nécessaire de rassembler des données supplémentaires, dans le cadre du projet de un PUE maximal de 1,5. conception ou séparément, pour compléter les données existantes ou pour combler des lacunes dans les Les ressources nécessaires à la construction et utilisées en phase conception connaissances: sont optimisées. Lors de l'élaboration du cahier des charges, de la conception de nouvelles (d) les trayaux associés à la prise en compte de l'efficacité énergétique au stade de la conception doivent installations impliquant un besoin en énergie, ICADE s'attache à suivre les être menés par un expert en énergie ; meilleures techniques disponibles. (e) la cartographie initiale de la consommation énergétique doit aussi permettre de déterminer quelles sont les parties intervenant dans l'organisation du projet qui influeront sur la consommation énergétique future, et d'optimiser, en concertation avec ces parties, l'intégration de l'efficacité énergétique au stade de la conception de la future usine. Il peut s'agir, par exemple, du personnel de l'installation existante chargé de déterminer les paramètres d'exploitation. Applicabilité à toutes les installations nouvelles, modernisations de grande ampleur, principaux procédés et systèmes. En l'absence de personnel qualifié, spécialiste de l'efficacité énergétique en interne, (par ex. dans les industries qui ne sont pas de grandes consommatrices d'énergie), il est recommandé de recourir à un expert externe. INTEGRATION ACCRUE DES PROCEDES CONFORME 11. Rechercher l'optimisation de l'utilisation de l'énergie par plusieurs procédés ou systèmes, au sein de l'installation, ou avec une tierce partie. Cf MTD 6 Applicable à toutes les installations. La coopération et l'accord de tierces parties peuvent échapper au contrôle de l'exploitant et ainsi ne pas tomber dans le cadre d'une autorisation IPPC.

DESCRIPTION DES MTD	SITUATION DU SITE
MAINTIEN DE LA DYNAMIQUE DES INITIATIVES EN M	ATIERE D'EFFICACITE ENERGETIQUE
12. Maintenir la dynamique du programme d'efficacité énergétique au moyen de diverses techniques, notamment : (a) mise en œuvre d'un système spécifique de management de l'énergie; (b) comptabilisation de l'énergie sur la base de valeurs réelles (mesurées); la responsabilité en matière d'efficacité énergétique incombe ainsi à l'utilisateur/ celui qui paie la facture, et c'est également à lui qu'en revient le mérite; (c) création de centres de profit en matière d'efficacité énergétique; (d) analyse comparative; (e) nouvelle façon d'appréhender les systèmes de management existants, par exemple en ayant recours à l'excellence opérationnelle; (f) recours à des techniques de gestion des changements organisationnels (une autre facette de l'Excellence opérationnelle). Applicable à toutes les installations. Il convient selon le cas d'utiliser une seule technique ou plusieurs techniques conjointement. Les techniques (a), (b) et (c) sont appliquées conformément aux données figurant dans les sections correspondantes. Les techniques (d), € et (f) doivent être appliquées à intervalles suffisamment espacés (vraisemblablement de plusieurs années) pour permettre l'évaluation des progrès réalisés en matière d'efficacité énergétique.	CONFORME Un suivi des consommations d'énergie ainsi que des indicateurs énergétiques (PUE et WUE) sera réalisé dans l'objectif de maintenir la dynamique du programme d'efficacité énergétique.

DESCRIPTION DES MTD SITUATION DU SITE MAINTIEN DE L'EXPERTISE 13. Maintenir l'expertise en matière d'efficacité énergétique et de systèmes consommateurs CONFORME d'énergie, notamment par les techniques suivantes : Afin de maintenir un bon niveau de connaissance en matière d'efficacité énergétique l'exploitant aura recours à : (a) recrutement de personnel qualifié et/ ou formation du personnel. La formation peut être dispensée en interne, par des experts externes, au moyen de cours formels ou dans le cadre de l'autoformation/ développement du personnel qualifié; des formations avec les constructeurs et les fournisseurs de systèmes personnel: spécifiques : un partage des connaissances internes au groupe. (b) mise en disponibilité périodique du personnel pour effectuer des contrôles programmés ou spécifiques (sur leur installation d'origine ou sur d'autres); (c) partage des ressources internes entre les sites ; (d) recours à des consultants dûment qualifiés pour les contrôles programmés ; (e) externalisation des systèmes et/ou fonctions spécialisés. **BONNE MAITRISE DES PROCEDES** 14. S'assurer la bonne maîtrise des procédés, notamment par les techniques suivantes: CONFORME (a) mise en place de systèmes pour faire en sorte que les procédures soient connues, bien comprises et Afin d'assurer la bonne maîtrise des procédés, les procédures relatives à l'efficience énergétique des centres de données seront formalisées et diffusées dans le cadre du respectées; système qualité à l'ensemble du personnel concerné. (b) vérifier que les principaux paramètres de performance sont connus, ont été optimisés concernant l'efficacité énergétique, et font l'objet d'une surveillance ; (c) documenter ou enregistrer ces paramètres.

DESCRIPTION DES MTD	SITUATION DU SITE
MAINTENANCE	
15. Réaliser la maintenance des installations en vue d'optimiser l'efficacité énergétique par l'application de toutes les mesures suivantes : (a) définir clairement les responsabilités de chacun en matière de planification et d'exécution de la maintenance ; (b) établir un programme structuré de maintenance, basé sur les descriptions techniques des équipements, sur les normes, etc., ainsi que sur les éventuelles pannes des équipements et leurs conséquences. Il est préférable de programmer certaines activités de maintenance durant les périodes d'arrêt des installations ; (c) faciliter le programme de maintenance par des systèmes appropriés d'archivage des données et par des tests de diagnostic ; (d) mise en évidence, grâce à la maintenance de routine et en fonction des pannes et/ou des anomalies, d'éventuelles pertes d'efficacité énergétique ou de possibilités d'amélioration de l'efficacité énergétique ; (e) détecter les fuites, les équipements défectueux, les paliers usagés, etc., susceptibles d'influencer ou de contrôler la consommation d'énergie, et y remédier dès que possible. Applicable à toutes les installations. La nécessité de procéder rapidement aux réparations doit être pondérée par l'obligation de maintenir la qualité du produit et la stabilité du procédé, ainsi que par des considérations ayant trait à la santé et à la sécurité quant à l'opportunité de réaliser des réparations sur des installations en fonctionnement (susceptibles de contenir des équipements mobiles, chauds, etc.).	CONFORME Un programme de maintenance préventive sera mis en place en vue d'optimiser l'efficacité énergétique des équipements (notamment groupe froid, contrôle électrique périodique)
SURVEILLANCE ET MES	BURAGE
16. Etablir et maintenir des procédures documentées pour surveiller et mesurer régulièrement les principales caractéristiques des opérations et activités qui peuvent avoir un impact significatif sur l'efficacité énergétique.	CONFORME Les infrastructures seront pilotées quotidiennement par les équipes du site. Une GTB sera mise en œuvre permettant de remonter sous forme d'alarmes toutes les dérives aux paramètres fixés.

DESCRIPTION DES MTD	SITUATION DU SITE
MTD POUR LES SYSTEMES, LES PROCEDES, LES ACTIVITES OU L	ES EQUIPEMENTS CONSOMMATEURS D'ENERGIE
17. Optimiser le rendement énergétique de la combustion par des techniques appropriées, notamment :	NON CONCERNE
(a) celles spécifiques aux secteurs, énoncées dans les BREF verticaux ;	
(b) celles présentées dans le BREF relatif aux grandes installations de combustion et dans le BREF sur l'efficacité énergétique.	
18. Les MTD pour les systèmes à vapeur consistent à optimiser l'efficacité énergétique, en ayant recours à des techniques telles que :	NON CONCERNE Pas d'emploi de vapeur.
(a) celles spécifiques aux secteurs énoncés dans les BREF verticaux ;	r as a cripior de vapeur.
(b) celles énoncées dans le BREF relatif aux grandes installations de combustion et dans le BREF sur l'efficacité énergétique.	
19. Maintenir l'efficacité des échangeurs de chaleur par :	CONFORME
(a) une surveillance périodique de l'efficacité ;	Des échangeurs de chaleur sont prévus pour valoriser la chaleur fatale. Ils feront l'objet d'une surveillance périodique et d'un nettoyage régulier.
(b) la prévention de l'encrassement ou le nettoyage.	d and sarremance penedique et a un nette yage regaller.
20. Rechercher les possibilités de cogénération, au sein de l'installation et/ou en dehors de celleci (avec une tierce partie).	NON CONCERNE
21. Augmenter le facteur de puissance suivant les exigences du distributeur d'électricité local, en ayant recours à des techniques telles que celles décrites dans le BREF sur l'efficacité énergétique, en fonction de leur applicabilité.	NON CONCERNE

	DESCRIPTION DES MTD			SITUATION DU SITE	
22. Contrôler l'alimentation électrique pour vérifier la présence d'harmoniques et appliquer des filtres le cas échéant.				CONFORME Les onduleurs présents sur l'installation permettront d'éliminer les harmoniques.	
	Technique Vérifier que les câbles d'alimentation sont correctement dimensionnés en fonction de la demande Maintenir en ligne les transformateurs fonctionnant à une charge de plus de 40 à 50 % de la puissance nominale Utiliser des transformateurs à haut rendement / faibles pertes Placer les équipements pour lesquels la demande en courant est élevée, aussi près que possible de la source	existantes : lorsque le facteur		CONFORME L'efficacité de l'alimentation électrique étant un point central des projets de data center, une distribution électrique en haute tension et correctement dimensionnée à l'intérieur du site permettra de réduire la perte de charge.	
Tableau 3 : Techniq	haut rendement / faibles pertes Placer les équipements pour lesquels la demande en courant est élevée, aussi près que possible de la source d'alimentation (par ex. transformateur)	de 40 à 75 % En cas de remplacement, ou lorsqu'il existe une meilleure rentabilité sur le cycle de vie En cas d'implantation ou de	nentations électriques		

DESCRIPTION DES MTD	SITUATION DU SITE
 24. Les MTD consistent à optimiser les moteurs électriques en respectant l'ordre suivant : (a) optimiser l'ensemble du système dans lequel le ou les moteurs s'intègrent (par exemple système de refroidissement); (b) optimiser ensuite le ou les moteurs du système en fonction des impératifs de charge nouvellement définis, par une ou plusieurs des techniques décrites dans le tableau 5 en fonction de leur applicabilité; (c) une fois les systèmes consommateurs d'énergie optimisés, optimiser alors les moteurs restants (non optimisés) en fonction du tableau 5 et de critères tels que ceux définis ci-après : i) remplacer en priorité les moteurs tournant plus de 2 000 heures par an par des moteurs à hauts rendements; ii) les moteurs électriques commandant une charge variable qui fonctionnent à moins de 50 % de leur capacité plus de 20 % de leur temps de fonctionnement et qui sont utilisés plus de 2 000 heures par an devraient être considérés pour être équipés d'un entraînement à vitesse variable. 	NON CONCERNE
25. Les MTD consistent à optimiser les systèmes d'air comprimé (SAC) en ayant recours à des techniques telles que celles décrites dans le BREF sur l'efficacité énergétique, en fonction de leur applicabilité.	NON CONCERNE

	stent à optimiser les sy			CONFORME
Technique CONCEPTION Lors du choix d'une pompe, ne pas la surdimensionner et remplacer les pompes surdimensionnées Choisir une pompe en adéquation avec un moteur correct pour le service requis Conception du système de canalisation (voir Système de distribution ci-dessous) CONTRÔLE et MAINT Système de contrôle et de régulation Arrêter les pompes inutiles Utiliser des entraînements à vitesse variable (EVV) pour les moteurs électriques	À tous les cas	Maintenance régulière. En cas de maintenance non planifiée excessive, vérifier la présence éventuelle : • De phénomènes de cavitation • D'usure excessive des pompes, • D'inadéquation des pompes à l'usage qui en est fait SYSTÈME DE DISTRII Éviter d'employer un trop grand nombre de vannes et de coudes pour faciliter l'exploitation et la maintenance éviter les coudes (en particulier les changements de direction intempestifs) dans le réseau de canalisation	A tous les cas. Réparer ou remplacer selon le cas BUTION A tous les cas: au stade de la conception et de l'installation (y compris de modifications). L'avis d'un conseiller technique qualifié est parfois requis. À tous les cas: au stade de la conception et de l'installation (y compris de modifications). L'avis d'un conseiller technique qualifié est parfois requis. À tous les cas: au stade de la	Les pompes du site sont dimensionnées pour répondre aux besoins d'approvisionn du data center. Des contrôles des systèmes de pompage seront réalisés périodiquement e maintenance régulière sera mise en place.

DESCRIPTION DES MTD SITUATION DU SITE 27. Optimiser les systèmes de chauffage, ventilation et climatisation en ayant recours à des CONFORME techniques appropriées, notamment : Dans les actions mises en place pour la gestion de l'énergie, on retrouve notamment : un suivi régulier des consommations énergétiques du site avec mise en place (a) pour la ventilation, le chauffage et la climatisation des locaux, les techniques du tableau 8 en fonction de d'objectifs; leur applicabilité; la mise en place de l'indice PUE et WUE : la conception des locaux visant à réduire les besoins de climatisation et Réduction des besoins en À envisager dans tous les cas et à mettre en œuvre Mesures d'économies d'énergie d'éclairage artificiel, cloisonnement allées chaudes / froides ; chauffage/refroidissement par en fonction des coûts et des avantages CONCEPTION et CONTRÔLE la valorisation de la chaleur fatale : isolation des bâtiments. Conception globale du système. Nouvelle installation ou modernisation de grande pose de vitrage efficace des contrôles périodiques et la maintenance des équipements techniques. Identifier et équiper les zones ampleur réduction des infiltrations d'air Considérer lors de la modernisation les coûtsséparément pour : fermeture automatique des portes. la ventilation générale avantages sur la durée de vie. déstratification. la ventilation spécifique baisse des réglages de la la ventilation des procédés température pendant les périodes Optimiser le nombre, la forme et la Nouvelle installation ou modernisation de non production (régulation taille des admissions programmable) Utiliser des ventilateurs Bon rapport coût-efficacité dans tous les cas baisse /augmentation des points à haut rendement de consigne pour le chauffage/la conçus pour fonctionner à son climatisation régime optimal Amélioration de l'efficacité des À envisager dans tous les cas et à mettre en œuvre Envisager une ventilation à double Nouvelle installation ou modernisation de grande systèmes de chauffage par : en fonction des coûts et des avantages flux pour la gestion du débit d'air récupération ou utilisation de la Conception du réseau aéraulique : Nouvelle installation ou modernisation de grande chaleur perdue (voir Section 3.3). gaines de taille suffisante ampleur pompes à chaleur. système de chauffage radiatif et gaines circulaires « tracé » le plus court possible et local couplés à une réduction des points de consigne de la éviter les obstacles (coudes, température dans les zones des rétrécissements, etc.) bâtiments non occupées. Optimiser les moteurs électriques. À tous les cas Modernisation de bon rapport coût-Améliorer l'efficacité des systèmes de Applicable dans des circonstances spécifiques envisager d'installer un entraînement à efficacité refroidissement par l'emploi du free vitesse variable.

Tableau 5 : Techniques d'amélioration de l'efficacité énergétique pour les systèmes de chauffage, ventilation et climatisation

MAINTENANCE

vérifier les raccords

des filtres nettoyage régulier du système

Vérifier que le système est équilibré

Gestion du débit d'air : optimisation

Optimiser la filtration de l'air

efficacité du recyclage pertes de charge nettoyage/remplacement régulier

que possible

Arrêter ou réduire la ventilation dès A tous les cas

S'assurer de l'étanchéité du système, À tous les cas

À tous les cas

À tous les cas

(b) pour le chauffage;

Intégration à des systèmes de gestion

Intégration des filtres à air au réseau Nouvelle aéraulique et récupération de la ampleur

chaleur émanant de l'air échappement

technique centralisée

(échangeurs de chaleur),

- (c) pour le pompage;
- (d) pour le refroidissement, la réfrigération et les échangeurs de chaleur.

Utiliser des systèmes de régulation Toutes les installations nouvelles et modernisations

de grande ampleur

dans tous les cas

Bon rapport coût-efficacité et modernisation facile

Nouvelle installation ou modernisation de grande

Considérer lors de la modernisation les coûts-

avantages sur la durée de vie. Points à prendre en

compte : rendement thermique, pertes de charges, et

nécessité d'un nettoyage régulier

DESCRIPTION DES MTD		SITUATION DU SITE	
ANALYSE et CONCEPTION DE L'ÉCLAIRAGE SELON LES BI Identifier les besoins d'éclairage en termes d'intensité et de spectre requis pour la tâche prévue Planifier l'espace et les activités afin d'optimiser l'utilisation de la lumière naturelle Cel. réa ou Ob mo ex. No mo Choisir des modèles d'appareils et de lampes en fonction des impératifs propres à l'utilisation prévue FONCTIONNEMENT, CONTRÔLE et MAINTENANCE	pplicabilité BESOINS tous les cas envisager dans tous cas si ela est faisable par des aménagements opérationnels ide maintenance normaux. bligatoire en cas de odifications structurelles, par construction d'un atelier; ouvelles installations outs-avantages sur la durée de e tous les cas	CONFORME Le site fait l'objet de mesures pour limiter l'éclairage sur site et ainsi réduire l'impact sur les riverains et la biodiversité. Ces mesures sont détaillées au sein de la pièce n°6 (étude d'impact). De plus, les employés présents sur site seront sensibilisés aux bonnes pratiques concernant les économies d'énergie dont notamment celles liées à l'éclairage.	
Tableau 6 : Techniques d'amélioration de l'efficacité énergétique 29. Optimiser les procédés de séchage, séparation et conce techniques telles que celles décrites dans le BREF sur l'efficacit applicabilité et rechercher les possibilités d'utilisation de la sépa avec les procédés thermiques.	entration en ayant recours à des ité énergétique, en fonction de leur	NON CONCERNE Le site n'utilise pas de procédés de séchage.	

Tableau 7 : Comparaison au BREF ENE (Source : AIDA - Ineris)

Annexe 1:

<u>Argumentaire technique relatif aux raisons du choix des groupes électrogènes mis en place</u> (puissance et nombre) ainsi qu'au nombre de points de rejet (cheminée)

La puissance totale du projet est de 130 MW. La puissance IT est de 84 MW et le PUE maximal de 1.5. Il y a 30 datahalls de puissance unitaire 2.8MW. Pour climatiser le projet, 58 chillers sont prévus.

Architecture électrique :

Pour alimenter le projet, 59 blocs de puissance sont prévus. Chaque bloc est équipé :

- D'un transformateur de 2.8MVA
- D'un groupe électrogène de 2.8MW en stand by rated. A noter qu'un GE en stand-by rated ne peut pas produire 2.8 MW en continu mais il faut que sur 24h, la puissance moyenne fournie par le GE soit égale à 70% de sa puissance totale.

Les 59 blocs de puissance (Tx=2.8 MVA+GE=2.8 MW standby) alimentent les puissances suivantes :

- 30 blocs primaires de puissance IT de 2.4 MW
- 5 Blocs (power up de 2.4MW) pour assurer la montée en puissance de chaque bloc IT de 2.4 MW à 2.8 MW
- 19 blocs d'équipements de climatisation, plomberie et sécurité incendie.
- 5 blocs redondants qui remplacent les blocs primaires en cas de défaut.

D'où la nécessité de mettre en place 59 groupes électrogènes d'une puissance thermique nominale unitaire de 7,889 MWth.

Le choix d'équiper chaque groupe électrogène d'une cheminée est un choix technique dû au fait que, s'il y a une cheminée commune pour plusieurs groupes électrogènes, le retour de fumée d'un groupe en fonctionnement vers les autres groupes pourrait empêcher le démarrage des autres groupes.

A noter qu'il est prévu un fût commun en toiture pour 4 cheminées, donc esthétiquement il y aura moins de cheminées visibles.

En conclusion, le choix du nombre de groupes électrogènes et du nombre de points de rejets (une cheminée par groupe électrogène) est dû à la nécessité d'avoir une fiabilité de l'alimentation électrique en cas de coupure et une autonomie de chaque datahall, Ce choix est donc intrinsèque à la conception d'un datacenter.

RAPPORT DE BASE

RAPPORT

ARCADIS pour le compte d'ICADE ICADE - Rungis (94)

Référence affaire DIE REMEDIATION: RM240076

Dépolluer pour l'Homme & l'Environnement.

DÉPOLLUTION DES SOLS
GESTION DES DÉCHETS
DIAGNOSTIC ET ÉVALUATION DES RISQUES
ASSISTANCE À MAÎTRISE D'OUVRAGE / MAÎTRISE D'ŒUVRE

DIE Remediation - Siège Social

8, rue Guy Môquet 95100 ARGENTEUIL

Tél.: 09 70 82 80 00

remediation@die.fr

www.di-environnement.fr

Contact

Guillaume BRÉAUTÉ
Chef de projet

M: 06 28 47 52 06 gbreaute@die.fr

CERTIFICATION
RÉGLEMENTAIRE

Attentations prévues par le code
de l'aminomentes paur les
CESSATIONS D'ACTIVITÉ
table
SITES ET SOLS POLLUÉS
ET RÉPUBLIQUE FRANÇAISE
ATT 2 II – ATTES ALIE

Version	Date	Objet de l'édition/révision	Etabli par	VÉRIFIÉ PAR	Approuvé par
V1	26/04/2024	Première édition	L. DAVID	G. BRÉAUTÉ	F. BARY
V2	09/07/2024	Intégration chapitres 4 et 5	S. AFRITE	G. BRÉAUTÉ	V. BASCOU
V3	19/07/2024	Intégration commentaires Arcadis	S. AFRITE	G. BRÉAUTÉ	V. BASCOU

Il est de la responsabilité du destinataire de ce document de détruire l'édition périmée ou de l'annoter « Edition périmée ». Document protégé, propriété exclusive de DIE REMEDIATION.

Ne peut être utilisé ou communiqué à des tiers à des fins autres que l'objet de l'étude commandée.

DIE Remediation est certifiée par le LNE (<u>www.lne.fr</u>) pour le domaine des Sites et Sols Pollués. Cette certification atteste de la conformité des services proposés avec les exigences définies dans le référentiel de certification (Certification de service des prestataires dans le domaine des sites et sols pollués) et celles des normes françaises NF X 31-620 relatives aux Sites et Sols Pollués de décembre 2021. Le périmètre de notre certification concerne les domaines A (Etudes, Assistance et Contrôle), B (Ingénierie des travaux de réhabilitation) et D (Mission ATTES). [Certificats n° 38525-0, 38526-0, 38527-0 et 38528-0 valables jusqu'au 28 juin 2025]

TABLE DES MATIERES

1	Intro	duction	9
	1.1	CADRE DE LA MISSION	9
	1.2	CADRE NORMATIF ET METHODOLOGIQUE GENERAL	9
	1.3	LOCALISATION DU SITE	10
	1.4	DETERMINATION DU PERIMETRE IED	11
2		pitre 1 Description du site et de son environnement	
_	2.1	Description detaillee du projet	
	2.1.1		
	2.1.1		
	2.1.2		
	2.1.4		
	2.2	CONTEXTE ADMINISTRATIF DU SITE	17
	2.3	VISITE DE SITE	17
	2.4	CONTEXTE HISTORIQUE DU SITE	18
	2.5	CONTEXTE INDUSTRIEL	18
	2.6	CONTEXTE ENVIRONNEMENTAL ET VULNERABILITE	21
	2.6.1	Voisinage	21
	2.6.2	Contexte géologique	22
	2.6.3	Contexte hydrogéologique	25
	2.6.4	Contexte hydrologique	25
	2.6.5	Milieux naturels sensibles	26
	2.7	SCHEMA CONCEPTUEL	27
	2.7.1	Sources potentielles de pollution	27
	2.7.2	Cibles potentielles, vecteurs de transfert et d'exposition	27
3	Cha	pitre 2 Recherche, compilation et évaluation des données disponibles	28
4	Cha	pitre 3 Définition du programme et des modalités d'investigations	28
5	Cha	pitre 4 Mise en œuvre du programme d'investigations et analyses au labo	ratoire
	29		
	5.1	PLANNING D'INTERVENTION	29
	5.2	INVESTIGATIONS REALISEES	30
	5.2.1	Investigations sur les sols	30
	5.2.2	Investigations sur les eaux souterraines	32
	5.3	METHODOLOGIE D'INVESTIGATION	33

	5.3.1	Méthodologie d'investigations sur les sols	33
	5.3.2	Méthodologie de prélèvement des piézomètres	34
6	Chapit	tre 5 - Présentation, interprétation des résultats et discussion des incertit	udes35
6	6.1 In	NVESTIGATIONS SUR LES SOLS	35
	6.1.1	Lithologie observée et indices organoleptiques	35
	6.1.2	Critère de comparaison	35
	6.1.3	Présentation des résultats	36
6	6.2 R	RESULTATS DES INVESTIGATIONS SUR LES EAUX SOUTERRAINES	37
	6.2.1	Description du réseau piézométrique	37
	6.2.2	Mesures de terrain	37
	6.2.3	Piézométrie	38
	6.2.4	Critères de comparaison.	39
	6.2.5	Présentation des résultats	40
7	Concli	usions	41

LISTE DES FIGURES

Figure 1 : Localisation du site (Géoportail)	11
Figure 2 : Périmètre IED	12
Figure 3 : Gestion des effluents	14
Figure 4 : Disposition actuelle du site	17
Figure 5 : Voisinage du site (Source : Géoportail)	22
Figure 6 : Extrait de la carte géologique du BRGM n°98 (Source : Infoterre)	23
Figure 7 : Coupe du sondage BS000RLWU	23
Figure 8 : Coupe du sondage BSS000RLPZ	24
Figure 9 : Réseau hydraulique autour du site	26
Figure 10 : Zones naturelles protégées	26

LISTE DES TABLEAUX

Tableau 1 : Produits ou substances dangereuses pertinentes utilisées, produites ou rejetées droit du périmètre IED	s au 16
Tableau 2 : Evolution du site	18
Tableau 3 : Sites BASIAS dans un rayon de 2km autour du site (Source : Géorisques)	21
Tableau 4 : Sources potentielles de pollution	27
Tableau 5 : Cibles potentielles, vecteurs de transfert et d'exposition	27
Tableau 6 : Sources potentielles de pollution	28
Tableau 7 : Planning d'intervention	29
Tableau 8 : Récapitulatif des décalages par rapport au prévisionnel	30
Tableau 9 : Programme d'analyses réalisé par sondage	32
Tableau 10 : Programme des investigations sur les eaux souterraines	33
Tableau 11 : Caractéristiques des piézomètres sur site	37
Tableau 12 : Paramètres physico-chimiques des eaux souterraines	38
Tableau 13 : Niveaux piézométriques relevés en juin 2024	39

LISTE DES ANNEXES

Annexe 1	Plan de masse du projet
Annexe 2	Reportage photographique
Annexe 3	Photographies aériennes historiques
Annexe 4	Localisation des sources potentielles de pollution
Annexe 5	Plans des investigations proposées
Annexe 6	Plans des investigations réalisées
Annexe 7	Coupes des sondages de sols
Annexe 8	Bordereaux du laboratoire sur les sols
Annexe 9	Synthèse des résultats dans les sols
Annexe 10	Coupes des piézomètres
Annexe 11	Rapport de nivellement des piézomètres
Annexe 12	Fiches de prélèvement des eaux souterraines
Annexe 13	Report des niveaux piézométriques
Annexe 14	Bordereaux d'analyses sur les eaux souterraines
Annexe 15	Tableaux d'analyses sur les eaux souterraines

GLOSSAIRE

AEP: Alimentation en Eau Potable

AFNOR: Agence Française de Normalisation

BASIAS: Base de Données des Anciens Sites Industriels et Activités de Services

BRGM : Bureau de Recherches Géologiques et Minières

BTEX: Benzène, Toluène, Ethylbenzène, Xylènes

BSS: Banque du Sous-Sol

COHV: Composés Organo Halogénés Volatils

GO: Gasoil

HAP: Hydrocarbures Aromatiques Polycycliques

HC: Hydrocarbures

HVO: Huile végétale hydrotraitée

ICPE: Installation Classée pour la Protection de l'Environnement

IED: Industrial Emissions Directive

Métaux: Arsenic (As), Cadmium (Cd), Chrome (Cr), Cuivre (Cu), Mercure (Hg), Nickel (Ni), Plomb (Pb), Zinc (Zn)

MTECT: Ministère de la Transition Ecologique et de la Cohésion du Territoire

NGF : Nivellement Général de la France

NQE : Norme de Qualité Environnementale

PCB: PolyChloroBiphényls

PLU: Plan Local d'Urbanisme

SIS: Secteur d'Information sur les Sols

VL: Véhicule Léger

ZNIEFF: Zone Naturel d'intérêt Ecologique, Faunistique et Floristique

RESUME NON TECHNIQUE

THEMATIQUE	Commentaires
Contexte	Afin de répondre aux exigences réglementaires fixées par la Directive Européenne 2010/75/UE relative aux émissions industrielles, dite IED (Industrial Emissions Directive), ARCADIS a missionné DIE Remediation pour l'élaboration du rapport de base relatif à la construction d'un Data Center par ICADE rue des Solets sur la commune de Rungis (94).
Périmètre IED	Générateurs électriques et alimentation en fuel / HVO (cuves, canalisations, locaux de pompage, aire de dépotage) ainsi que les sousstations électriques
Contexte historique	Usage agricole avant 1971. Présence de remblais et d'activités non identifiées entre 1971 et 1981 Usage tertiaire avec des bureaux et espaces verts après 1981.
Contexte industriel	De nombreuses activités potentiellement polluantes aux alentours du site.
Contexte géologique	 Calcaire et argile à meunière de Brie (Rupélien) sur environ 4,5 m d'épaisseur; Argile verte de Romainville (Rupélien) sur environ 7 à 9 m d'épaisseur; Marnes et gypses du Priabonien sur 40 à 45 m d'épaisseur;
Contexte hydrogéologique	Nappe des calcaires de Brie à environ 3,5 m de profondeur, limitée par les argiles vertes, avec un écoulement vers le nord-est.
Contexte hydrologique	Le ruisseau de Rungis situé à 500 m à l'ouest du site
Contexte écologique	Aucune zone protégée proche du site
Sources potentielles de pollution	 Remblais et activités non identifiées entre 1971 et 1981 22 cuves enterrées de 120 000 l de gasoil et d'huile végétale hydrotraitée (dépotage et canalisations associées) 59 générateurs et cuves aériennes associées (1600 l) Sous-stations électriques avec 4 transformateurs et cuve enterrée de 60 m³ pour la récupération des huiles; Séparateur et aire de dépotage; 2 locaux de pompage de fuel.
Investigations	Sols : réalisation de 10 sondages à la tarière mécanique entre 2 et 6 m de profondeur

THEMATIQUE	Commentaires
	Analyses sur les sols des paramètres hydrocarbures C_5 - C_{40} , BTEX, HAP, COHV, PCB et 8 métaux avec des packs ISDI en complément pour les sondages au droit des cuves. Eaux souterraines : mise en place de 4 piézomètres à 6 m de profondeur avec prélèvement des eaux souterraines Analyses sur tous les échantillons des paramètres suivants : hydrocarbures C_5 - C_{10} , hydrocarbures C_{10} - C_{40} , BTEX, HAP, COHV et PCB.
Résultats des investigations sur les sols	 Pour le cuivre, trois teneurs dépassant la gamme ASPITET « sols ordinaires » (20 mg/kg MS) sur S1 (2-3 m), S3 (3-4 m) et S8 (3-4 m) avec des concentrations respectives de 22 mg/kg MS, 51 mg/kg et 35 mg/kg MS Des teneurs en métaux lourds sur éluât toutes inférieures aux critères ISDI respectifs. Des traces d'hydrocarbures C₁₀-C₄₀ mesurées au droit de S1, S3, S4, S6, S8 et S9 avec des concentrations comprises entre 26,60 et 50,30 mg/kg MS bien inférieures au seuil ISDI (500 mg/kg MS); Des traces de HAP mesurées au droit de S2, S4 et S8 avec des concentrations en somme des 16 HAP comprises entre 0,069 et 0,957 mg/kg MS bien inférieures au seuil ISDI (50 mg/kg MS); Des traces de PCB mesurées au droit de S1, S2 et S5 avec des concentrations en somme des 7 PCB comprises entre 0,001 et 0,030 mg/kg MS bien inférieures au seuil ISDI (1 mg/kg MS); Des résultats d'analyses en BTEX, hydrocarbures C₅-C₁₀, et COHV tous inférieurs aux limites de quantification du laboratoire.
Résultats des investigations sur les eaux souterraines	 Des traces de nickel mesurées sur Pz1, de cuivre et de zinc sur Pz3 avec des teneurs inférieures aux critères de comparaison retenues et proches des limites de quantification; Des traces de HAP mesurées sur Pz2, Pz3 et Pz4 avec des teneurs bien inférieures aux critères de comparaison; BTEX, hydrocarbures C5-C10, hydrocarbures C10-C40, COHV Aucun de ces composés n'a été mis en évidence lors de cette campagne au droit des ouvrages prélevés Des résultats d'analyses en BTEX, hydrocarbures C5-C10, hydrocarbures C10-C40, et COHV tous inférieurs aux limites de quantification du laboratoire.

1 INTRODUCTION

1.1 CADRE DE LA MISSION

Afin de répondre aux exigences réglementaires fixées par la Directive Européenne 2010/75/UE relative aux émissions industrielles, dite IED (Industrial Emissions Directive), ARCADIS a missionné DIE Remediation pour l'élaboration du rapport de base relatif à la construction d'un Data Center par ICADE rue des Solets sur la commune de Rungis (94).

Le terrain est actuellement occupé par un ensemble d'immeubles de bureaux et d'activités tertiaires.

Le Data Center sera soumis à la directive IED pour la rubrique 3110 : Combustion.

Le rapport de base (selon la directive IED) est un « outil pratique permettant, dans toute la mesure du possible, d'établir une comparaison quantitative entre l'état du site tel qu'il est décrit dans ce rapport de base et l'état du site lors de la cessation définitive des activités, de manière à établir une éventuelle augmentation notable de la pollution du sol ou des eaux souterraines ».

L'objectif du rapport de base est de réaliser une photographie à l'instant t de la qualité environnementale des sols et des eaux souterraines au droit de l'emprise de la zone d'exploitation de l'installation. Pour ce faire, ce type de rapport est organisé selon 3 à 5 chapitres, conformément au guide méthodologique pour l'élaboration du rapport de base prévu par la Directive IED diffusé par le ministère en charge de l'Environnement (version 2.2, BRGM, Octobre 2014):

- 1. Description du site et de son environnement et évaluation des enjeux ;
- 2. Recherche, compilation et évaluation des données disponibles ;
- 3. Définition du programme et des modalités d'investigations, complémentaires le cas échéant ;
- 4. Réalisation du programme d'investigations et analyses au laboratoire ;
- 5. Interprétation des résultats et discussion des incertitudes.

Ce rapport présente le rapport de base complet avec les chapitres 1 à 5. Il fait suite au rapport de base préliminaire daté du 26/04/2024 qui exposait les chapitres 1 à 3 et proposait des investigations environnementales.

1.2 CADRE NORMATIF ET METHODOLOGIQUE GENERAL

Notre étude a été réalisée conformément aux prescriptions et méthodologies décrites dans :

- la note du 19 avril 2017 relative aux sites et sols pollués Mise à jour des textes méthodologiques de gestion des sites et sols pollués de 2007 et ses documents annexes ;
- la norme NF X 31-620-2 intitulée "Prestations de services relatives aux sites et sols pollués
 Partie 2 : Exigences dans le domaine des prestations d'études, d'assistance et de contrôle", publiée par l'AFNOR en décembre 2021.

Les prestations des chapitres 1 à 5 du rapport de base à réaliser correspondent en tout ou partie à :

- ∞ Visite de site (A100);
- ∞ Etude historique (A110);
- ∞ Etude de vulnérabilité de l'environnement (A120) ;
- ∞ Elaboration d'un programme d'investigations (A130) ;
- ∞ Prélèvements, mesures, observations et analyses sur les sols (A200) ;
- ∞ Prélèvements, mesures, observations et analyses sur les eaux souterraines (A210) ;
- ∞ Interprétation des résultats des investigations (A270);
- les normes suivantes relatives aux protocoles et techniques d'échantillonnage dans le sous-sol :
 - ∞ NF EN ISO 25177 (2019-10-16) Qualité du sol Description du sol sur le terrain ;
 - ∞ NF ISO 18400 (2017-07-21) Qualité du sol Ensemble de normes ;
 - NF EN ISO 5667-3 (2018-06-13) Qualité de l'eau Échantillonnage Partie 3 : conservation et manipulation des échantillons d'eau ;
 - NF X31-614 (2017-12-15) Qualité du sol Méthode de détection et de caractérisation des pollutions Réalisation d'un forage de contrôle ou de suivi de la qualité de l'eau souterraine au droit et autour d'un site potentiellement pollué ;
 - NF X31-615 (2017-12-15) Qualité des sols Méthodes de détection, de caractérisation et de surveillance des pollutions en nappe dans le cadre des sites pollués ou potentiellement pollués - Prélèvement et échantillonnage des eaux souterraines dans des forages de surveillance pour la détermination de la qualité des eaux souterraines;
- les guides méthodologiques :
 - le guide "Diagnostics des sites et sols pollués » version 1 d'avril 2023 du Ministère de l'Ecologie (actuellement MTECT);
 - ∞ le « Guide méthodologique pour l'élaboration du rapport de base prévu par la Directive IED » version 2.2 d'octobre 2014 du BRGM et diffusé par le MEDDE (actuellement MTECT);
 - ∞ le guide « Surveillance de la qualité des eaux souterraines » version 3 de décembre 2022 diffusé par le MTECT.

1.3 LOCALISATION DU SITE

Le projet est localisé rue des Solets sur la commune de Rungis (94). Le site se trouve au sein du Parc Icade Paris Orly-Rungis, au nord de l'aéroport d'Orly.

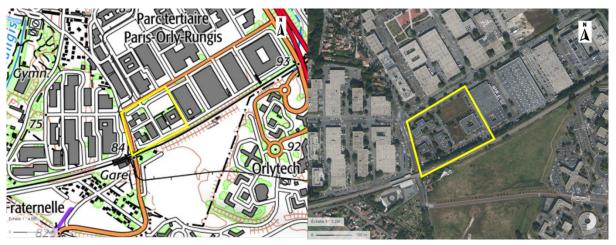


Figure 1 : Localisation du site (Géoportail)

Il est situé sur les parcelles 000 AM 20 et 00 AM 10 pour un total de 31 400 m².

Le projet se trouve dans une zone classée UAE1 (zone d'activités économiques) du PLU de la commune de Rungis.

Le niveau topographique du site est compris entre +82 et +84 m NGF. La zone d'étude est globalement plane. La surface totale d'emprise au sol du projet est d'environ 3 hectares.

1.4 DETERMINATION DU PERIMETRE IED

Annexe 1 : Plan de masse du projet

Le périmètre d'intervention concerné par le rapport de base, aussi appelé « périmètre IED » conformément à l'article R.515-58 du Code de l'Environnement, correspond à l'ensemble des zones géographiques du site accueillant les installations suivantes, ainsi que leur périmètre d'influence en matière de pollution des sols et des eaux souterraines :

- les installations relevant de la rubrique 3110 (Combustion);
- les installations ou équipements s'y rapportant directement, exploités sur le même site, liés techniquement à ces installations et susceptibles d'avoir des incidences sur les émissions et la pollution.

Les installations retenues relevant de la rubrique 3110 ou s'y rapportant directement sont les suivantes :

- Générateurs électriques et cuves aériennes de fuel;
- Cuves fuel / HVO enterrées (22 x 120 000 l) y compris dépotage et canalisations associées ;
- 4 Transformateurs à huile minérale + 1 cuve de 60 000 l de récupération des huiles ;
- 59 générateurs électriques et réservoirs journaliers associées de fuel / HVO (1600 l);
- Séparateur et dépotage ;
- Local pompe.

Le périmètre IED comprend environ 9 810 m² en partie est et nord du site.

#Remediation

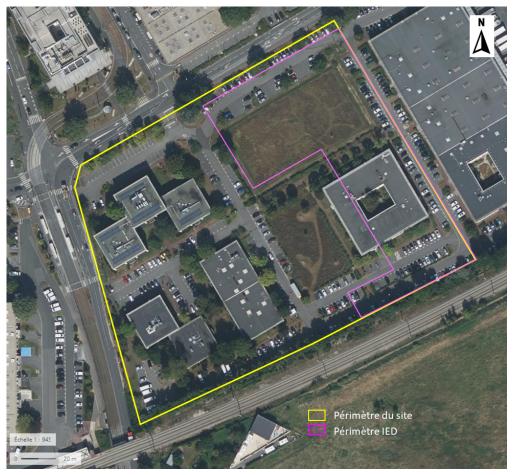


Figure 2 : Périmètre IED

Le périmètre opérationnel comprend le périmètre d'intervention élargi à son environnement d'influence, en particulier concernant la prise en compte de données sur la qualité des eaux souterraines en amont/aval liées aux activités proches. De la même manière, les informations relatives à la vulnérabilité et à la sensibilité de l'environnement ont été recherchées dans un rayon compris entre 1 et 3 km autour du site (impliquant les communes de Rungis, Paray-Vieille-Poste, Wissous, Anthony, Fresnes, Chevilly-Larue, Thiais, Orly et Villeneuve-le-Roi).

2 CHAPITRE 1 DESCRIPTION DU SITE ET DE SON ENVIRONNEMENT

2.1 DESCRIPTION DETAILLEE DU PROJET

2.1.1 Description globale

Pour la réalisation du projet, les surfaces actuelles bâties (5 400 m² d'emprise au sol) devront préalablement être détruites.

Le terrain libéré des bâtiments existant servira à la construction de 15 700 m² de bâtis comprenant :

- le bâtiment principal (R+5) dédié au centre de données comprenant deux locaux de pompage de fuel ;
- le bâtiment (R+4) abritant des bureaux ;
- le bâtiment (R+5) accueillant 59 groupes électrogènes et leurs cuves de 1600 L associées, servant à alimenter le site en électricité en cas de panne de courant ;
- le bâtiment (R+1) abritant deux sous-stations électriques pour alimenter le site en électricité, avec une cuve enterrée attenante de 60 000 L pour la récupération des huiles.

L'extérieur comportera:

- une voirie périphérique (7 200 m²) permettant d'accéder aux équipements et d'assurer la maintenance;
- des espaces verts (7 450 m² y hors bassins);
- un bassin d'infiltration (700 m²) destiné aux eaux pluviales non polluées implanté au nord du site ;
- un bassin de rétention enterré (350 m²);
- 2 places de stationnement pour poids-lourds et 60 places de stationnement pour véhicules légers;
- 22 cuves enterrées de 120 000 L contenant du gasoil et/ou de l'huile végétale hydrotraitée;
- 3 cuves enterrées de 80 000 L d'Adblue.
- Séparateur et dépotage.

Le site sera entouré par une clôture périphérique avec accès principal depuis la rue des Solets comportant un poste de contrôle et un accès secondaire par la rue du Lion pour les secours.

2.1.2 Gestion des déchets

Les déchets solides générés sur le site seront les suivants :

- Déchets non dangereux :
 - Déchets de type ménager ;

#Remediation

- ∞ Déchets recyclables (plastiques, papiers, verre et cartons);
- Déchets dangereux :
 - ∞ Déchets d'Equipements Electriques et Electroniques (DEEE) ;
 - ∞ Piles et accumulateurs ;
 - ∞ Emballage et chiffons souillés ;
 - ∞ Boues provenant du nettoyage du séparateur d'hydrocarbures.

Ces déchets seront triés, collectés dans les contenants dédiés / adaptés au type de déchet.

2.1.3 Gestion des eaux

Les effluents de l'usine et leur gestion sont les suivants :

EFFLUENT	Composition	Destination
Eaux pluviales non polluées	Eaux pluviales provenant des toitures des bâtiments et des parkings/voiries	Un bassin d'infiltration (premières pluies) puis bassin de rétention (si trop plein) avec rejet dans le réseau public d'eaux pluviales
Eaux pluviales potentiellement polluées (dépotage)	Eaux pluviales provenant de l'aire de dépotage	Séparateur puis rejet dans le réseau d'eaux pluviales
Eaux d'extinction incendie / polluées	Déversement accidentel de produits polluants ou d'eau utilisée pour combattre un incendie	Bassin de rétention avec collecte via une vanne de barrage
Eaux usées sanitaires	Eaux des sanitaires	Réseau public d'assainissement communal

Figure 3 : Gestion des effluents

2.1.4 Substances dangereuses utilisées, produites ou rejetées sur l'installation

Le périmètre analytique du rapport de base IED se limite aux substances et mélanges dangereux pertinents produits, rejetés et utilisés actuellement ou à l'avenir au sein de l'installation IED, et susceptibles de contaminer les sols ou les eaux souterraines.

Les substances ainsi retenues ont été comparées à la définition d'une substance dangereuse issue de l'article 3 du règlement dit CLP (Classification, Labelling, Packaging), règlement (CE) n°1272/2008 du 16 décembre 2008 modifié relatif à la classification, à l'étiquetage et à l'emballage des substances et mélanges.

Les notions d'exclusion et d'inclusion des substances dans la recherche analytique sur les milieux sols et eaux souterraines ont été établies en fonction de deux critères :

- leur présence au règlement dit CLP;
- et le risque potentiel de contamination des sols et des eaux souterraines qu'elles représentent.

Les risques de contamination des milieux sols et eaux souterraines ont été évalués en fonction :

- de la présence des substances dans la liste des composés définis comme prioritaires dans le domaine de l'eau et/ou faisant l'objet de normes de qualité environnementale (NQE) au titre de la réglementation issue de la Directive Cadre sur l'Eau;
- des caractéristiques physico-chimiques des substances, disponibles dans la bibliographie en libre accès (fiche de données de sécurité), qui permettent d'appréhender le caractère persistant d'un produit dans les sols et les eaux souterraines.

La gestion environnementale de ces produits sur les unités n'a pas été considérée. En effet, d'après le guide méthodologique pour l'élaboration du rapport de base : « les moyens de prévention mis en place afin de prévenir la survenance de pollutions significatives ne suffisent pas à justifier une exonération de rapport de base, dans la mesure où il est difficile de garantir qu'il n'y aura jamais de défaillance de ces éléments de prévention ». De ce fait, la présence de rétention ou de revêtement imperméable ne constitue pas un critère d'exclusion.

Subséquemment, sont jugées pertinentes les substances qui répondent aux conditions suivantes :

- à minima une toxicité pour la santé et/ou une nocivité pour l'environnement;
- une persistance dans les sols (volatilité, biodégradabilité et solubilité faibles) et/ou les eaux souterraines (solubilité importante). Les substances solides insolubles ne sont pas retenues d'après le guide méthodologique de la directive IED.

La liste de ces substances est présentée dans le tableau disponible sur les pages suivantes. Ce tableau propose également des éventuels composés-traceurs identifiés et détectables à travers des analyses chimiques usuelles de composés organiques et/ou inorganiques.

	Information	NS PRODUITS			Stockage/	UTILISATION		Risque de con	TAMINATION DU SOL E	T DES EAUX SOUTERRA	AINES		Capacite A	A IMPACTER		Traceurs eventuels de
Produit	ABREV.	Danger	N° CAS	ÉTAT	QUANTITE STOCKEE	Localisation	Dangers majeurs	Persistance	DENSITE RELATIVE (G/CM³)	Temperature d'ebullition	Solubilite	NQE	SOLS	EAUX SOUTERRAINES	PERTINENCE IED	POLLUTION
Adblue (urée)		Non classé	57-13-6	Liquide	3 cuves de 80 000 L	Cuves enterrées au nord du bâtiment des générateurs Générateurs Locaux de pompage	-	Non	1,087 - 1,093	103°C	Peu soluble	Non	Non	Non	Non	-
Gasoil	GO	H226 H304 H315 H332 H351 H373 H411	68334-30-5	Liquide	2191,2 t (Gasoil ou HVO	Cuves enterrées au nord, est et sud du bâtiment des générateurs	Inflammable Toxique CMR Dangereux pour l'environnement	Non	0,833	160 - 390°C	Peu soluble	Oui	Oui	Oui	Oui	HC C5-C40, HAP, BTEX
Huile végétale hydrotraitée (alcane C10-C20 ramifié et linéaires)	нуо	Н304	68334-30-5	Liquide	avec HVO privilégiée)	cuves associées de 1600 L Locaux de pompage	CMR	Non	0,77 - 0,79	180 − 320°C	Peu soluble	Oui	Oui	Oui	Oui	HC Cs-C40, HAP, BTEX
Hexafluorure de soufre	SF6	H280	2551-62-4	Gaz	1,91 t	Sous-station électrique	Gaz sous pression	Non	1,4	-64°C	Soluble	Non	Non	Non	Non	-
Huile transformateur		H304	64742-55-8 64742-53-6	Liquide	251,8 t	Sous-station électrique	CMR	Non	0,887	>320°C	Peu soluble	Oui	Oui	Oui	Oui	HC Cs-C40, HAP, BTEX

Tableau 1 : Produits ou substances dangereuses pertinentes utilisées, produites ou rejetées au droit du périmètre IED

2.2 CONTEXTE ADMINISTRATIF DU SITE

Au moment de la rédaction de ce rapport de base, les dossiers de demande d'autorisation environnementale n'étaient pas encore déposés auprès des Services de l'Etat, aussi il n'existe pas encore d'arrêté préfectoral concernant le site.

2.3 VISITE DE SITE

Annexe 2 :Reportage photographique

Une visite de site a été réalisée le jeudi 18 avril 2024 par Eric Erguy, intervenant de DIE Remediation, accompagné par Kévin Gavard (Dalkia, responsable de la maintenance) pour les locaux techniques du bâtiment Malé et de Manuel de Sousa pour les locaux techniques du bâtiment Adélaïde.

Le terrain actuel est constitué de 4 bâtiments :

- Adélaïde : bâtiment en R+1 à usage de bureaux avec patio intérieur et des locaux techniques (chaufferie au gaz et climatisation électrique) ;
- Malé: bâtiment en R0 à usage de bureaux et des locaux techniques (chaufferie au gaz servant à chauffer également les bâtiments Darwin et Sydney, un transformateur électrique, local comptage);
- O Darwin: bâtiment en RO à usage de bureaux;
- Sydney: bâtiment en R+1 à R+2 à usage de bureaux.

Les bâtiments sont entourés d'espaces verts et de voiries avec parking VL. A l'ouest et au nord du bâtiment Adélaïde, deux espaces verts sont entourés de fossés périphériques.

Figure 4 : Disposition actuelle du site

#Remediation

Aucune cuve, enterrée ou aérienne, zone de stockage quelconque ne se trouvent dans la zone (pas connues par les personnes rencontrées et pas observées). Pas de canalisation de produits dangereux, pas de séparateur d'hydrocarbures sur la zone.

2.4 CONTEXTE HISTORIQUE DU SITE

Annexe 3 : Photographies aériennes historiques

D'après l'étude des photographies aériennes, l'historique est le suivant :

DATE	DESCRIPTION DU SITE
Avant 1971	Zone agricole avec une habitation à l'angle sud-ouest. La ligne de chemin de fer est déjà présente au sud du site en 1921.
1971-1981	Le site fait l'objet de dépôt de remblais, d'une activité de gestion de matériaux type construction en partie ouest et de matériaux (gravats, terre) en partie est. Au nord-est, un petit bâtiment accueille une activité inconnue et un parking est visible à l'angle nord-est.
1982-1986	Sur site : construction des bâtiments Adélaïde, Malé, Darwin et Sydney ainsi que deux bâtiments à l'ouest et au nord du bâtiment Adélaïde.
1987-2000	Aucune évolution notable
2000-2014	Le bâtiment au nord du bâtiment Adélaïde est démoli et laisse place à un espace vert.
2014-2021	Le bâtiment à l'ouest du bâtiment Adélaïde est démoli et laisse place à un espace vert.

Tableau 2 : Evolution du site

2.5 CONTEXTE INDUSTRIEL

Accident:

Sur la base de données Aria, 9 accidents sont répertoriés dans la commune de Rungis. Sur les 9 accidents, 7 d'entre eux sont des incendies touchant principalement des entrepôts de stockage alimentaire (fruits et légumes, viandes ou encore fleurs). Un centre de tri ainsi qu'un entrepôt de stockage de palettes et de véhicules ont aussi fait l'objet d'incendie.

Les deux autres accidents sont des fuites d'acides (acide nitrique, acide phosphorique et acide tétrafluoroborique) dans des entrepôts de logistique.

D'après la description, ces incidents se trouvent probablement au niveau de la zone du Marché d'Intérêt National à 1 km à l'est du site, aussi le site n'est pas concerné par ces incidents.

SIS:

L'administration établit, au regard des informations dont elle dispose, des Secteurs d'Information sur les Sols (SIS). Les SIS comprennent les terrains où la connaissance de la pollution des sols justifie la réalisation d'études de sols et la mise en place de mesures de gestion de la pollution pour préserver la sécurité, la santé ou la salubrité publiques et l'environnement. La publication des SIS se fait par le biais du portail internet Géorisques. Deux SIS sont recensés dans un rayon de 2 km autour du site : Béton de Paris (SSP0005427) à 1,5 km l'ouest et AVIA-THEVENIN ET DUCROT DISTRIBUTION (SSP0005358) à 1,6 km au nord-est.

Sites BASIAS:

La base données BASIAS recense les sites industriels actuels ou anciens. Dans un rayon de 1 km autour du site, 25 sites BASIAS sont recensés et listés dans tableau ci-dessous :

Reference Basias	Exploitant	ACTIVITE	DISTANCE PAR RAPPORT AU SITE	STATUT ACTUEL
IDF9402718	MOOG sté	Atelier de travail des métaux	200 m Est	Non renseigné
IDF9400271	TISSEMETAL LIONEL DUPONT	Atelier de travail des métaux	201 m Est	Non renseigné
IDF9103583	DM Photogravure	Fabrication, dépôt et retraitement de supports magnétiques et optiques	400 m Ouest	Non renseigné
IDF9103584	Logo Adhesifs	Fabrication de colorants et de pigments et d'encre	400 m ouest	Non renseigné
IDF9103582	EMERSON ELECTRIC	Fabrication d'instruments de mesures	400 m ouest	Non renseigné
IDF9103566	SGALIPPA	Collecte et stockage des déchets non dangereux dont les ordures ménagères (décharge d'O.M. ; déchetterie)	570 m ouest	En arrêt
IDF9103567	IPODEC ile de France	Décharge de déchets industriels banals (D.I.B.)	570m ouest	En arrêt
IDF9103568	Cheze André	Collecte et stockage des déchets non dangereux dont les ordures ménagères (décharge d'O.M. ; déchetterie), de DIB et de déchets triés non métalliques	1 km ouest	Non renseigné

Reference Basias	Exploitant	ACTIVITE	DISTANCE PAR RAPPORT AU SITE	STATUT ACTUEL
IDF9401035	SOREMEC- COMESS	Forge, marteaux mécaniques, emboutissage, estampage, matriçage découpage ; métallurgie des poudres	280m nord- ouest	En arrêt
IDF9402792	IMPRIMERIE PRENANT	Imprimerie et services annexes (y compris reliure, photogravure,)	280m nord	Non renseigné
IDF9402741	PRENANT, IMPRIMERIE PRENANT	Imprimerie et services annexes (y compris reliure, photogravure,) et fabrication, réparation et recharge de piles et d'accumulateurs électriques	280 m nord	Non renseigné
IDF9401754	TOLERIE NOUVELLE DE RUNGIS	Chaudronnerie, tonnellerie	410 m nord- ouest	En arrêt
IDF9401752	POMPES FUNEBRES GENERALES	Garages, ateliers, mécanique et soudure	420 nord-ouest	En arrêt
IDF9400266	Laboratoires Pharmaceutiqu es Dentoria	Fabrication de produits pharmaceutiques de base et laboratoire de recherche	490m nord	Non renseigné
IDF9402167	SYNTHELABO ODONTOLONGI E THERAPEUTIQU E CONSEIL	Activités pour la santé humaine	600m nord	Non renseigné
IDF9400267	LABORATOIRES PHARMACEUTI QUES GOUPIL, ex SPAC	Fabrication de produits pharmaceutiques et stockages de produits chimiques	600m nord	Non renseigné
IDF9402157	ALPHA FLIGHT SERVICES	Stockage de produits chimiques	740m nord	Non renseigné
IDF9403541	VER LUISANT SA	Dépôts de liquides inflammables	850m nord est	En arrêt
IDF9400270	TELEFLEX SYNERAVIA SA	Traitement et revêtement des métaux (traitement de surface, sablage et métallisation, traitement électrolytique, application de vernis et peintures)	610 m nord est	Non renseigné

Reference Basias	Exploitant	ACTIVITE	DISTANCE PAR RAPPORT AU SITE	STATUT ACTUEL
IDF9402184	BETON RATIONNEL, ex BETON DE FRANCE	Fabrication d'autres produits en céramique et en porcelaine, ainsi que de ciment, de chaux et de plâtre	560 est	Non renseigné
IDF9402178	SICAER	Industrie agroalimentaire avec stockage de produits chimiques et présence de transformateur	850m nord est	Non renseigné
IDF9402177	COMPTOIR AGRICOLE FRANCAIS	Stockage de produits chimiques (minéraux, organiques, notamment ceux qui ne sont pas associés à leur fabrication,)	850m nord est	Non renseigné
IDF9402183	STOCK FRUITS, GIE	Industrie agroalimentaire avec stockage de produits chimiques et d'appareils frigorifiques	770m est	Non renseigné
IDF9402182	LACOUR Roland SA	Industrie agroalimentaire avec stockage de produits chimiques et présence de transformateurs et d'appareils frigorifiques	770m est	Non renseigné
IDF9402181	BRAMBI FRUITS	Industrie agroalimentaire avec stockage de produits chimiques et d'appareils frigorifiques et fabrication d'accumulateurs électriques	770m est	Non renseigné

Tableau 3 : Sites BASIAS dans un rayon de 2km autour du site (Source : Géorisques)

Même si la probabilité d'impact au droit du site est faible (site Basias le plus proche à 200m à l'Est), au regard de la forte densité de site BASIAS entourant le site, il ne peut être exclu qu'un ou plusieurs de ces sites ait eu un impact vis-à-vis du site étudié.

2.6 CONTEXTE ENVIRONNEMENTAL ET VULNERABILITE

2.6.1 Voisinage

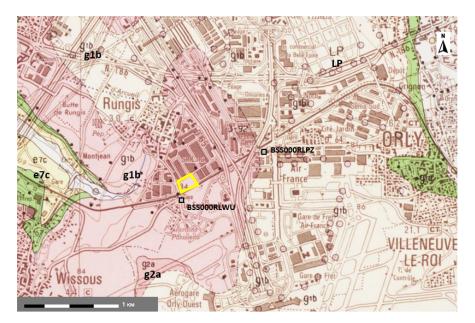
L'environnement proche du site est le suivant :

- Au nord, l'Ecole des arts Culinaire Lenôtre, des locaux et entrepôts de diverses entreprises et la crèche Les Petits Chaperons rouges ;
- A l'ouest, le centre de formation FLOBEL, un centre de l'Etablissement Français du Sang, des bureaux de la société Menarini France ainsi que la laboratoire Pierre Hermé Paris ;

- Au sud, une voie de chemin de fer puis des champs puis l'aéroport d'Orly;
- A l'est, l'entreprise Newrest proposant des services de traiteur et de restauration.

La crèche des Petits Chaperons Rouges est un établissement sensible situé à proximité immédiate du site. L'école la plus proche se situe à 1 km au nord.

Figure 5 : Voisinage du site (Source : Géoportail)


Au regard de l'environnement du site, seule la crèche située à proximité immédiate du site est vulnérable à un éventuel impact en provenance du site

2.6.2 Contexte géologique

D'après la carte géologique imprimée du BRGM au 1/50 000ème, le site est localisé au droit de la formation g1b : Stampien inférieur (aujourd'hui appelé Rupélien), calcaire de Brie et argile à meulière de Brie.

Un extrait de la carte géologique est fourni en page suivante.

<u>Légende :</u>

LP : Limons des plateaux

g1b : Stampien inférieur: Sannoisien. Calcaire de Brie

g2a : Stampien Marnes à Huitres

Figure 6 : Extrait de la carte géologique du BRGM n°98 (Source : Infoterre)

Des ouvrages BSS avec coupe géologique (BSS000RLWU et BSS000LRPZ) sont recensés respectivement à 60 m au sud-ouest et 900 m au nord-est du site.

rofondeur	Formation	Lithologie	Lithologie	Stratigraphie	Altitude
0.50	Remblais		Remblai.	Holocène	83.50
0.80	Limon des plateaux		Limon.	Quaternaire	83.20
	Calcaire et argile à meulières de Brie		Calcaire avec marne.		
Argile verte de Romainville		Argile calcaire verte	Rupélien	- 75.50	
15.50 -	Glaise à Cyrènes	~~~~	Marne. Glaises à cyrènes probablement.	-	- 68.50
17.50 -	Marnes de Pantin		Marne blanche.	Priabonien	66.50

Figure 7 : Coupe du sondage BS000RLWU

Profondeur	Formation	Lithologie	Lithologie	Stratigraphie	Altitude
1.20	Limon des plateaux	/	Limon et terre végétale au sommet	Quaternaire	84.30
9.45 -	Calcaire de Brie	. ~ ~ ~ ~ ~	Formation de Brie	Rupélien	76.05
00.00	Argile verte de Romainville	~~~~~	Marne. Cote -20m. incertaine	Таролоп	05.50
20.00 -	Marnes supragypseuses		Marne		- 65.50
34.25 -	Marnes et masses du gypse		Marne et gypse . Marnes infragypseuses	Priabonien	- 51.25 - 20.75
	Calcaire de Saint-Ouen		Calcaire de St Ouen	Marinésien	
76.30 - 80.90 -	Sables ou grès de Beauchamp		Sables de Beauchamp	Auversien	9.20 4.60
50.30	Soudininp		Lutétien. Calcaire présumé	Lutétien	4.00
119.30	Argile plastique		Argile plastique	Sparnacien	-33.80

Figure 8 : Coupe du sondage BSS000RLPZ

D'après les coupes géologiques du secteur d'étude, la lithologie attendue de la surface vers la profondeur est la suivante :

- Sous une éventuelle couche de remblais : limons des plateaux avec une faible épaisseur (jusqu'à 1m d'épaisseur) ;
- o calcaire et argile à meulière de Brie (Rupélien) sur environ 8 m d'épaisseur ;
- o argile verte de Romainville (Rupélien) sur environ 7 à 9 m d'épaisseur ;
- Marnes et gypses du Priabonien sur 40 à 45 m d'épaisseur ;
- O Calcaire de Saint-Ouen (Marinésien) sur 10 m d'épaisseur ;
- Sables de Beauchamp (Auversien) sur 4 m d'épaisseur ;
- O Calcaire du Lutétien sur 30 à 40 m d'épaisseur ;
- Argile plastique du Sparnacien sur plus de 10 m d'épaisseur.

Après les investigations sur les sols, il s'avère que la lithologie correspond à celle attendue à l'exception que les limons des plateaux ne sont pas retrouvés et que l'épaisseur des calcaires et argiles à meulières de Brie n'ont qu'environ 4,5 m d'épaisseur.

2.6.3 Contexte hydrogéologique

D'après la carte géologique n°219 de Corbeil, l'aquifère superficiel est la nappe des calcaires de Brie reposant sur les argiles vertes de Romainville avec une profondeur estimée entre 5 et 6 m. Du fait de la faible épaisseur de l'aquifère (8 m) et d'après le retour d'expérience des foreurs, au niveau du plateau de Rungis, cette nappe n'est pas rencontrée sur tous les ouvrages. Son écoulement suit le pendage du toit des argiles vertes. Selon les coupes lithologiques, l'écoulement serait potentiellement orienté vers le nord-ouest, en direction du ruisseau de Rungis. Cette hypothèse ne peut être confirmée que par des mesures sur site.

Lors des prélèvements d'eaux souterraines réalisés par DIE Remédiation le 14 juin 2024, les premières arrivées d'eau ont été identifiés à 3,50 m et le sens d'écoulement d'eau semble aller au nord-ouest vers le ruisseau de Rungis comme supposé.

Les nappes se trouvant sous les argiles vertes ne sont à priori pas vulnérables à une éventuelle pollution en provenance du site (sauf à ce que les sources de pollution soient situées à plus de 15m de profondeur) car protégées par les formations argileuses sus-jacentes. On recense les nappes suivantes :

- Nappe des marnes et gypses du Priabonien ;
- Nappes du calcaire de Saint-Ouen, des sables de Beauchamp et des marnes et caillasses ;
- Nappe des calcaires du Lutétien.

Ces nappes sont toutes rencontrées dans des aquifères appartenant à la masse d'eau souterraine « Craie et tertiaire du Mantois à l'Hurepoix » (n°HG102).

Captages d'eaux souterraines:

D'après le site Atlasanté, aucun captage AEP n'est recensé dans un rayon de 5 km autour du site.

Des captages industriels ou d'arrosage sont recensés dans la zone industrielle de Rungis. Tous ces captages sont descendus à plus de 100 m de profondeur pour capter la nappe des calcaires de Saint-Ouen, des sables de Beauchamp et des marnes et caillasses en connexion avec la nappe des calcaires du Lutétien. Ces captages ne sont pas vulnérables à une éventuelle pollution en provenance du site.

2.6.4 Contexte hydrologique

Les eaux de surface au droit ou à proximité du projet sont les suivantes :

- Le ruisseau de Rungis situé à 500 m à l'ouest du site ;
- La seine située à 5 km du site s'écoulant depuis l'est vers le sud du site.

Au regard de leurs positions hydrauliques, le ruisseau de Rungis ainsi que la Seine ne sont pas vulnérables à une éventuelle pollution en provenance du site.

La figure en page suivante localise le site dans cet environnement.

Figure 9 : Réseau hydraulique autour du site

2.6.5 Milieux naturels sensibles

Aucune zone naturelle protégée n'est présente dans un rayon de 3 km autour du site. La plus proche est située à 4,5 km au nord-ouest du site, catégorisée en ZNIEFF de type I (prairies et boisements du parc départemental de Sceaux).

La zone étudiée est donc non sensible d'un point de vue écologique.

Figure 10 : Zones naturelles protégées

2.7 SCHEMA CONCEPTUEL

2.7.1 Sources potentielles de pollution

Annexe 4 : Localisation des sources potentielles de pollution

Les sources de pollution historiques et les futures installations susceptibles d'être des sources potentielles de pollution des sols ou des eaux souterraines sont reportées dans le tableau ci-dessous et figurent en annexe 4.

N° SOURCE	DESCRIPTION	PRODUITS CONCERNES	COMPOSES CIBLES
1	Remblais visibles entre 1971-1981 et activités non identifiées	Polluants divers	HC C ₅ -C ₁₀ , C ₁₀ -C ₄₀ , HAP, BTEX, 8 métaux, COHV, PCB
2	22 cuves enterrées de 120 000 l de gasoil et de HVO	Gasoil et HVO	HC C₅-C₄₀, HAP, BTEX
3	59 générateurs et cuves aériennes associées (1600 l)	Gasoil et HVO	HC C₅-C₄₀, HAP, BTEX
4	Sous-stations électriques avec 4 transformateurs et cuve de 60 m³ de récupération des huiles	Huiles minérales	HC C₅-C₄₀, HAP, BTEX
5	Séparateur et aire de dépotage	Gasoil et HVO	HC C ₅ -C ₄₀ , HAP, BTEX
6	Locaux de pompe de fuel/HVO	Gasoil et HVO	HC C ₅ -C ₄₀ , HAP, BTEX

Tableau 4 : Sources potentielles de pollution

2.7.2 Cibles potentielles, vecteurs de transfert et d'exposition

Le tableau ci-dessous synthétise les principales informations mises en évidence dans le premier chapitre du présent rapport.

THEMATIQUE	RESULTATS DE L'ETUDE DOCUMENTAIRE		
Cibles potentielles et enjeux	Hors site aval : • Employés hors site, crèche, école Sur site : • Employés du site		
Vecteurs de transferts retenus	PercolationVolatilisation et accumulation dans les bâtiments		
Vecteurs d'exposition retenus	• Inhalation		

Tableau 5 : Cibles potentielles, vecteurs de transfert et d'exposition

3 CHAPITRE 2 RECHERCHE, COMPILATION ET EVALUATION DES DONNEES DISPONIBLES

Aucune étude sur la qualité des milieux au droit du site n'a pu être identifiée.

4 CHAPITRE 3 DEFINITION DU PROGRAMME ET DES MODALITES D'INVESTIGATIONS

Annexe 5 : Plan prévisionnel des investigations

Sur la base des informations présentées dans le présent rapport, DIE Remédiation recommande :

- la réalisation d'investigations sur les sols, à travers la réalisation de sondages pour le prélèvement et l'analyse d'échantillons de sols ;
- la réalisation d'ouvrages piézométriques ainsi qu'une campagne de prélèvement des eaux souterraines pour caractériser la qualité des eaux souterraines.

SOLS:

N°SPP	SPP	Sondages	Technique	Profondeur	Analyses prevues	
1	Remblais visibles entre 1 1971-1981		Commun avec les sondages des autres sources potentielles de pollution Investigations sur les 2 premiers mètres			
2 (et1) 3 (et 1)	1 1 0	4	Tarière mécanique	6 m	0 – 4 m : Pack ISDI + COHV + HC C ₅ -C ₁₀ + 8 métaux 4-6 m : HC C ₅ -C ₄₀ , HAP, BTEX	
J (et 1).	59 générateurs et cuves aériennes associées (1600 l)		Tarière mécanique	2 m	Pack HC C ₅ -C ₁₀ , C ₁₀ -C ₄₀ , HAP, BTEX, 8 métaux, COHV, PCB	
4(+4)	Sous-stations électriques avec 4 transformateurs + cuve enterrée de 60 m³ de récupération des huiles	1	Tarière mécanique	2 m	Pack HC C ₅ -C ₁₀ , C ₁₀ -C ₄₀ , HAP, BTEX, 8 métaux, COHV, PCB	
4 (et 1)		1		6 m	0 – 4 m : Pack ISDI + COHV + HC C_5 - C_{10} + 8 métaux 4-6 m : HC C_5 - C_{40} , HAP, BTEX	
5 (et 1)	Séparateur et dépotage	1	Tarière mécanique	4 m	Pack HC C ₅ -C ₁₀ , C ₁₀ -C ₄₀ , HAP, BTEX, 8 métaux, COHV, PCB	
6 (et 1)	2 locaux de pompage	1 (+1 mutualisé)	Tarière mécanique	2 m	Pack HC C ₅ -C ₁₀ , C ₁₀ -C ₄₀ , HAP, BTEX, 8 métaux, COHV, PCB	

Tableau 6 : Investigations prévisionnelles

Au niveau des cuves enterrées, les terres devant être excavées seront analysées sur des packs ISDI et les terres restant en place selon analysés sur les polluants attendus.

EAUX SOUTERRAINES:

Au regard de l'écoulement incertain des eaux souterraines, il est proposé d'implanter 4 piézomètres à 9 m de profondeur encadrant le périmètre IED afin d'avoir a minima un piézomètre en amont et deux piézomètres en aval supposé.

Les paramètres analysés sur les eaux souterraines regrouperont l'ensemble des polluants des différentes sources potentielles ainsi que les polluants classiques, à savoir : pack hydrocarbures C_{5} - C_{10} + Hydrocarbures C_{10} - C_{40} + BTEX + HAP + COHV + PCB + 8 métaux.

5 CHAPITRE 4 MISE EN ŒUVRE DU PROGRAMME D'INVESTIGATIONS ET ANALYSES AU LABORATOIRE

5.1 PLANNING D'INTERVENTION

Annexe 6 : Plan des investigations réalisées

La synthèse des investigations est précisée dans le tableau ci-après.

MILIEU	Date	Investigations
Sols	03-04/06/2024	Réalisation de 10 sondages de sol entre 2 et 6 m de profondeur avec prélèvement de sols.
	05-07/2024	Pose de 4 piézomètres : Pz1 à Pz4.
Eaux souterraines	14/06/2024	Réalisation des prélèvements d'eaux souterraines au droit de Pz1, Pz3 et Pz4.
	19/06/2023	Prélèvement d'eaux souterraines au droit de Pz2.

Tableau 7 : Planning d'intervention

L'implantation de ces investigations est précisée dans l'annexe 6.

L'ensemble des analyses sur les sols et les eaux souterraines a été réalisé par AGROLAB, laboratoire indépendant, possédant l'agrément du ministère en charge de l'environnement, et accrédité par le COFRAC. Les normes de prélèvements sont précisées sur les bordereaux d'analyses en annexes 8 et 14.

Les investigations par milieu sont détaillées dans les paragraphes suivants.

5.2 INVESTIGATIONS REALISEES

5.2.1 Investigations sur les sols

Les investigations sur les sols comportant 10 sondages descendu à 6 m de profondeur ont été réalisées à la tarière mécanique.

La profondeur des sondages était prévue entre 2 et 6 m en fonction de la source présentant un risque potentiel de pollution au droit de ces derniers. Des refus sur marne ou calcaire ont été rencontrés lors des forages ce qui a engendré une modification des profondeurs d'investigations.

Le tableau suivant présente les profondeurs d'investigations réalisées au droit des sources de pollution.

ZONE A RISQUE DE POTENTIEL	Sondage —	Profoni	DEUR (M)	Commentaire	Decalage par rapport au plan
POLLUTION	JONDAGE	Prevue	REALISEE	COMMENTAIRE	PREVISIONNEL
	S1	6	6	-	
22 cuves enterrées de 120 000 l de gasoil et de HVO	S 2	6	2,8	Refus sur calcaire beige	Présence de véhicule au droit de l'implantation prévisionnelle avec impossibilité de contacter le propriétaire.
y compris dépotage -	S3	6	6	-	
	S4	6	1,8	Refus sur marnes beiges	
59 générateurs et	S5	2	2	-	
cuves aériennes [—] associées (1600 l)	S6	2	2	-	Présence de réseaux gaz à proximité (décalage vers le nord)
Sous-stations électriques +	S7	2	2	-	
cuve enterrée de 60 m³	S8	6	6	-	
Séparateur et dépotage	S9	4	2,70	Refus sur marnes beiges humides	
2 locaux de pompage	S10	2	2	-	

Tableau 8 : Récapitulatif des décalages par rapport au prévisionnel

En fonction de la profondeur des sondages, deux à six échantillons ont été prélevés. Un total de 35 échantillons de sols a été analysés par le laboratoire AGROLAB, laboratoire indépendant, possédant l'agrément du ministère en charge de l'environnement, et accrédité par le COFRAC.

Le programme analytique réalisé est détaillé dans le tableau suivant :

Nom du sondage	Profondeur	PACK ISDI + COHV + HCT C5-C10 + 8 MÉTAUX	PACK HCT C5-C40, HAP, BTEX	PACK HCT C5-C10, C10-C40, HAP, BTEX, 8 MÉTAUX, COHV, PCB
	0,03-0,7m	Х		
	1-2m	Х		
S1	2-3m	Х		
31	3-3,5m	X		
	4-5m		Χ	
	5-6m		Χ	
	0,3-1m	X		
S2	1-2m	X		
	2-2,8m	Х		
	0,05-1m	Х		
	1-2m	Х		
	2-3m	X		
S3	3-4m	Х		
	4,3-5m		Х	
•	5-6m		Х	
S4	0,1-1m	Χ		
34	1-1,8m	Χ		
C.F.	0,1-1m			Х
S5	1-2m			X
	0,07-1m			X
S6	1-2m			Х

Nom du sondage	Profondeur	PACK ISDI + COHV + HCT C5-C10 + 8 MÉTAUX	PACK HCT C5-C40, HAP, BTEX	PACK HCT C_5 - C_{10} , C_{10} - C_{40} , HAP, BTEX, 8 MÉTAUX, COHV, PCB
	0,1-1m			Х
3/	1-2m			Х
	0,15-1m	Х		
	1-2m	Х		
60	2-3m	Х		
S8	3-4m	Х		
	4,2-5m		Х	
	5-6m		Х	
	0,1-1m			Х
S 9	1-2m			Х
	2-2,7m			Х
	0-0,8m			Х
S10	0.8-1,2m			Х
	1,2-2m			X

Tableau 9 : Programme d'analyses réalisé par sondage

In fine, 35 échantillons ont été portés en analyses avec le détail suivant :

- 17 packs d'analyses comprenant Pack ISDI + COHV + HCT C₅-C₁₀ + 8 métaux ;
- 6 packs HCT C₅-C₄₀, HAP, BTEX;
- 12 packs Pack HCT C₅-C₁₀, C₁₀-C₄₀, HAP, BTEX, 8 métaux, COHV, PCB.

5.2.2 Investigations sur les eaux souterraines

DIE Remédiation a supervisé la pose de 4 piézomètres du 5 au 6 juin 2024 à la tarière mécanique et/ou test2au marteau fond de trou par la société ENVIROSONDE. Les piézomètres (Pz1 à Pz4) ont été posés à environ 6 m de profondeur sur site, soit moins profond que prévu car les argiles sont rencontrées à 4,5 m au lieu de 8,5 m.

Les caractéristiques de chaque ouvrage sont présentées dans des coupes techniques jointes en Annexe 10. Ils ont été équipés de tubage PVC 52/60 mm.

Les investigations sur les eaux souterraines sont décrites dans le tableau suivant.

Ouvrage	LOCALISATION	Mesure	Nombre d'echantillon	Analyses
Pz1	Sud-est	X	6	
Pz2	Nord-est	Х	6	HC C ₅ -C ₄₀ , HAP,
Pz3	Nord-ouest	Х	6	BTEX, COHV, 8 métaux.
Pz4	Centre-ouest	Х	6	•

Tableau 10 : Programme des investigations sur les eaux souterraines

5.3 METHODOLOGIE D'INVESTIGATION

5.3.1 Méthodologie d'investigations sur les sols

Annexe 7: Coupes des sondages

Au préalable des investigations, une demande de DT/DICT conjointe référencée 2024050300024C a été réalisée auprès des concessionnaires réseaux.

Les points de sondages ont été positionnés en tenant compte des plans transmis suite à la demande de DT/DICT. Un détecteur de réseaux enterrés de type CatScan a été utilisé sur le site afin de confirmer l'absence de chantier.

Les sondages ont été effectués à l'aide d'une tarière mécanique d'un diamètre 83 mm.

Un suivi permanent des opérations a été réalisé par un intervenant DIE Remediation. Ce suivi a permis d'assurer une gestion QHSE tout au long du chantier dont la surveillance de la qualité de l'air ambiant à l'aide d'un détecteur à photo-ionisation (PID) indiquant la présence de composés organiques volatils. L'intervenant était également en charge de relever la lithologie des sondages, les indices organoleptiques de pollution, les profondeurs d'échantillonnage, de faire des mesures PID sur les échantillons et de noter et toutes les informations nécessaires à une bonne compréhension des investigations. Deux à six échantillons de sols ont été prélevés pour chaque sondage.

Les échantillons de sols ont été conditionnés dans des flacons en verre adaptés aux analyses requises et fournis par le laboratoire. Les échantillons ont ensuite été placés dans des glacières équipées de blocs réfrigérants et l'ensemble des prélèvements a été déposé au transporteur express en 24h.

A la fin de l'intervention, les sondages ont été rebouchés avec les cuttings excédentaires et une remise au propre du site a été réalisé.

Les observations de terrain, lithologie et indices de pollution, ont été consignées lors des investigations et sont présentées en annexe 7.

5.3.2 Méthodologie de prélèvement des piézomètres

Annexe 10 : Coupes techniques des piézomètres

Annexe 11 : Rapport de nivellement des piézomètres

Annexe 12 : Fiches de prélèvement des eaux souterraines

Prélèvement

Le mode opératoire de prélèvement des piézomètres a été le suivant, conformément à la méthodologie en vigueur :

- Relevé du niveau statique et de la profondeur dans chaque ouvrage avant pompage (avec une sonde à interfaces). Le niveau est mesuré par rapport au sommet du capot métallique;
- Suivi des paramètres physico-chimiques (température, pH, conductivité, redox et oxygène dissous) pendant la purge des ouvrages;
- Purge des ouvrages jusqu'à stabilisation des paramètres physico-chimiques (pH, conductivité, potentiel d'oxydo-réduction et température);
- Mesure du niveau piézométrique après purge;
- Prélèvement des eaux en sortie de pompe en low flow ;
- Conditionnement des échantillons prélevés dans un flaconnage adapté aux analyses à réaliser et fourni par le laboratoire, avec filtration au laboratoire pour les analyses des métaux;
- Description organoleptique (couleur, odeur) et établissement des fiches de prélèvement des échantillons;
- Conditionnement des flacons dans des glacières réfrigérés.

Les tuyaux de prélèvement ont été changés entre chaque point de prélèvement.

A noter que le piézomètre Pz2 a été prélevé la semaine suivante car une voiture était positionnée sur l'ouvrage et n'a pas permis de le prélever.

6 CHAPITRE 5 - PRESENTATION, INTERPRETATION DES RESULTATS ET DISCUSSION DES INCERTITUDES

6.1 INVESTIGATIONS SUR LES SOLS

6.1.1 Lithologie observée et indices organoleptiques

Annexe 7 : Coupes des sondages

Les sondages de sols et forages ont mis en évidence la lithologie suivante :

- De la terre végétale limoneuse brun sur 0,1 à 0,3 m d'épaisseur ;
- Du limon sableux fin gris à passe légèrement argileuse entre 0,10 et 3,0 m de profondeur;
- Du sable avec passées argileuses jusqu'à 7,0 m de profondeur ;
- Trois sondages (S2, S4 et S9) ont été arrêtés à une profondeur plus basse que prévue à cause de refus sur calcaire pour S2 et sur marne pour S4 et S9.

Les couches lithologiques observées correspondent à lithologie attendue (chapitre 2.6.2) avec toutefois un décalage avec une épaisseur de calcaire de Brie plus faible, ce qui fait que les argiles sont rencontrées vers 5,5 m.

Aucun indice organoleptique n'a été observé lors des prélèvements de sols et des forages.

6.1.2 Critère de comparaison

En France, il n'existe pas de valeur limite définissant des seuils de qualité environnementale. Les résultats d'analyses ont donc été comparés entre eux et interprétés par rapport aux valeurs de référence suivantes :

- les critères d'acceptation en ISDI fixés dans la décision n° 2003/33/CE du 19/12/2002 et l'arrêté du 12/12/2014, qui définissent la liste des types de déchets inertes admissibles dans des installations de stockage de déchets inertes et les conditions d'exploitation de ces installations;
 - Attention, ces valeurs ne sont que des valeurs guides, utilisables dans le cadre de la gestion des déblais d'un site et non pour étudier la compatibilité environnementale d'un projet de réaménagement. Les installations de stockage pour matériaux inertes (ISDI) se réservent par ailleurs le droit de refuser des terres si ces dernières présentent des indices organoleptiques de pollution (odeur, couleur) ou un aspect jugé suspect et ce, <u>même si les résultats d'analyses sont inférieurs aux seuils d'acceptation existants</u>. Par exemple, la présence de mâchefers en proportion significative engendre généralement un refus auprès de ces centres, et ce, même si les composés métalliques présents ne sont pas lixiviables ;

 pour les métaux sur brut, à la gamme de valeurs couramment observées dans les sols ordinaires de toutes granulométries - Denis BAIZE / INRA – étude ASPITET.

A noter que ces valeurs ne sont données qu'à titre indicatif et ne sont en aucun cas des seuils de dépollution.

6.1.3 Présentation des résultats

Annexe 8: Bordereaux du laboratoire sur les sols

Annexe 9 : Synthèse des résultats dans les sols

Les bordereaux d'analyses sont consultables en Annexe 8 et les tableaux de synthèse des résultats d'analyses sont présentés en Annexe 9.

Les résultats sur les sols mettent en évidence :

Métaux

Pour le cuivre, trois teneurs dépassant la gamme ASPITET « sols ordinaires » (20 mg/kg MS) ont été identifiées sur S1 (2-3 m), S3 (3-4 m) et S8 (3-4 m) avec des concentrations respectives de 22 mg/kg MS, 51 mg/kg et 35 mg/kg MS (teneurs ne présentant pas de risques sanitaires).

Pour les autres métaux lourds, toutes les valeurs sont dans la gamme ASPITET « sols ordinaires ».

Les analyses éluât mettent en évidence des teneurs en métaux lourds toutes inférieures aux critères ISDI respectifs.

Hydrocarbures C₁₀-C₄₀

Il est mesuré des traces d'hydrocarbures C_{10} - C_{40} au droit de S1, S3, S4, S6, S8 et S9 (teneurs proches de limites de quantification du laboratoire).

Tous les autres résultats d'analyses sont inférieurs aux limites de quantification du laboratoire.

HAP

Il est mesuré des traces de HAP au droit de S2, S4 et S8 avec des concentrations en somme des 16 HAP comprises entre 0,069 et 0,957 mg/kg MS bien inférieures au seuil ISDI (50 mg/kg MS). Tous les autres résultats d'analyses sont inférieurs aux limites de quantification du laboratoire.

PCB

Il est mesuré des traces de PCB au droit de S1, S2 et S5 avec des concentrations en somme des 7 PCB comprises entre 0,001 et 0,03 mg/kg MS bien inférieures au seuil ISDI (1 mg/kg MS). Tous les autres résultats d'analyses sont inférieurs aux limites de quantification du laboratoire.

BTEX, Hydrocarbures C₅-C₁₀ et COHV

Tous les résultats d'analyses sont inférieurs aux limites de quantification du laboratoire.

6.2 RESULTATS DES INVESTIGATIONS SUR LES EAUX SOUTERRAINES

6.2.1 Description du réseau piézométrique

Annexe 6 : Plan des investigations réalisées

Annexe 10 : Coupes techniques des piézomètres

Les caractéristiques des piézomètres mesurés sont synthétisées dans le tableau suivant :

	Pz1	Pz2	Pz3	Pz4
Localisation	Nord-sud	Nord-est	Centre nord	Centre nord-ouest
Repère de mesure	Bouche à clé	Bouche à clé	Bouche à clé	Bouche à clé
Cote du repère de mesure (m NGF)	84,33	83,90	84,09	83,98
Profondeur / repère	5,95	6,00	6,12	6,06
Intervalle crépiné (m de profondeur)	2-6	1,40 – 6	1,5-6	1,4 - 6
Diamètre int / ext (mm)	52 / 60	52 / 60	52 / 60	52 / 60

Tableau 11 : Caractéristiques des piézomètres sur site

6.2.2 Mesures de terrain

Annexe 12 : Fiches de prélèvement des eaux souterraines

Annexe 13 : Report des niveaux d'eaux et sens d'écoulement

Les fiches de prélèvement de la campagne de juin 2024 sont jointes en Annexe 12.

Les piézomètres Pz1, Pz3 et Pz4 ont été prélevés lors d'une première campagne le 14/06/2024, le Pz2 n'a pas pu être prélevé à cause de la présence d'une voiture garée sur l'ouvrage et empêchant l'accès. Un deuxième passage a été effectué le 20/06 afin de le prélever.

Les paramètres physico-chimiques (pH, conductivité, potentiel d'oxydo-réduction et température) ont été suivis pendant le pompage de purge. Les valeurs stabilisées obtenues sont renseignées dans le tableau suivant.

Ouvrage	Pz1	Pz2	Pz3	Pz4
Date de prélèvement	14/06/2024	20/06/2024	14/06/2024	14/06/2024
рН	7,08	6,49	6,86	6,92
Conductivité (µS/cm)	750	940	910	640
Potentiel redox (mV)	165	158	184	168
Température (°C)	14,4	16,3	14,9	13,3

Tableau 12 : Paramètres physico-chimiques des eaux souterraines

Ces mesures mettent en évidence :

- Des pH neutres et homogènes ;
- Des conductivités homogènes ;
- Des potentiels redox supérieurs 100 mV indiquant des eaux souterraines en condition réductrice ;
- Des températures homogènes et comprises entre 13,4 et 16,3°C.

Les eaux souterraines prélevées sont de couleur beige avec présence de matière en suspension sur tous les ouvrages.

Aucun indice organoleptique n'a été observé lors des prélèvements des eaux souterraines.

6.2.3 Piézométrie

Annexe 13 : Report des niveaux piézométriques

Les mesures de niveaux effectuées sur les ouvrages sont synthétisées dans les tableaux ci-après.

	Pz1	Pz2	Pz3	Pz4	
Date de la mesure	14/06/2024	20/06/2024	14/06/2024	14/06/2024	
Repère	Bouche à clé	Plaque PVC	Bouche à clé	Bouche à clé	
Cote du repère de mesure (m NGF)	84,33	83,90 84,09		83,98	
Niveau d'eau (m/repère)	3,98	2,58	3,81	3,58	

	Pz1	Pz2	Pz3	Pz4
Profondeur mesurée de l'ouvrage (m/repère)	5,95	6,00	6,12	6,06
Cote piézométrique	80,35	81,32	80,28	80,40

Tableau 13 : Niveaux piézométriques relevés en juin 2024

En prenant en compte les relevés de juin 2024, l'écoulement est plutôt orienté vers le nord-est.

Les mesures piézométriques de juin 2024 mettent globalement en évidence les positions hydrauliques suivantes :

- PZ1 en Amont :
- PZ4 en Latéral ;
- PZ3 et PZ2 en aval.

6.2.4 Critères de comparaison

En compléments des valeurs réglementaires en vigueur, les résultats seront comparés entre eux et d'une campagne à l'autre.

Les résultats seront comparés aux :

- Guide d'évaluation de l'état des eaux souterraines (juin 2019) établissant les critères d'évaluation et les modalités de détermination de l'état des eaux souterraines et des tendances significatives et durables de dégradation de l'état chimique des eaux souterraines;
- critères de comparaison considérés à titre indicatif qui sont les « limites de qualité des eaux destinées à la consommation humaine, à l'exclusion des eaux conditionnées » (normes de potabilité) et en l'absence de valeurs comparatives pour certains composés, les « valeurs limites de qualité des eaux brutes de toute origine utilisée pour la production d'eau destinée à la consommation humaine » (valeur limite pour la potabilisation). L'ensemble de ces valeurs est issu de l'arrêté ministériel du 11 janvier 2007 et de la mise à jour de l'arrêté ministériel du 30 décembre 2022;
- en l'absence de ces valeurs, les valeurs guides de l'OMS (Organisation mondiale de la santé) sont également données à titre indicatif pour les "Recommandations pour la qualité de l'eau de boisson", actualisées en 2017;

A noter que ces valeurs ne sont données qu'à titre indicatif et ne sont en aucun cas des seuils de dépollution.

6.2.5 Présentation des résultats

Annexe 14 : Bordereaux du laboratoire sur les eaux souterraines

Annexe 15 : Synthèse des résultats dans les eaux souterraines

Les bordereaux d'analyses sont consultables en annexe 14. Les tableaux de synthèse des résultats d'analyses sont présentés en annexe 15.

Les résultats sur les eaux souterraines mettent en évidence :

Métaux

Il est mesuré des traces de nickel sur Pz1, de cuivre et de zinc sur Pz3 avec des teneurs inférieures aux critères de comparaison retenus et proches des limites de quantification.

• HAP

Des traces de HAP sont mesurées sur Pz2, Pz3 et Pz4 avec des teneurs bien inférieures aux critères de comparaison.

● BTEX, hydrocarbures C₅-C₁₀, hydrocarbures C₁₀-C₄₀, COHV

Aucun de ces composés n'a été mis en évidence lors de cette campagne au droit des ouvrages prélevés.

7 CONCLUSIONS

ARCADIS a missionné DIE Remediation pour l'élaboration du rapport de base relatif à la construction d'un Data Center par ICADE rue des Solets sur la commune de Rungis (94) afin de répondre aux exigences réglementaires fixées par la Directive Européenne 2010/75/UE relative aux émissions industrielles, dite IED (Industrial Emissions Directive). Le terrain est actuellement occupé par un ensemble d'immeubles de bureaux et d'activités tertiaires.

Le Data Center sera soumis à la directive IED pour la rubrique 3110 : Combustion.

Les chapitres 1 à 3 ont permis d'identifier plusieurs sources potentielles de pollutions anciennes et futures :

- ∞ Remblais et activités non identifiées entre 1971 et 1981 ;
- ∞ 22 cuves enterrées de 120 000 l de gasoil et d'huile végétale hydrotraitée (dépotage et canalisations associées) projet ;
- ∞ 59 générateurs et cuves aériennes associées (1600 l) projet ;
- ∞ Sous-stations électriques avec 4 transformateurs projet ;
- Séparateur et dépotage ;
- ∞ Locaux de pompage de fuel.

Afin de réaliser un état initial de la pollution au droit du périmètre IED, les investigations sur les sols et les eaux souterraines suivantes ont été réalisées

- 10 sondages de sols entre 2 et 6 m de profondeur avec analyse en tout ou partie des paramètres suivants: hydrocarbures volatils C₅-C₁₀, hydrocarbures C₁₀-C₄₀, HAP, BTEX, COHV, 8 métaux, paramètres sur éluât (pack ISDI) et PCB;
- pose de 4 piézomètres à 6 m de profondeur ainsi qu'une campagne de prélèvement des eaux sur l'ensemble des paramètres suivants: hydrocarbures volatils C₅-C₁₀, hydrocarbures C₁₀-C₄₀, HAP, BTEX, COHV, 8 métaux.

Les résultats d'analyses mettent en évidence :

Pour les sols:

Métaux

Pour le cuivre, trois teneurs dépassant la gamme ASPITET « sols ordinaires » ont été identifiées sur S1 (2-3 m), S3 (3-4 m) et S8 (3-4 m) avec des concentrations respectives de 22 mg/kg, 51 mg/kg et 35 mg/kg (teneurs ne présentant pas de risques sanitaires).

Pour les autres métaux lourds, toutes les valeurs sont dans la gamme ASPITET « sols ordinaires ».

 Les analyses éluât mettent en évidence des teneurs en métaux lourds toutes inférieures aux critères ISDI respectifs <u>Hydrocarbures C₁₀-C₄₀</u>

Il est mesuré des traces d'hydrocarbures C_{10} - C_{40} au droit de S1, S3, S4, S6, S8 et S9 (teneurs proches de limites de quantification du laboratoire).

O HAP

Il est mesuré des traces de HAP au droit de S2, S4 et S5 avec des concentrations en somme des 16 HAP comprises entre 0,069 et 0,957 mg/kg MS bien inférieures au seuil ISDI (50 mg/kg MS).

PCB

Il est mesuré des traces de PCB au droit de S1, S2 et S5 avec des concentrations en somme des 7 PCB comprises entre 0,001 et 0,03 mg/kg MS bien inférieures au seuil ISDI (1 mg/kg MS). Tous les autres résultats d'analyses sont inférieurs aux limites de quantification du laboratoire.

BTEX, Hydrocarbures C₅-C₁₀, COHV

Tous les résultats d'analyses sont inférieurs aux limites de quantification du laboratoire.

Pour les eaux souterraines :

Ecoulement des eaux souterraines est orienté vers le nord-est.

Métaux

Il est mesuré des traces des traces de nickel sur Pz1, de cuivre et de zinc sur Pz3 avec des teneurs inférieures aux critères de comparaison retenues et proches des limites de quantification.

• HAP

Des traces de HAP sont mesurées sur Pz2, Pz3 et Pz4 avec des teneurs bien inférieures aux critères de comparaison.

BTEX, hydrocarbures C₅-C₁₀, hydrocarbures C₁₀-C₄₀, COHV

Aucun de ces composés n'a été mis en évidence lors de cette campagne au droit des ouvrages prélevés.

Limitations du rapport

DIE Remediation a élaboré ce rapport pour l'usage exclusif d'ARCADIS et d'ICADE, conformément aux propositions techniques n° Devis RM240076-D001 en date du 05/03/2024 et n°RM240076-D002 en date du 28/05/2024.

Ce rapport, ainsi que l'ensemble de ses annexes, constituent un ensemble indissociable; en conséquence, l'utilisation qui pourrait être faite d'une communication partielle ou reproduction partielle de ce rapport et annexes, ainsi que toute interprétation au-delà des indications et énonciations de DIE Remediation ne sauraient engager la responsabilité de celle-ci.

Il est rappelé que les résultats de la reconnaissance s'appuient sur un échantillonnage ponctuel, et que cette méthodologie ne permet pas de lever la totalité des aléas liés à l'hétérogénéité du ou des milieux étudiés.

Par ailleurs les conclusions de la présente étude valent que pour les usages, scénarios, composés et valeurs toxicologiques considérés. La prise en compte d'autres usages, d'une part, ou de nouveaux résultats analytiques et données toxicologiques, d'autre part, pourrait conduire à la révision et à l'actualisation des conclusions de la présente étude.

Les conclusions et recommandations du présent rapport sont basées pour partie sur des informations extérieures fournies par les personnes et entités auxquelles elles ont été demandées, non garanties par DIE Remediation; sa responsabilité en la matière ne saurait être engagée.

Enfin l'utilisation de ce rapport et de ses annexes à d'autres fins que celles définies dans la proposition DIE Remediation, par ARCDAIS et ICADE ou par des tiers, est de l'entière responsabilité de l'utilisateur.

Droit d'auteur

© Ce rapport est la propriété exclusive de DIE Remediation. Seul le destinataire du présent rapport est autorisé à le reproduire ou l'utiliser pour ses propres besoins. Ce rapport pourra être transmis aux tiers via les actes notariés.

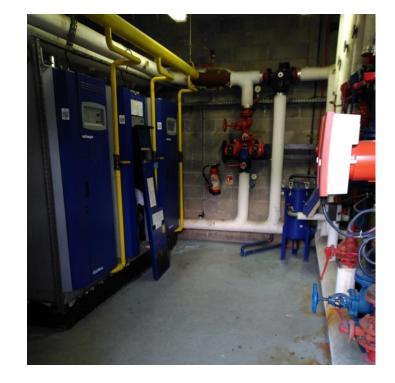
LISTE DES ANNEXES

Annexe 1	Plan de masse du projet
Annexe 2	Reportage photographique
Annexe 3	Photographies aériennes historiques
Annexe 4	Localisation des sources potentielles de pollution
Annexe 5	Plans des investigations proposées
Annexe 6	Plans des investigations réalisées
Annexe 7	Coupes des sondages de sols
Annexe 8	Bordereaux du laboratoire sur les sols
Annexe 9	Synthèse des résultats dans les sols
Annexe 10	Coupes des piézomètres
Annexe 11	Rapport de nivellement des piézomètres
Annexe 12	Fiches de prélèvement des eaux souterraines
Annexe 13	Report des niveaux piézométriques
Annexe 14	Bordereaux d'analyses sur les eaux souterraines
Annexe 15	Tableaux d'analyses sur les eaux souterraines

Annexe 1 Plan de masse du projet

(1 page)

ENVIRONNEMENT		Plan de masse du projet						
		Date	Indice	Objet	Etabli.	Vérif.	Appr.	
Anne	exe 1	19/07/2024	V2 Création du document SAA		SAA	GUB	VAB	
ICADE DUNCIO (04)		Echelle	Référence affaire		Docu	ıment	Page	
ICADE RUNGIS (94)	RUNGIS (94)	Graphique		RM240076	Ann	exe	1/1	



Annexe 2 Reportage photographique (2 pages)

Nos references : RM240076_ICADE_RUNGIS_RDB_V2

Adélaïde : chaufferie gaz

Malé : chaufferie gaz

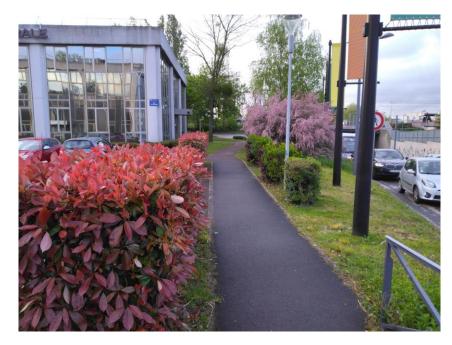
Adélaïde : local comptage

Malé : local comptage

Malé: locaux techniques

Malé: transformateur

ICADE	Reportage	photographique	TNVIRONIMENT
Data center	Date : 25/04/2024	Source : visite de site	Affaire :
Rungis (77)	Date : 23/04/2024	du 18/04/2024	RM240076
		Dessinateur: GUB	Annexe 2


Espaces vert au nord du bâtiment Adélaïde

Espaces vert au nord du bâtiment Adélaïde

Nord du bâtiment Adélaïde

Ouest du bâtiment Darwin

Nord du bâtiment Sydney

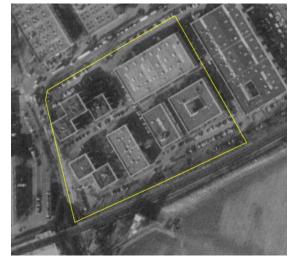
Sud du bâtiment Adélaïde

ICADE Data center	Reportage	photographique	ENVIRONMEMENT
	Date : 25/04/2024	Source : visite de site	Affaire :
Rungis (77)	Date : 25/04/2024	du 18/04/2024	RM240076
		Dessinateur : GUB	Annexe 2

Annexe 3 Photographies aériennes historiques (3 pages)

DATE DESCRIPTION PHOTOGRAPHIE AERIENNE HISTORIQUE La zone est agricole avec le chemin de fer 1921 longeant le sud du site qui est déjà construit. Une maison est construite au coin sudouest du site 1933 Des plantations d'arbres sont visibles dans les champs 1947 La zone est toujours agricole

DATE PHOTOGRAPHIE AERIENNE HISTORIQUE DESCRIPTION 1956 Les plantations d'arbres ont poussé. 1966 Pas d'évolution La zone industrielle s'est développée au nord du site. 1971 Des dépôts de remblais sont visibles sur le site avec un ensemble de constructions sommaires L'ouest du site est occupé par une plateforme semble-t-il de gestion de matériaux de construction, avec un 1974 bâtiment au centre. La partie à l'est semble dédiée à de la gestion de matériaux (gravats, terres).


DATE DESCRIPTION PHOTOGRAPHIE AERIENNE HISTORIQUE Le site est toujours occupé à l'ouest par une plateforme de gestion de matériaux, 1978 tandis qu'à l'est, il reste des activités au nord avec un bâtiment d'usage inconnu et des parkings. La plateforme de gestion de matériaux a 1981 été retiré et il ne reste que les activités au nord-est du site. Un premier bâtiment est construit (actuel espace vert au nord du bâtiment Adélaïde. 1982 Des remblais sont visibles en partie ouest du site.

DATE PHOTOGRAPHIE AERIENNE HISTORIQUE DESCRIPTION Le bâtiment Adélaïde a été construit est 1986 les bâtiments Malé, Darwin et Sydney sont en cours de construction. 1987 Les bâtiments sont tous achevés. 1992 Aucune évolution notable.

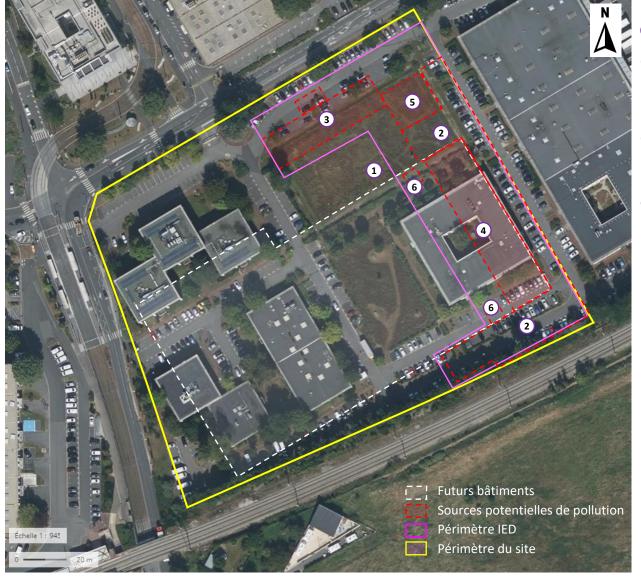
Date Photographie aerienne historique Description

Aucune évolution notable

Le bâtiment au nord du bâtiment Adélaïde a été détruit, laissant place à un espace vert.

Le bâtiment à l'est du bâtiment Adélaïde a été détruit, laissant place à un espace vert.

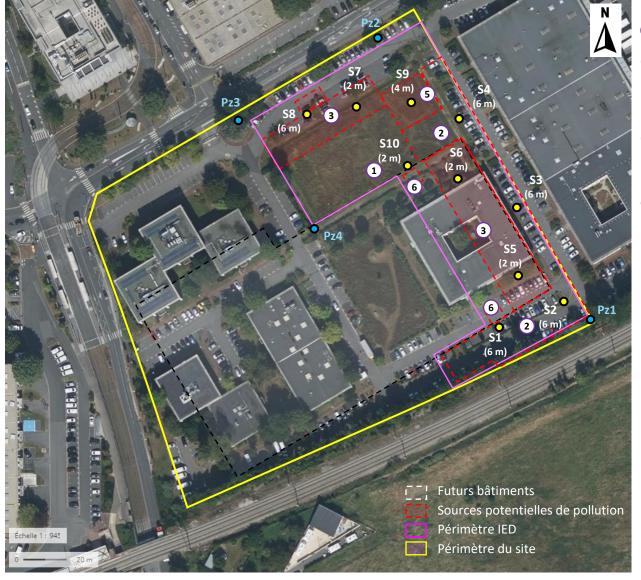
2021


2000

2014

Annexe 4 Localisation des sources potentielles de pollution

(1 page)


ENVIS	ONNEMENT	Localisation des sources potentielles de pollution						
EL VIKONEMENT		Date	Indice	Objet	Etabli.	Vérif.	Appr.	
Anne	exe 4	22/05/2024	V1 Création du document		LOD	GUB	FBA	
ICADE			Référence affaire	Docu	Document			
ICADE RUNGIS (94)	Graphique		RM240076	Ann	exe	1/1		

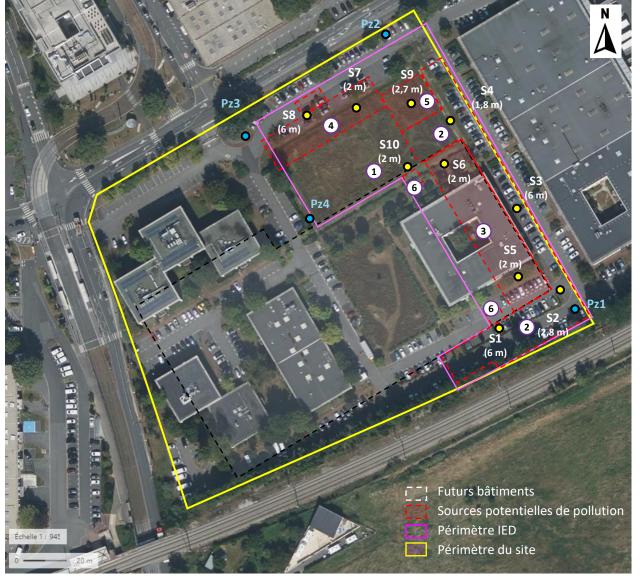
Sources potentielles de pollution :

- 1) Remblais et activités historiques (site global)
- 2 Cuves fuel / HVO enterrées (22 x 120 000 l) y compris dépotage et canalisations associées
- (3) 4 Transformateurs à huile minérale + 1 cuve de 60 000 l de récupération des huiles
- 4 59 générateurs électriques et réservoirs journaliers associées de fuel / HVO (1600 l)
- 5 Séparateur et dépotage
- 6 Local pompe

Annexe 5 Plans des investigations proposées

ENVIR	DNNEMENT	Plan pr	évision	nel des investigati	ons		
		Date	Indice	Objet	Etabli.	Vérif.	Appr.
Anne	exe 5	04/06/2024	A1	Création du document	LOD	GUB	FBA
ICADE	RUNGIS (94)	Echelle	R	Référence affaire	Docu	iment	Page
ICADE	KUNGIS (94)	Graphique		RM240076	Ann	exe	1/1

Sources potentielles de pollution :


- 1 Remblais et activités historiques (site global)
- 2 Cuves fuel / HVO enterrées (22 x 120 000 l) y compris dépotage et canalisations associées
- 3 59 générateurs électriques et réservoirs journaliers associées de fuel / HVO (1600 l)
- 4 Transformateurs à huile minérale + 1 cuve de 60 000 l de récupération des huiles
- 5 Séparateur et dépotage
- 6 Local pompe

Investigations prévisionnelles:

- Sondages de sols
- Piézomètres

Annexe 6 Plans des investigations réalisées

ENVIRO	ONNEMENT	Plan	des inve	estigations réalisée	es		
		Date	Indice	Objet	Etabli.	Vérif.	Appr.
Anne	exe 6	22/05/2024	A1	Création du document	LOD	GUB	FBA
ICADE	RUNGIS (94)	Echelle	ı	Référence affaire	Docu	ment	Page
ICADE	KUNGIS (94)	Graphique		RM240076	Anr	exe	1/1

Sources potentielles de pollution :

- 1 Remblais et activités historiques (site global)
- Cuves fuel / HVO enterrées (22 x 120 000 l) y compris dépotage et canalisations associées
- (3) 59 générateurs électriques et réservoirs journaliers associées de fuel / HVO (1600 I)
- 4 Transformateurs à huile minérale + 1 cuve de 60 000 l de récupération des huiles
- 5 Séparateur et dépotage
- 6 Local pompe

Investigations prévisionnelles:

- Sondages de sols
- Piézomètres

Annexe 7 Coupes des sondages de sols

Nos references : RM240076_ICADE_RUNGIS_RDB_V2

			F	ICHE DE PRI	ELEVEME	ENT DES SOLS						
Client		A	ARCADIS / ICADE	N° affaire / No du site	RM24	10076						
Departe	ment	9	94	Date	04/06	5/2024	7		ENVIRÓNNEMENT			
Commu	ne	R	Rungis	Chargé de réalisation	ERE		7					
Désigna		S	 :1				Profondeur		6			
sondage Localisa							prévisionne Outil sonda	age	Tarière mécanique (83			
sondage							Diamètre / (mm)	largeur	mm)			
Coordor	nnées	Х	Υ		Z		Laboratoire	e	Agrolab			
Système	e de proje	ection	da	onditionnemen ate d'envoi des chantillons		Glacière réfrigérée envoyée le 06/06/2024	Eventuels prencontrés					
	alle de			Présenc	e d'eau		es de pollutior Couleur	n Mesures		Heure de		
profond Haut	deur (m) Bas		Description lithologique	Profondeur (m)	Туре	Odeur (type)	suspecte (type)	PID (ppmV)	Nom d'échantillon	prélèvement	Photographie	Remarques
0	0,09	Enrobé	é									
0,09	0,20	Sable e	et graviers marrons			Aucune						
0,2	0,70	Sablon	n beige			Aucune		-0,0	S1 (0,09-0,70 m)			
0,7	1	Marnes	s beige clair			Aucune						
1	1,2	Calcair	re beige clair			Aucune		.0 0	S1 (1 0-2 0 m)			

1,2	2	Marnes beige clair à blocs calcaires		Aucune	10,0		
2	3,8	Marnes beige - marron		Aucune		S1 (2,0-3,0 m) S1 (3,0-3,8 m)	
3,8	6	Argile verte compacte		Aucune		S1 (4,0-5,0 m) S1 (5,0-6,0 m)	

		F	ICHE DE PRI	ELEVEM	ENT DES SOLS						
Client		ARCADIS / ICADE	N° affaire / No du site	RM2	40076						
Departe	ment	94	Date	04/0	6/2024			ENVIRONNEMENT			
Commu	ne	Rungis	Chargé de réalisation	ERE							
Désigna sondage		S2				Profondeu prévisionn		6			
Localisa	tion du					Outil sond Diamètre / (mm)	age	Tarière mécanique (83 mm)			
Coordo	nnées	X		Z		Laboratoir	e	Agrolab			
Systèm	e de proje	ction	onditionnemen ate d'envoi des chantillons		Glacière réfrigér envoyée le 06/06/2024	ee Eventuels rencontrés		Refus à 2,80 m			
Interv	alle de		Présence	e d'eau	Ind	ices de pollutio Couleur	n Mesures	-	Heure de		
profon Haut	deur (m) Bas	Description lithologique	Profondeur (m)	Туре	Odeur (type)	suspecte (type)	PID (ppmV)	Nom d'échantillon	prélèvement	Photographie	Remarques
0	0,10	Enrobé									
0,10	0,30	Sable et graviers marrons			Aucune						
0,3	1	Sablon beige			Aucune		0,0	S2 (0,3-1,0 m)			
1		Marnes beige clair			Aucune			S2 (1,0-2,0 m) S2 (2-2,8 m)			
		REFUS tarière									

		F	ICHE DE PR	ELEVEN	IENT DES SOLS						
Client		ARCADIS / ICADE	N° affaire / N du site	om RM	240076						
Departe	ment	94	Date	04/	06/2024			ENVIRONNEMENT			
Commu	ne	Rungis	Chargé de réalisation	ERE							
Désigna sondage		S3				Profondeu prévisionn		6]		
Localisa	tion du					Outil sond Diamètre	age	Tarière mécanique (83 mm)			
Coordo	nnées	X		Z		Laboratoir	·e	Agrolab			
Systèm	e de proje	ction	onditionnemer ate d'envoi des chantillons		Glacière réfrigér envoyée le 06/06/2024	ee Eventuels rencontré					
Interv	alle de		Présenc	e d'eau	Inc	ices de pollutio Couleur	n Mesures		Heure de		
profon Haut	deur (m) Bas	Description lithologique	Profondeur (m)	Туре	Odeur (type)	suspecte (type)	PID (ppmV)	Nom d'échantillon	prélèvement	Photographie	Remarques
0	0,05	Enrobé									
0,05	1	Marnes et calcaire beiges			Aucune		0,0	S3 (0,05-1,0 m)			
1	3	Marnes beiges humides (passage sec entre 2 et 2,60 m). Marnes blanchâtres et humides entre 2,60 et 3,0 m.			Aucune		0,0 0,0	S3 (1,0-2,0 m) S3 (2,0-3,0 m)			
3	4,30	Marnes beige-marron			Aucune		0,0	S3 (3,0-4,0 m)			
4,30	6	Argile verte compacte			Aucune		0,0 0,0	S3 (4,3-5,0 m) S3 (5,0-6,0 m)			

		F	ICHE DE PR	ELEVEN	ENT DES SOLS						
Client		ARCADIS / ICADE	N° affaire / No du site	om RM2	240076						
Departe	ment	94	Date	04/0	06/2024			ENVIRONNEMENT			
Commu	ne	Rungis	Chargé de réalisation	ERE							
Désigna sondage		S4				Profondeu prévisionn		6			
Localisa sondage	tion du					Outil sond Diamètre ((mm)	age	Tarière mécanique (83 mm)			
Coordo	nnées	X		Z		Laboratoir	·e	Agrolab			
Systèm	e de proje	ction	onditionnemer ate d'envoi des chantillons		Glacière réfrigér envoyée le 06/06/2024	ee Eventuels rencontré	problèmes s	Refus à 1,80 m			
	alle de		Présenc	e d'eau		ices de pollutio Couleur	n Mesures		Heure de		
profon Haut	deur (m) Bas	Description lithologique	Profondeur (m)	Туре	Odeur (type)	suspecte (type)	PID (ppmV)	Nom d'échantillon	prélèvement	Photographie	Remarques
0	0,03	Enrobé									
0,03	0,1	Limons marrons , graviers , galets			Aucune		0,0				
0,1	1,8	Marnes beiges			Aucune		0,0 0,0	S4 (0,1-1,0 m) S4 (1,0-1,8 m)			
		REFUS tarière									

			ICHE DE PRE	ELEVEME	NT DES SOLS						
Client		ARCADIS / ICADE	N° affaire / No du site	RM2	0076						
Departe	ement	94	Date	04/06	5/2024			ENVIRONNEMENT			
Commu	ine	Rungis	Chargé de réalisation	ERE							
Désigna sondag		S5				Profondeu prévisionn		2			
Localisa	ition du					Outil sond Diamètre	age	Tarière mécanique			
sondag						(mm)		(83 mm)			
Coordo	nnées	X Y	onditionnemen	Z	Glacière réfrigér	Laboratoir		Agrolab			
Systèm	e de proje	ction	ate d'envoi des chantillons		envoyée le 06/06/2024	Eventuels rencontrés					
	valle de		Présence	e d'eau		ices de pollutio Couleur	n Mesures		Heure de		
profon Haut	deur (m) Bas	Description lithologique	Profondeur (m)	Туре	Odeur (type)	suspecte (type)	PID (ppmV)	Nom d'échantillon	prélèvement	Photographie	Remarques
0	0,1	Limons marrons									
0,1	1,0	Marnes marron-beige à blocs calcaires			Aucune		0,0	S5 (0,1-1,0 m)			
1,0	2,0	Marnes blanchâtres à blocs calcaires			Aucune		0,0 0,0	S5 (1-2 m)			

		l de la companya de	ICHE DE PRE	ELEVEM	ENT DES SOLS						
Client		ARCADIS / ICADE	N° affaire / No du site	RM2	40076						
Departe	ement	94	Date	04/0	5/2024			ENVIRONNEMENT			
Commu	ne	Rungis	Chargé de réalisation	ERE							
Désigna		S6	·			Profondeu		2]		
sondage Localisa						prévisionn Outil sond	age	Tarière mécanique			
sondage	9					Diamètre / (mm)	largeur	(83 mm)			
Coordo	nnées	X Y		Z	~1ii	Laboratoir	e	Agrolab			
Systèm	e de proje	ction	onditionnemen ate d'envoi des chantillons		Glacière réfrigér envoyée le 06/06/2024	ee Eventuels rencontrés					
Interv	alle de		Présence	e d'eau		ices de pollutio		-	tte ee te		
profon Haut	deur (m) Bas	Description lithologique	Profondeur (m)	Туре	Odeur (type)	Couleur suspecte (type)	Mesures PID (ppmV)	Nom d'échantillon	Heure de prélèvement	Photographie	Remarques
0	0,07	Enrobé									
0,07	2	Marnes beiges à rares blocs calcaires			Aucune			S6 (0,07-1,0 m) S6 (1,0-2,0 m)			

		F	ICHE DE PR	ELEVEMI	ENT DES SOLS						
Client		ARCADIS / ICADE	N° affaire / No du site	RM2	10076						
Departe	ement	94	Date	04/06	5/2024			ENVIRONNEMENT			
Commu	ne	Rungis	Chargé de réalisation	ERE							
Désigna sondage		S7				Profondeu prévisionn		2]		
Localisa	tion du					Outil sond Diamètre / (mm)	age	Tarière mécanique (83 mm)			
Coordor	nnées	X		Z		Laboratoir	e	Agrolab]		
Système	e de proje	ction	onditionnemen ate d'envoi des chantillons		Glacière réfrigèr envoyée le 06/06/2024	ée Eventuels rencontrés					
Interv	alle de		Présenc	e d'eau	Inc	ices de pollutio Couleur	n Mesures		Heure de		
profon Haut	deur (m) Bas	Description lithologique	Profondeur (m)	Туре	Odeur (type)	suspecte (type)	PID (ppmV)	Nom d'échantillon	prélèvement	Photographie	Remarques
0	0,10	Enrobé									
0,10	1,0	Marnes blanches			Aucune		0,0	S7 (0,1-1,0 m)			
1,0	1,2	Calcaire beige			Aucune		∙0,0	S7 (1,0-2,0 m)			
1,2	2,0	Marnes beiges légèrement humides			Aucune			. (.,,)			

			FICHE DE PRE	ELEVEM	ENT DES SOLS						
Client		ARCADIS / ICADE	N° affaire / No du site	m RM2	40076						
Departe	ement	94	Date	04/0	06/2024			ENVIRONNEMENT			
Commu	ıne	Rungis	Chargé de réalisation	ERE							
Désigna		\$8				Profondeu		6	<u>.</u>]		
sondag	e ation du					prévisionn Outil sond	age	Tarière mécanique			
sondage						Diamètre / (mm)	/ largeur	(83 mm)			
Coordo	nnées	X		Z		Laboratoir	e	Agrolab	1		
Systèm	e de proje	ection	onditionnement ate d'envoi des chantillons	t et	Glacière réfrigér envoyée le 06/06/2024	ée Eventuels rencontrés					
Inter	valle de		Présence	d'eau		ices de pollutio		-			
	ideur (m)	Description lithologique	Profondeur (m)	Туре	Odeur (type)	Couleur suspecte (type)	Mesures PID (ppmV)	Nom d'échantillon	Heure de prélèvement	Photographie	Remarques
0	0,15	Limons marrons									
0,15	1,0	Marnes beiges			Aucune		0,0	S8 (0,15-1,0 m)			
1,0	1,20	Calcaire beige			Aucune		0,0	S8 (1-2 m) S8 (2-3 m)			
1,20	4,10	Marnes beiges humides			Aucune			S8 (3-4 m)			
4,10	6,0	Argile verte compacte			Aucune			S8 (4,10-5,0 m) S8 (5-6 m)			

			FICHE DE PRE	ELEVEM	ENT DES SOLS						
Client		ARCADIS / ICADE	N° affaire / No du site	RM2	40076						
Departe	ement	94	Date	04/0	6/2024			ENVIRONNEMENT			
Commu	ne	Rungis	Chargé de réalisation	ERE							
Désigna sondage		S9				Profondeu prévisionn		4			
Localisa	tion du					Outil sond Diamètre / (mm)	age	Tarière mécanique (83 mm)			
Coordo	nnées	X		Z		Laboratoir	е	Agrolab			
Systèm	e de proje	ection	onditionnemen ate d'envoi des chantillons	t et	Glacière réfrigér envoyée le 06/06/2024	ee Eventuels rencontrés		Refus à 2,70 m			
	alle de		Présence	e d'eau		ices de pollutio Couleur	n Mesures		Heure de		
profon Haut	deur (m) Bas	Description lithologique	Profondeur (m)	Type	Odeur (type)	suspecte (type)	PID (ppmV)	Nom d'échantillon	prélèvement	Photographie	Remarques
0	0,10	Limons marrons									
0,10	1,0	Calcaire beige			Aucune		0,0	S9 (0,10-1,0 m)			
1,0	2,70	Marnes beiges (humides après 2 m)			Aucune		0,0 0,0	S9 (1,0-2,0 m) S9 (2,0-2,70m)			
		REFUS tarière									

		F	ICHE DE PRI	ELEVEM	ENT DES SOLS						
Client		ARCADIS / ICADE	N° affaire / No du site	RM2	40076						
Departe	ment	94	Date	04/0	6/2024			ENVIRONNEMENT			
Commu	ne	Rungis	Chargé de réalisation	ERE							
Désigna sondage		S10				Profondeu prévisionn		2			
Localisa	tion du					Outil sond Diamètre / (mm)	age	Tarière mécanique (83 mm)			
Coordo	nnées	X		Z		Laboratoir	е	Agrolab			
Systèm	e de proje	ction	onditionnemen ate d'envoi des chantillons	t et	Glacière réfrigér envoyée le 06/06/2024	ee Eventuels rencontrés					
Interv	alle de		Présence	e d'eau	Ind	ices de pollutio Couleur	n Mesures	-	Heure de		
profon Haut	deur (m) Bas	Description lithologique	Profondeur (m)	Type	Odeur (type)	suspecte (type)	PID (ppmV)	Nom d'échantillon	prélèvement	Photographie	Remarques
		Limons marrons Sablon jaune-beige			Aucune		-0,0	S10 (0,0-0,80 m)			
0,80	1,20	Limons marrons			Aucune		0,0	S10 (0,80-1,20 m)			
1,20	2,0	Marnes beiges-blanchâtres			Aucune		0,0	S10 (1,20-2,0 m)			

Annexe 8 Bordereaux du laboratoire sur les sols

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144772 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client

Spécification des échantillons S1 (0,03-0.7m)

Prétraitement des échantillons

Masse échantillon total inférieure à 2 kg	kg	۰	0,59	méthode interne
Prétraitement de l'échantillon		۰		Conforme à NEN-EN 16179
Broyeur à mâchoires		۰		méthode interne
Matière sèche	%	۰	89,7	NEN-EN 15934

Lixiviation

paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont

Fraction >4mm (EN12457-2)	%	° 6,4	Selon norme lixiviation
Masse brute Mh pour lixiviation *	g	° 100	Selon norme lixiviation
Lixiviation (EN 12457-2)		•	NF EN 12457-2
Volume de lixiviant L ajouté pour *. l'extraction *.	ml	900	Selon norme lixiviation

Analyses Physico-chimiques

	pH-H2O		9,0	Conforme a NF ISO 10390 (sol et
-			,	sédiment)
1.	COT Carbone Organique Total	mg/kg Ms	<1000	conforme ISO 10694 (2008)

Prétraitement pour analyses des métaux

Minéralisation à l'eau régale	0		NF-EN 16174; NF EN 13657 (déchets)

Métaux			
Arsenic (As)	mg/kg Ms	2,7	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	5,2	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	2,3	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	3,3	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	4,3	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

RvA L 005

page 1 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144772 Solide / Eluat

Spécification des échantillon	s S1 (0,0 3 Unité	Résultat Limite	Méthode
Zinc (Zn)	mg/kg Ms	7,3	Minéralisation conforme à NEN EN-ISO 54321, mesure conform NEN-EN-ISO 11885
Hydrocarbures Aromatique	es Polycycliques (I	SO)	
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618
Composés aromatiques			
Benzène	mg/kg Ms	<0,050	ISO 22155
Toluène	mg/kg Ms	<0,050	ISO 22155
<i>Ethylbenzène</i>	mg/kg Ms	<0,050	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
BTEX total	*) mg/kg Ms	n.d.	ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
	mg/kg Ms	<0,025	ISO 22155
cis-1,2-Dichloroéthène			
<i>cis-1,2-Dichloroethene</i> 1,1-Dichloroethylène	mg/kg Ms	<0,10	ISO 22155
,	mg/kg Ms mg/kg Ms	<0,10 <0,025	ISO 22155 ISO 22155

page 2 de 6 **RvA** L 005

Les paramètre

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144772 Solide / Eluat

Spécification des échantillons S1 (0,03-0.7m)

Unité Résultat Limite Méthode

Hydrocarbures totaux (ISO)

• • • • • • • • • • • • • • • • • • • •			
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	26,6	ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	2,6	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	5,1	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	6,6	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	6,0	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	2,5	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	0,013 ×)	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,013 ×)	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	0,004	NEN-EN 16167
PCB (153)	mg/kg Ms	0,004	NEN-EN 16167
PCB (180)	mg/kg Ms	0,004	NEN-EN 16167

Calcul des Fractions solubles

Calcul des i lactions solubles			
Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	11	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	0 - 200	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	4,0	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,2	Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	69	Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
	Antimoine cumulé (var. L/S) Arsenic cumulé (var. L/S) Baryum cumulé (var. L/S) Cadmium cumulé (var. L/S) Chlorures cumulé (var. L/S) Chrome cumulé (var. L/S) COT cumulé (var. L/S) Cuivre cumulé (var. L/S) Fluorures cumulé (var. L/S) Indice phénol cumulé (var. L/S) Mercure cumulé (var. L/S) Molybdène cumulé (var. L/S) Nickel cumulé (var. L/S) Plomb cumulé (var. L/S) Sélénium cumulé (var. L/S) Sulfates cumulé (var. L/S)	Fraction soluble cumulé (var. L/S) mg/kg Ms Antimoine cumulé (var. L/S) mg/kg Ms Arsenic cumulé (var. L/S) mg/kg Ms Baryum cumulé (var. L/S) mg/kg Ms Cadmium cumulé (var. L/S) mg/kg Ms Chlorures cumulé (var. L/S) mg/kg Ms Chrome cumulé (var. L/S) mg/kg Ms COT cumulé (var. L/S) mg/kg Ms CUivre cumulé (var. L/S) mg/kg Ms Cuivre cumulé (var. L/S) mg/kg Ms Fluorures cumulé (var. L/S) mg/kg Ms Indice phénol cumulé (var. L/S) mg/kg Ms Mercure cumulé (var. L/S) mg/kg Ms Molybdène cumulé (var. L/S) mg/kg Ms Nickel cumulé (var. L/S) mg/kg Ms Plomb cumulé (var. L/S) mg/kg Ms Sélénium cumulé (var. L/S) mg/kg Ms Sélénium cumulé (var. L/S) mg/kg Ms Sulfates cumulé (var. L/S) mg/kg Ms	Fraction soluble cumulé (var. L/S) mg/kg Ms 0 - 1000 Antimoine cumulé (var. L/S) mg/kg Ms 0 - 0,05 Arsenic cumulé (var. L/S) mg/kg Ms 0 - 0,05 Baryum cumulé (var. L/S) mg/kg Ms 0 - 0,01 Cadmium cumulé (var. L/S) mg/kg Ms 0 - 0,001 Chlorures cumulé (var. L/S) mg/kg Ms 11 Chrome cumulé (var. L/S) mg/kg Ms 0 - 0,02 COT cumulé (var. L/S) mg/kg Ms 0 - 0,02 CUivre cumulé (var. L/S) mg/kg Ms 0 - 0,02 Fluorures cumulé (var. L/S) mg/kg Ms 0 - 0,02 Fluorures cumulé (var. L/S) mg/kg Ms 0 - 0,02 Mercure cumulé (var. L/S) mg/kg Ms 0 - 0,02 Mercure cumulé (var. L/S) mg/kg Ms 0 - 0,05 Molybdène cumulé (var. L/S) mg/kg Ms 0 - 0,05 Nickel cumulé (var. L/S) mg/kg Ms 0 - 0,05 Sélénium cumulé (var. L/S) mg/kg Ms 0 - 0,05 Sulfates cumulé (var. L/S) mg/kg Ms 0 - 0,05 Sulfates cumulé (var. L/S) mg/kg Ms 0 - 0,05

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144772 Solide / Eluat

Spécification des échantillons S1 (0,03-0.7m)

Unité Résultat Limite Méthode

Analyses sur éluat après lixiviation

L/S cumulé	ml/g	10,0	Selon norme lixiviation
Conductivité électrique	μS/cm	69,9	Selon norme lixiviation
pH		9,1	Selon norme lixiviation
Température	°C	19,2	Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,4	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	1,1	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	6,9	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
СОТ	mg/l	<20	conforme EN 16192 (2011)

Métaux sur éluat			
Antimoine (Sb)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l °	<0,03	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.06.2024 Fin des analyses: 14.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 6

IESTING
RVA L 005

-13-Z3631138-TR-P4

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

sont accrédités

par AL-West BV

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144772 Solide / Eluat Spécification des échantillons S1 (0,03-0.7m)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144772 Solide / Eluat Spécification des échantillons S1 (0,03-0.7m)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

> > Méthode

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

Unité

N° échant. 144773 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S1 (1-2m)

Pretraitement des echantillons						
Masse échantillon total inférieure à 2 kg	kg	0	0,78		méthode interne	
Prétraitement de l'échantillon		•			Conforme à NEN-EN 16179	

Résultat

Limite

5	Prétraitement de l'échantillon		۰		Conforme à NEN-EN 16179
3	Matière sèche	%	° 84,1		NEN-EN 15934
	Lixiviation				

LIXIVIALIOII						
Fraction >4mm (EN12457-2)		%	۰	2,9		Selon norme lixiviation
Masse brute Mh pour lixiviation	*)	g	۰	110		Selon norme lixiviation
Lixiviation (EN 12457-2)			۰			NF EN 12457-2
Volume de lixiviant L ajouté pour	*)	ml		900		Selon norme lixiviation

=::::::::::::::::::::::::::::::::::::::		l .		
Volume de lixiviant L ajouté pour *) l'extraction	ml	900		Selon norme lixiviation

Analyses Physico-chimiques							
pH-H2O		° 9,1			Conforme a NF ISO 10390 (sol et sédiment)		
COT Carbona Organique Total	ma/ka Mc	-1000			conforma ISO 10604 (2008)		

COT Carbone Organique Total	mg/kg Ms	<1000		conforme ISO 10694 (2008)
Prétraitement pour analyses de	es métaux			

Prétraitement pour analyse	Prétraitement pour analyses des métaux							
Minéralisation à l'eau régale	۰		NF-EN 16174; NF EN 13657 (déchets)					
Métaux								
Arsenic (As)	mg/kg Ms	5,5	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885					
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885					
Chrome (Cr)	mg/kg Ms	1,7	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885					
Cuivre (Cu)	mg/kg Ms	2,6	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885					
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)					
Nickel (Ni)	mg/kg Ms	1,3	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885					
Plomb (Pb)	mg/kg Ms	1,6	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à					

page 1 de 6 **RvA** L 005

NEN-EN-ISO 11885

marqués du

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025;2017. Seuls les paramètres non accrédités et/ou externalisés sont

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144773 Solide / Eluat

Spécification des échantillons S1 (1-2m)

Spécification des échantillons	S1 (1-2r	n)		
	Unité	Résultat	Limite	Méthode
Zinc (Zn)	mg/kg Ms	4,0		Minéralisation conforme à NEN EN-ISO 54321, mesure conform NEN-EN-ISO 11885
Hydrocarbures Aromatiques	Polycycliques (I	SO)		
Naphtalène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Composés aromatiques				
Benzène	mg/kg Ms	<0,050		ISO 22155
Toluène	mg/kg Ms	<0,050		ISO 22155
Ethylbenzène	mg/kg Ms	<0,050		ISO 22155
m,p-Xylène	mg/kg Ms	<0,10		ISO 22155
o-Xylène	mg/kg Ms	<0,050		ISO 22155
Naphtalène	mg/kg Ms	<0,10		ISO 22155
Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
BTEX total	*) mg/kg Ms	n.d.		ISO 22155
COHV				
Chlorure de Vinyle	mg/kg Ms	<0,02		ISO 22155
Dichlorométhane	mg/kg Ms	<0,05		ISO 22155
Trichlorométhane	mg/kg Ms	<0,05		ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05		ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025		ISO 22155
		40,020		

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144773 Solide / Eluat

Spécification des échantillons S1 (1-2m)

> Unité Résultat Limite Méthode

Hydrocarbures totaux (ISO)

Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

mg/kg Ms	n.d.	NEN-EN 16167
mg/kg Ms	n.d.	NEN-EN 16167
mg/kg Ms	<0,001	NEN-EN 16167
mg/kg Ms	<0,001	NEN-EN 16167
mg/kg Ms	<0,001	NEN-EN 16167
mg/kg Ms	<0,001	NEN-EN 16167
mg/kg Ms	<0,001	NEN-EN 16167
mg/kg Ms	<0,001	NEN-EN 16167
mg/kg Ms	<0,001	NEN-EN 16167
	mg/kg Ms	mg/kg Ms n.d. mg/kg Ms <0,001 mg/kg Ms <0,001

Calcul des Fractions solubles

Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10		<0,20	conforme à NEN-EN-ISO 16558-1
§ Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C4	40 mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	ISO 16703
Hydrocarbures totaux C10-C-2 Fraction C10-C12 Fraction C12-C16 Fraction C20-C24 Fraction C24-C28 Fraction C28-C32 Fraction C32-C36 Fraction C36-C40 Polychlorobiphényles Somme 6 PCB Somme 7 PCB (Ballschmite PCB (28) PCB (101) PCB (118) PCB (118) PCB (118) PCB (180) Calcul des Fractions soluble cumulé (var. L/S) Antimoine cumulé (var. L/S)			
Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmite	er) mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
© PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
© PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
[∞] . PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
် PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
ଞ୍ଜି PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167
Calcul des Fractions sol			
Fraction soluble cumulé (var. L/S	S) mg/kg Ms	0 - 1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Arsenic cumule (var. L/S) Baryum cumulé (var. L/S) Cadmium cumulé (var. L/S) Chlorures cumulé (var. L/S) Chrome cumulé (var. L/S) COT cumulé (var. L/S) Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0,002	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	14	Selon norme lixiviation
g Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
টু COT cumulé (var. L/S)	mg/kg Ms	0 - 200	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	3,0	Selon norme lixiviation
	mg/kg Ms	0 - 0,2	Selon norme lixiviation
Indice phénol cumulé (var. L/S) Mercure cumulé (var. L/S) Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	66	Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0,02	Selon norme lixiviation
Nickel cumulé (var. L/S) Plomb cumulé (var. L/S) Sélénium cumulé (var. L/S) Sulfates cumulé (var. L/S) Zinc cumulé (var. L/S)			page 3 de 6

page 3 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144773 Solide / Eluat

Spécification des échantillons S1 (1-2m)

Unité Résultat Limite Méthode

Analyses sur éluat après lixiviation

L/S cumulé	ml/g	10,0	Selon norme lixiviation
Conductivité électrique	μS/cm	61,1	Selon norme lixiviation
рН		9,3	Selon norme lixiviation
Température	°C	19.3	Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,3	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	1,4	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	6,6	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
СОТ	mg/l	<20	conforme EN 16192 (2011)

Métaux sur éluat			
Antimoine (Sb)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	0,2	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l °	<0,03	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	2,0	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.06.2024 Fin des analyses: 14.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 6

IESTING
RVA L 005

C-13-23651139-FR-P10

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

sont accrédités

par AL-West BV

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144773 Solide / Eluat Spécification des échantillons S1 (1-2m)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144773 Solide / Eluat N° échant. Spécification des échantillons S1 (1-2m)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

> > Méthode

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

Unité

N° échant. 144774 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S1(2-3m)

Pı	étraitement des é	chantillo	ns			
	() (11)	,	1.			

i retraitement des condition	3			
Masse échantillon total inférieure à 2 kg	kg	۰	0,59	méthode interne
Prétraitement de l'échantillon		۰		Conforme à NEN-EN 16179
Matière sèche	%	۰	78,7	NEN-EN 15934
Lixiviation				
	0.4			0 1 11 11 11

Résultat

Limite

Fraction >4mm (EN12457-2)	%	° 1,3	Selon norme lixiviation
Masse brute Mh pour lixiviation *) g	° 120	Selon norme lixiviation
Lixiviation (EN 12457-2)		•	NF EN 12457-2
Volume de lixiviant L ajouté pour) ml	900	Selon norme lixiviation

Volume de lixiviant L ajouté pour * l'extraction	ml	900		Selon norme lixiviation
Analyses Dhysics shimings				

Analyses Physico-chimiques				
pH-H2O		° 8,9		Conforme a NF ISO 10390 (sol et sédiment)
OOT O O T-4-1	/I N /	4000		

_		1	1		1	
750.50	Prétraitement pour analyses de	s métaux				
	COT Carbone Organique Total	mg/kg Ms	1600			conforme ISO 10694 (2008)

Fredatienieni pour analyse	s des melaux		
Minéralisation à l'eau régale	•		NF-EN 16174; NF EN 13657 (déchets)
Métaux			
Arsenic (As)	mg/kg Ms	7,7	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	11	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	22	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	7,7	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	10	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

page 1 de 6 **RvA** L 005

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025;2017. Seuls les paramètres non accrédités et/ou externalisés sont

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144774 Solide / Eluat

Spécification des échantillons S1(2-3m)

	Unité		Méthode
Zinc (Zn)	mg/kg Ms	24	Minéralisation conforme à NE EN-ISO 54321, mesure conforr NEN-EN-ISO 11885
Hydrocarbures Aromatique	es Polycycliques (I	SO)	
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618
Composés aromatiques			
Benzène	mg/kg Ms	<0,050	ISO 22155
Toluène	mg/kg Ms	<0,050	ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	ISO 22155
n,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
STEX total	*) mg/kg Ms	n.d.	ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Frichlorométhane	mg/kg Ms	<0,05	ISO 22155
Fétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Frichloroéthylène	mg/kg Ms	<0,05	ISO 22155
rétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
I,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
I,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
I,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
I,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
I,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2-	mg/kg Ms	n.d.	ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144774 Solide / Eluat

Spécification des échantillons S1(2-3m)

> Unité Résultat Limite Méthode

Hydrocarbures totaux (ISO)

Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

Somme 6 PCB mg/kg Ms n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter) mg/kg Ms n.d.	NEN-EN 16167
PCB (28) mg/kg Ms <0,001	NEN-EN 16167
PCB (52) mg/kg Ms <0,001	NEN-EN 16167
PCB (101) mg/kg Ms <0,001	NEN-EN 16167
PCB (118) mg/kg Ms <0,001	NEN-EN 16167
PCB (138) mg/kg Ms <0,001	NEN-EN 16167
PCB (153) mg/kg Ms <0,001	NEN-EN 16167
PCB (180) mg/kg Ms <0,001	NEN-EN 16167

Calcul des Fractions solubles

Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
ূ Fraction >C6-C8	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
ੱ Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40	mg/kg Ms	<2,0	ISO 16703
Hydrocarbures totaux C10-C40 Fraction C10-C12 Fraction C12-C16 Fraction C20-C24 Fraction C24-C28 Fraction C32-C36 Fraction C32-C36 Fraction C36-C40 Polychlorobiphényles Somme 6 PCB Somme 7 PCB (Ballschmiter) PCB (28) PCB (52) PCB (101) PCB (118) PCB (138) PCB (153) PCB (180) Calcul des Fractions solubles Fraction soluble cumulé (var. L/S) Antimoine cumulé (var. L/S)			
Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
ទី PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
^ο . PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
୍ଦ୍ର PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
ଞ୍ଜି PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167
Calcul des Fractions solubles			
Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Arsenic cumule (var. L/S) Baryum cumulé (var. L/S) Cadmium cumulé (var. L/S) Chlorures cumulé (var. L/S) Chrome cumulé (var. L/S) COT cumulé (var. L/S) Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,1	Selon norme lixiviation
© Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	32	Selon norme lixiviation
© Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	0 - 200	Selon norme lixiviation
⁸ Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	5,0	Selon norme lixiviation
	mg/kg Ms	0 - 0,2	Selon norme lixiviation
Indice phénol cumulé (var. L/S) Mercure cumulé (var. L/S) Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	95	Selon norme lixiviation
₹ Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
Nickel cumulé (var. L/S) Plomb cumulé (var. L/S) Sélénium cumulé (var. L/S) Sulfates cumulé (var. L/S) Zinc cumulé (var. L/S)			page 3 de 6

page 3 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144774 Solide / Eluat

Spécification des échantillons S1(2-3m)

Unité Résultat Limite Méthode

Analyses sur éluat après lixiviation

L/S cumulé	ml/g	10,0	Selon norme lixiviation
Conductivité électrique	μS/cm	89,0	Selon norme lixiviation
рН		8,9	Selon norme lixiviation
Température	°C	19.3	Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,5	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	3,2	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	9,5	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
СОТ	mg/l	<20	conforme EN 16192 (2011)

Métaux sur éluat			
Antimoine (Sb)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l °	<0,03	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.06.2024 Fin des analyses: 17.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 6

IESTING
RVA L 005

C-13-23651139-FR-P16

par AL-West BV sont accrédités

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144774 Solide / Eluat Spécification des échantillons S1(2-3m)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144774 Solide / Eluat N° échant. Spécification des échantillons S1(2-3m)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Tour labor Tour corvice.

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil FRANCE

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144775 Solide / Eluat

Date de validation 06.06.2024
Prélèvement 05.06.2024
Prélèvement par: Client
Spécification des échantillons \$1(3-3,5m)

Unité	Résultat	Limite	Méthode

Prétraitement des échantillons

Masse echantillon total inferieure a 2 kg	kg	0,56		methode interne
Prétraitement de l'échantillon		۰		Conforme à NEN-EN 16179
Matière sèche	%	° 78,4		NEN-EN 15934
Literaturat e di e co				

Lixiviation

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN

2	Fraction >4mm (EN12457-2)	%	° 0,4	Selon norme lixiviation
5	Masse brute Mh pour lixiviation *)	g	° 120	Selon norme lixiviation
2	Lixiviation (EN 12457-2)		•	NF EN 12457-2
	Volume de lixiviant L ajouté pour *)	ml	900	Selon norme lixiviation
=	ll'extraction			

Analyses Physico-chimiques

5	pH-H2O		° 8,9	Conforme a NF ISO 10390 (sol et sédiment)
	COT Carbone Organique Total	mg/kg Ms	1500	conforme ISO 10694 (2008)

Prétraitement pour analyses des métaux

Minéralisation à l'eau régale	۰		NF-	EN 16174; NF EN 13657
i i i i i i i i i i i i i i i i i i i				(déchets)

Métaux

Metaux			
Arsenic (As)	mg/kg Ms	13	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,2 ^{pe)}	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	16	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	9,0	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	15	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	14	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

page 1 de 6

TESTING
RVA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144775 Solide / Eluat

Spécification des échantillons S1(3-3,5m)

Specification des echantillons	51(3-3,	bm)		
	Unité	Résultat	Limite	Méthode
Zinc (Zn)	mg/kg Ms	34		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Hydrocarbures Aromatiques	s Polycycliques (I	SO)		
Naphtalène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Composés aromatiques				
Benzène	mg/kg Ms	<0,050		ISO 22155
Toluène	mg/kg Ms	<0,050		ISO 22155
Ethylbenzène	mg/kg Ms	<0,050		ISO 22155
m,p-Xylène	mg/kg Ms	<0,10		ISO 22155
o-Xylène	mg/kg Ms	<0,050		ISO 22155
Naphtalène	mg/kg Ms	<0,10		ISO 22155
Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
BTEX total	*) mg/kg Ms	n.d.		ISO 22155
COHV				
Chlorure de Vinyle	mg/kg Ms	<0,02		ISO 22155
Dichlorométhane	mg/kg Ms	<0,05		ISO 22155
Trichlorométhane	mg/kg Ms	<0,05		ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05		ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10		ISO 22155
11,1 Diditioloculyiche				
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025		ISO 22155

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144775 Solide / Eluat

Spécification des échantillons S1(3-3,5m)

Unité Résultat Limite Méthode

Hydrocarbures totaux (ISO)

Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167

Calcul des Fractions solubles

mg/kg Ms	0 - 1000	Selon norme lixiviation
mg/kg Ms	0 - 0,05	Selon norme lixiviation
mg/kg Ms	0 - 0,05	Selon norme lixiviation
mg/kg Ms	0 - 0,1	Selon norme lixiviation
mg/kg Ms	0 - 0,001	Selon norme lixiviation
mg/kg Ms	53	Selon norme lixiviation
mg/kg Ms	0 - 0,02	Selon norme lixiviation
mg/kg Ms	0 - 200	Selon norme lixiviation
mg/kg Ms	0 - 0,02	Selon norme lixiviation
mg/kg Ms	5,0	Selon norme lixiviation
mg/kg Ms	0 - 0,2	Selon norme lixiviation
mg/kg Ms	0 - 0,0003	Selon norme lixiviation
mg/kg Ms	0 - 0,05	Selon norme lixiviation
mg/kg Ms	0 - 0,05	Selon norme lixiviation
mg/kg Ms	0 - 0,05	Selon norme lixiviation
mg/kg Ms	0 - 0,05	Selon norme lixiviation
mg/kg Ms	83	Selon norme lixiviation
mg/kg Ms	0 - 0,02	Selon norme lixiviation
	mg/kg Ms	mg/kg Ms 0 - 0,05 mg/kg Ms 0 - 0,05 mg/kg Ms 0 - 0,1 mg/kg Ms 0 - 0,001 mg/kg Ms 53 mg/kg Ms 0 - 0,02 mg/kg Ms 0 - 200 mg/kg Ms 0 - 0,02 mg/kg Ms 0 - 0,02 mg/kg Ms 0 - 0,02 mg/kg Ms 0 - 0,2 mg/kg Ms 0 - 0,0003 mg/kg Ms 0 - 0,05 mg/kg Ms 0 - 0,05

pe) Etant donné l'influence perturbatrice de l'échantillon, une dilution de l'échantillon a occasionnée une augmentation des limites de quantification.

paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144775 Solide / Eluat

Spécification des échantillons S1(3-3,5m)

Unité Résultat Limite Méthode

Analyses sur éluat après lixiviation

L/S cumulé	ml/g	10,0	Selon norme lixiviation
Conductivité électrique	μS/cm	96,6	Selon norme lixiviation
рН		8,9	Selon norme lixiviation
Température	°C	19,3	Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,5	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	5,3	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	8,3	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
СОТ	mg/l	<20	conforme EN 16192 (2011)

Métaux sur éluat			
Antimoine (Sb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l °	<0,03	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.06.2024 Fin des analyses: 14.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 6

IESTING
RVA L 005

2-13-23651139-FR-P22

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

sont accrédités

par AL-West BV

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144775 Solide / Eluat Spécification des échantillons S1(3-3,5m)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144775 Solide / Eluat

Spécification des échantillons S1(3-3,5m)

pe) Etant donné l'influence perturbatrice de l'échantillon, une dilution de l'échantillon a occasionnée une augmentation des limites de quantification.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil FRANCE

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144776 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S1(4-5m)

> Unité Résultat Limite Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon		0	Conforme à NEN-EN 16179
Matière sèche	%	° 78,0	NEN-EN 15934

Hydrocarbures Aromatiques Polycycliques (ISO)

S	riyar ooar bar oo 7 ii omaa qao	o i oiyoyonquoo (ii		
dité	Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
accrédités	Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
	Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181
es n	Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
nètre	Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
arar	Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
d se	Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Seuls les paramètres non	Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
	Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
17025:2017	Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
25:2	Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
170	Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
EN ISO/IEC	Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
80	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
H H	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
me	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
selon la norme	HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
on le	Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 16181
selc	HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
éS				

Composés aromatiques

p composes anomanques			
Benzène	mg/kg Ms	<0,05	ISO 22155
Toluène	mg/kg Ms	<0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155

Hydrocarbures totaux (ISO)

_	.,			
2	Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
2	Fraction aliphatique >C6-C8	mg/kg Ms	<0.20	conforme à NEN-EN-ISO 16558-1

Kamer van Koophandel Nr. 08110898 ppa. Marc VAT/BTW-ID-Nr.: NL 811132559 B01 Directeur ppa. Marc Dr. Paul V

ppa. Marc van Gelder Dr. Paul Wimmer

paramètres

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

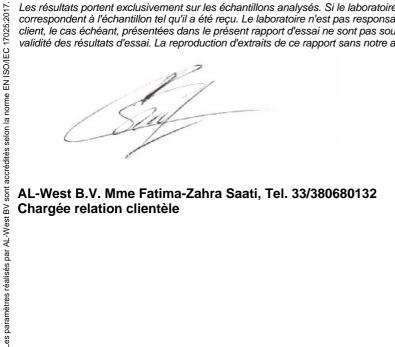
RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

144776 Solide / Eluat N° échant.

Spécification des échantillons S1(4-5m)

	Unité	Résultat	Limite	Méthode
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0		ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0		ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0		ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0		ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0		ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0		ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0		ISO 16703
x) Les résultats ne tiennent pas compte des teneurs	1 0 0 1	,		150 16703


x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 06.06.2024 Fin des analyses: 12.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

Seuls les

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144776 Solide / Eluat N° échant. Spécification des échantillons S1(4-5m)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144777 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S1(5-6m)

> Unité Résultat Limite Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon		0		Conforme à NEN-EN 16179
Matière sèche	%	° 77.1		NEN-EN 15934

Hydrocarbures Aromatiques Polycycliques (ISO)

S	, an ocan banco / in cimatique	o i oiyoyonquoo (ii		
dité	Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
ccré	Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Seuls les paramètres non accrédités	Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181
	Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
	Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
aran	Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
es b	Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
	Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
	Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
	Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
17025:2017	Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
170	Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
EC	Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
ISO/IEC	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Ш И	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
	HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
n s	Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 16181
selc	HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
ŝ				

Composés aromatiques

p composes anomanques			
Benzène	mg/kg Ms	<0,05	ISO 22155
Toluène	mg/kg Ms	<0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155

Hydrocarbures totaux (ISO)

_								
2	Fraction aliphatique C5-C6	mg/kg Ms	<0,40		conforme à NEN-EN-ISO 16558-1			
2	Fraction aliphatique >C6-C8	mg/kg Ms	<0.20		conforme à NEN-EN-ISO 16558-1			

paramètres

ppa. Marc van Gelder Dr. Paul Wimmer

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

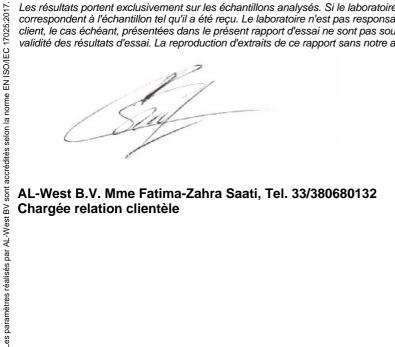
RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

144777 Solide / Eluat N° échant.

Spécification des échantillons S1(5-6m)

	Unité	Résultat	Limite	Méthode
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0		ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0		ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0		ISO 16703
Fraction C16-C20 *)	mg/kg Ms	<2,0		ISO 16703
Fraction C20-C24 *)	mg/kg Ms	<2,0		ISO 16703
Fraction C24-C28 *)	mg/kg Ms	<2,0		ISO 16703
Fraction C28-C32 *)	mg/kg Ms	<2,0		ISO 16703
Fraction C32-C36 *)	mg/kg Ms	<2,0		ISO 16703
Fraction C36-C40	mg/kg Ms	<2,0		ISO 16703


x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 06.06.2024 Fin des analyses: 13.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

externalisés sont marqués du symbole "*)

Seuls les

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144777 Solide / Eluat N° échant. Spécification des échantillons S1(5-6m)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

> > Méthode

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

Unité

N° échant. 144778 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S2(0,3-1m)

5	Masse echantillon total inferieure a 2 kg	kg	0,51	1	methode interne
5	Prétraitement de l'échantillon		0		Conforme à NEN-EN 16179
2	Broyeur à mâchoires		0		méthode interne
	Matière sèche	%	° 84,9		NEN-EN 15934
5	Liviviation				

Résultat

Limite

Lixiviation

paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont

Fraction >4mm (EN12457-2) % 10,8	Selon norme lixiviation
Masse brute Mh pour lixiviation *) g * 110	Selon norme lixiviation
Lixiviation (EN 12457-2)	NF EN 12457-2
Volume de lixiviant L ajouté pour *) ml 900	Selon norme lixiviation

Analyses Physico-chimiques

pH-H2O		° 9,1	Conforme a NF ISO 10390 (sol et sédiment)
COT Carbone Organique Total	mg/kg Ms	1700	conforme ISO 10694 (2008)

Prétraitement pour analyses des métaux

Minéralisation à l'eau régale	0		NF-EN 16174; NF EN 13657 (déchets)

Métaux			
Arsenic (As)	mg/kg Ms	9,7	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	4,0	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	8,6	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	4,3	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	3,4	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

RvA L 005

page 1 de 6

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144778 Solide / Eluat

	Unité	Résultat Limite	Méthode
Zinc (Zn)	mg/kg Ms	7,1	Minéralisation conforme à NEN EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Hydrocarbures Aromatique	es Polycycliques ((ISO)	
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	0,069	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	0,0690 x)	équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	0,0690 x)	équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	0,0690 x)	équivalent à NF EN 16181
Composés aromatiques			
Benzène	mg/kg Ms	<0,050	ISO 22155
Toluène	mg/kg Ms	<0,050	ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
BTEX total	*) mg/kg Ms	n.d.	ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	<0.02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2-	mg/kg Ms	n.d.	ISO 22155

page 2 de 6 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144778 Solide / Eluat

Spécification des échantillons S2(0,3-1m)

> Unité Résultat Limite Méthode

Hydrocarbures totaux (ISO)

1,411,000,000,000,000,000,000,000,000,00			
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	0,0030 ×)	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0030 x)	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	0,001	NEN-EN 16167

Calcul des Fractions solubles

Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-2
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-
Fraction C8-C10	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
	*) mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	ISO 16703
	*) mg/kg Ms	<2,0	ISO 16703
	*) mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	ISO 16703
Polychlorobiphényles			
Somme 6 PCB	mg/kg Ms	0,0030 x)	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0030 x)	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	0,001	NEN-EN 16167
Calcul des Fractions solubles			
Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	24	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	0 - 200	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	6,0	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,2	Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	0 - 50	Selon norme lixiviation
Sulfates Cufficie (var. L/S)			

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144778 Solide / Eluat

Spécification des échantillons S2(0,3-1m)

Unité Résultat Limite Méthode

Analyses sur éluat après lixiviation

L/S cumulé	ml/g	10,0	Selon norme lixiviation
Conductivité électrique	μS/cm	68,8	Selon norme lixiviation
pH		9,2	Selon norme lixiviation
Température	°C	19.3	Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,6	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	2,4	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	<5,0	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
СОТ	mg/l	<20	conforme EN 16192 (2011)

Métaux sur éluat			
Antimoine (Sb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l °	<0,03	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.06.2024 Fin des analyses: 14.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 6

TESTING
RVA L 005

-13-23651139-FR-P34

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

sont accrédités

BV

par AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144778 Solide / Eluat Spécification des échantillons S2(0,3-1m)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144778 Solide / Eluat N° échant. Spécification des échantillons S2(0,3-1m)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144779 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S2(1-2m)

	Unité	Résultat	Limite	Méthode
Prótraitament des échantillens				

Prétraitement des échantillons

5	Masse échantillon total inférieure à 2 kg	kg	•	0,53	méthode interne
Š	Prétraitement de l'échantillon		۰		Conforme à NEN-EN 16179
	Matière sèche	%	۰	83,4	NEN-EN 15934
	Lixiviation				

2	Fraction >4mm (EN12457-2)	%	° 2,0	Selon norme lixiviation
5	Masse brute Mh pour lixiviation *)	g	° 110	Selon norme lixiviation
2	Lixiviation (EN 12457-2)		•	NF EN 12457-2
	Volume de lixiviant L ajouté pour *)	ml	900	Selon norme lixiviation
₹	l'extraction	1		

Analyses Physico-chimiques

5	pH-H2O		° 8,9	Conforme a NF ISO 10390 (sol et sédiment)
	COT Carbone Organique Total	mg/kg Ms	1400	conforme ISO 10694 (2008)

Prétraitement pour analyses des métaux

Minéralisation à l'eau régale	•		NF-	EN 16174; NF EN 13657
i i i i i i i i i i i i i i i i i i i				(déchets)

Métaux

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont

Arsenic (As)	mg/kg Ms	16	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	3,5	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	5,4	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	4,6	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	1,5	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

page 1 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144779 Solide / Eluat

Spécification des échantillons S2(1-2m)

Zinc (Zn)	mg/kg Ms	6,1	Minéralisation conforme à NE
ZINC (ZN)	mg/kg ivis	0,1	EN-ISO 54321, mesure conform NEN-EN-ISO 11885
Hydrocarbures Aromatiqu	ues Polycycliques (I	SO)	
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618
Composés aromatiques	7 0 0 1		•
Benzène	mg/kg Ms	<0,050	ISO 22155
Toluène	mg/kg Ms	<0,050	ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
BTEX total	*) mg/kg Ms	n.d.	ISO 22155
COHV	, ,	,	
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144779 Solide / Eluat

Spécification des échantillons S2(1-2m)

> Unité Résultat Limite Méthode

Hydrocarbures totaux (ISO)

, and a contract of the contract (12 c)			
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

5	Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
2	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
	PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
2	PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
2	PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
2	PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
5	PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
5	PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
5	PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167

Calcul des Fractions solubles

Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
⊕ Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8 Fraction C8-C10	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40) mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	ISO 16703
Hydrocarbures totaux C10-C40 Fraction C10-C12 Fraction C12-C16 Fraction C20-C24 Fraction C20-C24 Fraction C24-C28 Fraction C32-C36 Fraction C36-C40 Polychlorobiphényles Somme 6 PCB Somme 7 PCB (Ballschmiter) PCB (28) PCB (101) PCB (118) PCB (118) PCB (153) PCB (180) Calcul des Fractions solul Fraction soluble cumulé (var. L/S) Antimoine cumulé (var. L/S)			
Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter) mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
କ୍ର PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
ő. РСВ (138)	mg/kg Ms	<0,001	NEN-EN 16167
ଚ୍ଚ <i>PCB (153)</i>	mg/kg Ms	<0,001	NEN-EN 16167
🧏 PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167
Calcul des Fractions solul			
Fraction soluble cumulé (var. L/S)		0 - 1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Arsenic cumule (var. L/S) Baryum cumulé (var. L/S) Cadmium cumulé (var. L/S) Chlorures cumulé (var. L/S) Chrome cumulé (var. L/S) COT cumulé (var. L/S) Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	0 - 10	Selon norme lixiviation
g Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	0 - 200	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	4,0	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,2	Selon norme lixiviation
Indice phénol cumulé (var. L/S) Mercure cumulé (var. L/S) Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	54	Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
Nickel cumulé (var. L/S) Plomb cumulé (var. L/S) Sélénium cumulé (var. L/S) Sulfates cumulé (var. L/S) Zinc cumulé (var. L/S)			page 3 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144779 Solide / Eluat

Spécification des échantillons S2(1-2m)

Unité Résultat Limite Méthode

Analyses sur éluat après lixiviation

L/S cumulé	ml/g	10,0	Selon norme lixiviation
Conductivité électrique	μS/cm	67,4	Selon norme lixiviation
рН		9,2	Selon norme lixiviation
Température	°C	18,5	Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,4	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	<1,0	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	5,4	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
COT	mg/l	<20	conforme EN 16192 (2011)

Métaux sur éluat			
Antimoine (Sb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l °	<0,03	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.06.2024 Fin des analyses: 14.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 6

IESTING
RVA L 005

13-2303 1 33-1 V-1 40

par AL-West BV sont accrédités

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144779 Solide / Eluat Spécification des échantillons S2(1-2m)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144779 Solide / Eluat Spécification des échantillons S2(1-2m)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144780 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S2(2-2,8m)

> Unité Résultat Limite Méthode

Prétraitement des échantillons

Masse échantillon total inférieure à 2 kg	kg	0,80	méthode interne
Prétraitement de l'échantillon		0	Conforme à NEN-EN 16179
Matière sèche	%	° 77,7	NEN-EN 15934

Lixiviation

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont

Fraction >4mm (EN12457-2)	%	° <0,1	Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	° 120	Selon norme lixiviation
Lixiviation (EN 12457-2)		۰	NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	*) ml	900	Selon norme lixiviation

Analyses Physico-chimiques

Ś	pH-H2O		9,3	sédiment)
-	COT Carbone Organique Total	mg/kg Ms	2300	conforme ISO 10694 (2008)

Prétraitement pour analyses des métaux

-	Minéralisation à l'eau régale	۰		NF-EN 16174; NF EN 13657
)	······o··aiioaiio··· a · oaa · ogaio			(déchets)

Métaux

Arsenic (As)	mg/kg Ms	4,6	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	1,8	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	1,4	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	1,4	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	1,0	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

page 1 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144780 Solide / Eluat

Spécification des échantillons S2(2-2,8m)

	Unité	Résultat Limite	Méthode
Zinc (Zn)	mg/kg Ms	2,6	Minéralisation conforme à NEN EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Hydrocarbures Aromatique	s Polycycliques (I	SO)	
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Composés aromatiques			
Benzène	mg/kg Ms	<0,050	ISO 22155
Toluène	mg/kg Ms	<0,050	ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
BTEX total	*) mg/kg Ms	n.d.	ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2-	mg/kg Ms	n.d.	ISO 22155

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144780 Solide / Eluat

Spécification des échantillons S2(2-2,8m)

> Unité Résultat Limite Méthode

Hydrocarbures totaux (ISO)

Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	0,0030 ×)	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0030 x)	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	0,001	NEN-EN 16167

Calcul des Fractions solubles

Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
୍ଞ Fraction >C6-C8	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
ຶ Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	ISO 16703
Polychlorobiphényles			
Somme 6 PCB	mg/kg Ms	0,0030 x)	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0030 x)	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
FCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
© PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
9 PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
[®] PCB (138)	mg/kg Ms	0,001	NEN-EN 16167
E PCB (153)	mg/kg Ms	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	0,001	NEN-EN 16167
Hydrocarbures totaux C10-C40 Fraction C10-C12 Fraction C12-C16 Fraction C20-C24 Fraction C24-C28 Fraction C32-C36 Fraction C36-C40 Polychlorobiphényles Somme 6 PCB Somme 7 PCB (Ballschmiter) PCB (28) PCB (101) PCB (118) PCB (118) PCB (153) PCB (180) Calcul des Fractions soluble Fraction soluble cumulé (var. L/S) Antimoine cumulé (var. L/S)	es .		
Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	42	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
Arsenic cumule (var. L/S) Baryum cumulé (var. L/S) Cadmium cumulé (var. L/S) Chlorures cumulé (var. L/S) Chrome cumulé (var. L/S) COT cumulé (var. L/S) Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 200	Selon norme lixiviation
© Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	4,0	Selon norme lixiviation
	mg/kg Ms	0 - 0,2	Selon norme lixiviation
Indice phénol cumulé (var. L/S) Mercure cumulé (var. L/S) Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
ছি Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	54	Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
Nickel cumulé (var. L/S) Plomb cumulé (var. L/S) Sélénium cumulé (var. L/S) Sulfates cumulé (var. L/S) Zinc cumulé (var. L/S)			page 3 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144780 Solide / Eluat

Spécification des échantillons S2(2-2,8m)

Unité Résultat Limite Méthode

Analyses sur éluat après lixiviation

L/S cumulé	ml/g	10,0	Selon norme lixiviation
Conductivité électrique	μS/cm	70,2	Selon norme lixiviation
pH		9,3	Selon norme lixiviation
Température	°C	19.2	Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,4	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	4,2	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	5,4	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
СОТ	mg/l	<20	conforme EN 16192 (2011)

Métaux sur éluat			
Antimoine (Sb)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l °	<0,03	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.06.2024 Fin des analyses: 14.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 6

IESTING
RVA L 005

-13-23631139-1746

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

sont accrédités

par AL-West BV

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Chargée relation clientèle

Cde 1421434 RM240076/CF1002764 N° échant. 144780 Solide / Eluat Spécification des échantillons S2(2-2,8m)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144780 Solide / Eluat N° échant. Spécification des échantillons S2(2-2,8m)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144781 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S3(0,05-1)

	Unité	Résultat	Limite	Méthode
Prátroitament des áchantillans				

Prétraitement des échantillons

Masse échantillon total inférieure à 2 kg	kg	۰	0,64	méthode interne
Prétraitement de l'échantillon		۰		Conforme à NEN-EN 16179
Matière sèche	%	۰	85,6	NEN-EN 15934
Lixiviation				

2	Fraction >4mm (EN12457-2)	%	3,0	Selon norme lixiviation
5	Masse brute Mh pour lixiviation *)	g	° 110	Selon norme lixiviation
2	Lixiviation (EN 12457-2)		۰	NF EN 12457-2
	Volume de lixiviant L ajouté pour *)	ml	900	Selon norme lixiviation
₹	ll'extraction			

Analyses Physico-chimiques

5	pH-H2O		° 9,1	Conforme a NF ISO 10390 (sol et sédiment)
	COT Carbone Organique Total	mg/kg Ms	2200	conforme ISO 10694 (2008)

Prétraitement pour analyses des métaux

Minéralisation à l'eau régale	۰		NF-EN 16174; NF EN 1365
			(déchets)

Métaux

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés

notaux			
Arsenic (As)	mg/kg Ms	6,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	5,3	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	1,9	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	3,5	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	2,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144781 Solide / Eluat

Spécification des échantillons \$3(0,05-1)

Spécification des échantillons	S3(0,05	5-1)		
	Unité	Résultat	Limite	Méthode
Zinc (Zn)	mg/kg Ms	4,1		Minéralisation conforme à NEN EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Hydrocarbures Aromatiques	Polycycliques (I	SO)		
Naphtalène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Composés aromatiques				
Benzène	mg/kg Ms	<0,050		ISO 22155
Toluène	mg/kg Ms	<0,050		ISO 22155
Ethylbenzène	mg/kg Ms	<0,050		ISO 22155
m,p-Xylène	mg/kg Ms	<0,10		ISO 22155
o-Xylène	mg/kg Ms	<0,050		ISO 22155
Naphtalène	mg/kg Ms	<0,10		ISO 22155
Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
BTEX total	*) mg/kg Ms	n.d.		ISO 22155
СОНУ				
Chlorure de Vinyle	mg/kg Ms	<0,02		ISO 22155
Dichlorométhane	mg/kg Ms	<0,05		ISO 22155
Trichlorométhane	mg/kg Ms	<0,05		ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05		ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025		ISO 22155
Somme cis/trans-1,2-	mg/kg Ms			ISO 22155

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144781 Solide / Eluat

Spécification des échantillons S3(0,05-1)

> Unité Résultat Limite Méthode

Hydrocarbures totaux (ISO)

Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	2,5	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167

Calcul des Fractions solubles

Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
⊕ Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36	*) mg/kg Ms	2,5	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	ISO 16703
Polychlorobiphényles			
Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
FCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
© PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
g PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
[®] . РСВ (138)	mg/kg Ms	<0,001	NEN-EN 16167
E PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167
Hydrocarbures totaux C10-C40 Fraction C10-C12 Fraction C12-C16 Fraction C20-C24 Fraction C20-C24 Fraction C24-C28 Fraction C32-C36 Fraction C32-C36 Fraction C36-C40 Polychlorobiphényles Somme 6 PCB Somme 7 PCB (Ballschmiter) PCB (28) PCB (52) PCB (101) PCB (118) PCB (118) PCB (180) Calcul des Fractions soluble Fraction soluble cumulé (var. L/S) Antimoine cumulé (var. L/S)	es		
Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	15	Selon norme lixiviation
© Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
Arsenic cumule (var. L/S) Baryum cumulé (var. L/S) Cadmium cumulé (var. L/S) Chlorures cumulé (var. L/S) Chrome cumulé (var. L/S) COT cumulé (var. L/S) Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 200	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	3,0	Selon norme lixiviation
	mg/kg Ms	0 - 0,2	Selon norme lixiviation
Indice phénol cumulé (var. L/S) Mercure cumulé (var. L/S) Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
ছিঁ Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	0 - 50	Selon norme lixiviation
₹ Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
Nickel cumulé (var. L/S) Plomb cumulé (var. L/S) Sélénium cumulé (var. L/S) Sulfates cumulé (var. L/S) Zinc cumulé (var. L/S)			page 3 de 6

page 3 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144781 Solide / Eluat

Spécification des échantillons \$3(0,05-1)

Unité Résultat Limite Méthode

Analyses sur éluat après lixiviation

L/S cumulé	ml/g	10,0	Selon norme lixiviation
Conductivité électrique	μS/cm	59,1	Selon norme lixiviation
рН		9,1	Selon norme lixiviation
Température	l°C	19,5	Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,3	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	1,5	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	<5,0	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
COT	mg/l	<20	conforme EN 16192 (2011)

Métaux sur éluat			
Antimoine (Sb)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l °	<0,03	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.06.2024 Fin des analyses: 14.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 6

IESTING
RVA L 005

-13-Z3031139-TR-P2Z

par AL-West BV sont accrédités

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144781 Solide / Eluat Spécification des échantillons S3(0,05-1)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144781 Solide / Eluat N° échant. Spécification des échantillons S3(0,05-1)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

> > Méthode

RAPPORT D'ANALYSES

1421434 RM240076/CF1002764

N° échant. 144782 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S3(1-2m)

Prétraitement des échantillon	s				
Massa áchantillon total inférieure à 2 kg	ka	۰	0.01		máthada intarna

Masse échantillon total inférieure à 2 kg	kg	۰	0,81	méthode interne
Prétraitement de l'échantillon		۰		Conforme à NEN-EN 16179
Matière sèche	%	۰	78,5	NEN-EN 15934
Lixiviation				
E :: 4 (ENIAGAET O)	101			0 1 1:

Fraction >4mm (EN12457-2)	%	° 4,9	Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	° 120	Selon norme lixiviation
Lixiviation (EN 12457-2)		•	NF EN 12457-2
Volume de lixiviant L ajouté pour	*) ml	900	Selon norme lixiviation

ont		Unité		Résultat	Limite	Méthode			
isés	Prétraitement des échantillor	าร							
erna	Masse échantillon total inférieure à 2 kg	kg	۰	0,81		m			
extern	Prétraitement de l'échantillon		۰			Confor			
t/on	Matière sèche	%	۰	78,5		N			
dités e	Lixiviation								
ccré	Fraction >4mm (EN12457-2)	%	۰	4,9		Selo			
non	Masse brute Mh pour lixiviation	*) g	۰	120		Selo			
	Lixiviation (EN 12457-2)		۰			N			
ramètres	Volume de lixiviant L ajouté pour l'extraction	*) ml		900		Seld			
es par	Analyses Physico-chimiques	•							

ש						
cimpo	pH-H2O			° 9,0		Conforme a NF ISO 10390 (sol et sédiment)
-	COT Carbone O	rganique Total	mg/kg Ms	2100		conforme ISO 10694 (2008)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017.

Prétraitement pour analyses des métaux				
Minéralisation à l'eau régale	۰		NF-EN 16174; NF EN 13657 (déchets)	
Métaux				
Arsenic (As)	mg/kg Ms	4,6	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Chrome (Cr)	mg/kg Ms	2,2	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Cuivre (Cu)	mg/kg Ms	1,4	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)	
Nickel (Ni)	mg/kg Ms	1,6	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Plomb (Pb)	mg/kg Ms	1,4	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à	

page 1 de 6 **RvA** L 005

NEN-EN-ISO 11885

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144782 Solide / Eluat

Spécification des échantillons S3(1-2m)

	Unité	Résultat	Limite	Méthode
Zinc (Zn)	mg/kg Ms	3,2		Minéralisation conforme à NEN EN-ISO 54321, mesure conform NEN-EN-ISO 11885
Hydrocarbures Aromatique	es Polycycliques (I	SO)		
Naphtalène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Composés aromatiques				
Benzène	mg/kg Ms	<0,050		ISO 22155
Toluène	mg/kg Ms	<0,050		ISO 22155
Ethylbenzène	mg/kg Ms	<0,050		ISO 22155
m,p-Xylène	mg/kg Ms	<0,10		ISO 22155
o-Xylène	mg/kg Ms	<0,050		ISO 22155
Naphtalène	mg/kg Ms	<0,10		ISO 22155
Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
BTEX total	*) mg/kg Ms	n.d.		ISO 22155
COHV				
Chlorure de Vinyle	mg/kg Ms	<0,02		ISO 22155
Dichlorométhane	mg/kg Ms	<0,05		ISO 22155
Trichlorométhane	mg/kg Ms	<0,05		ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05		ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025		ISO 22155
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.		ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144782 Solide / Eluat

Spécification des échantillons S3(1-2m)

Unité Résultat Limite Méthode

Hydrocarbures totaux (ISO)

• • • • • • • • • • • • • • • • • • • •			
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20 *)	mg/kg Ms	3,1	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	2,7	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	2,8	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	2,8	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

Somme 6 PCB mg/kg Ms n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter) mg/kg Ms n.d.	NEN-EN 16167
PCB (28) mg/kg Ms <0,001	NEN-EN 16167
PCB (52) mg/kg Ms <0,001	NEN-EN 16167
PCB (101) mg/kg Ms <0,001	NEN-EN 16167
PCB (118) mg/kg Ms <0,001	NEN-EN 16167
PCB (138) mg/kg Ms <0,001	NEN-EN 16167
PCB (153) mg/kg Ms <0,001	NEN-EN 16167
PCB (180) mg/kg Ms <0,001	NEN-EN 16167

Calcul des Fractions solubles

ַ	Odicui des i lactions solubles			
5	Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	Selon norme lixiviation
2	Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
D D	Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
5	Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	Selon norme lixiviation
<u>v</u>	Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	Selon norme lixiviation
ie io	Chlorures cumulé (var. L/S)	mg/kg Ms	0 - 10	Selon norme lixiviation
See	Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
5	COT cumulé (var. L/S)	mg/kg Ms	0 - 200	Selon norme lixiviation
S	Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
202	Fluorures cumulé (var. L/S)	mg/kg Ms	2,0	Selon norme lixiviation
2	Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,2	Selon norme lixiviation
esi	Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	Selon norme lixiviation
إ	Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
מ	Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
ses	Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
פמ	Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
S	Sulfates cumulé (var. L/S)	mg/kg Ms	150	Selon norme lixiviation
<u>=</u>	Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation

TESTING RVA L 005

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144782 Solide / Eluat

Spécification des échantillons S3(1-2m)

Unité Résultat Limite Méthode

Analyses sur éluat après lixiviation

L/S cumulé	ml/g	10,0	Selon norme lixiviation
Conductivité électrique	μS/cm	82,3	Selon norme lixiviation
рН		8,2	Selon norme lixiviation
Température	°C	18.2	Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,2	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	<1,0	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	15	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
СОТ	mg/l	<20	conforme EN 16192 (2011)

Métaux sur éluat			
Antimoine (Sb)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l °	<0,03	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.06.2024 Fin des analyses: 14.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 6

TESTING
RVA L 005

C-13-23651139-FR-P58

par AL-West BV sont accrédités

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144782 Solide / Eluat Spécification des échantillons S3(1-2m)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144782 Solide / Eluat Spécification des échantillons S3(1-2m)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144783 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S3(2-3m)

Prétraitement des échantillo	Prétraitement des échantillons				
Masse échantillon total inférieure à 2 kg	kg	۰	0,73		méthode interne
Prétraitement de l'échantillon		۰			Conforme à NEN-EN 16179
Matière sèche	%	۰	76.4		NEN-EN 15934

5	Matiere seche	%	76,4	NEN-EN 15934
2010	Lixiviation			
2	Fraction >4mm (EN12457-2)	%	° 0,3	Selon norme lixiviation
5	Masse brute Mh pour lixiviation	*) g	° 120	Selon norme lixiviation
,	Lixiviation (EN 12457-2)		۰	NF FN 12457-2

Analyses Physico-chimiques

pH-H2O		° 8,9	Conforme a NF ISO 10390 (sol et sédiment)
COT Carbone Organique Total	mg/kg Ms	1200	conforme ISO 10694 (2008)

Prétraitement pour analyses des métaux

Minéralisation à l'eau régale	•		NF-	EN 16174; NF EN 13657
i i i i i i i i i i i i i i i i i i i				(déchets)

Métaux

	Unité	Résultat	Limite	Méthode
Prétraitement des échantillo				
Masse échantillon total inférieure à 2 kg	kg °	0,73		méthode interne
Prétraitement de l'échantillon	•			Conforme à NEN-EN 1617
Matière sèche	% °	76,4		NEN-EN 15934
Lixiviation				
Fraction >4mm (EN12457-2)	% °	0,3		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g °	120		Selon norme lixiviation
Lixiviation (EN 12457-2)	۰			NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	*) ml	900		Selon norme lixiviation
Analyses Physico-chimiques	5		·	
pH-H2O	۰	8,9		Conforme a NF ISO 10390 (sol sédiment)
COT Carbone Organique Total	mg/kg Ms	1200		conforme ISO 10694 (2008
Prétraitement pour analyses	des métaux			
Minéralisation à l'eau régale	•			NF-EN 16174; NF EN 13657 (déchets)
Métaux				
Arsenic (As)	mg/kg Ms	12		Minéralisation conforme à NEN EN-ISO 54321, mesure conform NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1		Minéralisation conforme à NEN EN-ISO 54321, mesure conform NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	6,3		Minéralisation conforme à NEN EN-ISO 54321, mesure conform NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	12		Minéralisation conforme à NEN EN-ISO 54321, mesure conform NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05		conforme à NEN 6950 (digestio conf. à NEN 6961/NEN-EN-ISC 54321, mesure conforme à NEI ISO 16772)
Nickel (Ni)	mg/kg Ms	6,0		Minéralisation conforme à NEN EN-ISO 54321, mesure conform NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	2,9		Minéralisation conforme à NEN EN-ISO 54321, mesure conform NEN-EN-ISO 11885

page 1 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

Méthode

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

Unité

N° échant. 144783 Solide / Eluat

Spécification des échantillons S3(2-3m)

Zinc (Zn)	mg/kg Ms	11	Minéralisation conforme à NE EN-ISO 54321, mesure conforr NEN-EN-ISO 11885
Hydrocarbures Aromatique	es Polycycliques (IS	SO)	
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618
Composés aromatiques			
Benzène	mg/kg Ms	<0,050	ISO 22155
Toluène	mg/kg Ms	<0,050	ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
BTEX total	*) mg/kg Ms	n.d.	ISO 22155
СОНУ			
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2-	mg/kg Ms	n.d.	ISO 22155

Résultat

Limite

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144783 Solide / Eluat

Spécification des échantillons S3(2-3m)

Unité Résultat Limite Méthode

Hydrocarbures	totaux	(ISO)
----------------------	--------	-------

11, 41 0 0 41 10 10 10 10 10 10 10 1			
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

5	Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
S	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
lei	PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
ala	PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
Sec	PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
SIIS	PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
Ď.	PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
5	PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
722	PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167
>		•		 ·

Calcul des Fractions solubles

ַ	Odiodi des i idolions solubles			
5	Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	Selon norme lixiviation
2	Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
D D	Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
5	Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	Selon norme lixiviation
<u>v</u>	Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	Selon norme lixiviation
ie io	Chlorures cumulé (var. L/S)	mg/kg Ms	13	Selon norme lixiviation
See	Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
= = =	COT cumulé (var. L/S)	mg/kg Ms	0 - 200	Selon norme lixiviation
S	Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
202	Fluorures cumulé (var. L/S)	mg/kg Ms	3,0	Selon norme lixiviation
2	Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,2	Selon norme lixiviation
esi	Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	Selon norme lixiviation
جَ لِـٰ	Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
פֿב	Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
S	Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
ag ea	Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
S	Sulfates cumulé (var. L/S)	mg/kg Ms	0 - 50	Selon norme lixiviation
e	Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation

page 3 de 6

IESTING
RVA L 005

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144783 Solide / Eluat

Spécification des échantillons S3(2-3m)

> Unité Résultat Limite Méthode

Analyses sur éluat après lixiviation

L/S cumulé	ml/g	10,0	Selon norme lixiviation
Conductivité électrique	μS/cm	64,3	Selon norme lixiviation
рН		9,0	Selon norme lixiviation
Température	°C	19,0	Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,3	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	1,3	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	<5,0	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
СОТ	mg/l	<20	conforme EN 16192 (2011)

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

Métaux sur éluat			
Antimoine (Sb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/I	<10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/I	<0,1	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/I	<2,0	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/I °	<0,03	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.06.2024 Fin des analyses: 14.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 6

par AL-West BV sont accrédités

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144783 Solide / Eluat Spécification des échantillons S3(2-3m)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144783 Solide / Eluat N° échant. Spécification des échantillons S3(2-3m)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144784 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S3(3-4m)

Unite	Resultat	Limite	ivietnoae

Prétraitement des échantillons

Masse échantillon total inférieure à 2 kg	kg	° 0,0	3	méthode interne
Prétraitement de l'échantillon		۰		Conforme à NEN-EN 16179
Matière sèche	%	° 59	.7	NEN-EN 15934
Lixiviation				

2	Fraction >4mm (EN12457-2)	%	° <0,1	Selon norme lixiviation
5	Masse brute Mh pour lixiviation *)	g	° 160	Selon norme lixiviation
2	Lixiviation (EN 12457-2)		۰	NF EN 12457-2
	Volume de lixiviant L ajouté pour *)	ml	900	Selon norme lixiviation
₹	l'extraction			

Analyses Physico-chimiques

5	pH-H2O		° 8,8	Conforme a NF ISO 10390 (sol et sédiment)
	COT Carbone Organique Total	mg/kg Ms	2200	conforme ISO 10694 (2008)

Prétraitement pour analyses des métaux

Minéralisation à l'eau régale	•		NF-	EN 16174; NF EN 13657
i i i i i i i i i i i i i i i i i i i				(déchets)

Métaux

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont

N N

Les paramètres réalisés par AL-West BV sont accrédités selon la norme

Arsenic (As)	mg/kg Ms	18	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	20	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	51	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	21	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	26	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à

page 1 de 6

NEN-EN-ISO 11885

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144784 Solide / Eluat

Spécification des échantillons S3(3-4m)

	Unité	Résultat Limite	Méthode
Zinc (Zn)	mg/kg Ms	57	Minéralisation conforme à NE EN-ISO 54321, mesure conforr NEN-EN-ISO 11885
Hydrocarbures Aromatique	es Polycycliques (I	SO)	
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618
Composés aromatiques			
Benzène	mg/kg Ms	<0,050	ISO 22155
Toluène	mg/kg Ms	<0,050	ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
BTEX total	*) mg/kg Ms	n.d.	ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
<u>Fétrachlorométhane</u>	mg/kg Ms	<0,05	ISO 22155
Frichloroéthylène	mg/kg Ms	<0,05	ISO 22155
<u>Fétrachloroéthylène</u>	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2-	mg/kg Ms	n.d.	ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144784 Solide / Eluat

Spécification des échantillons S3(3-4m)

Unité Résultat Limite Méthode

Hydrocarbures totaux (ISO)

• • • • • • • • • • • • • • • • • • • •			
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

Somme 6 PCB mg/kg Ms n.d.	
Somme 7 PCB (Ballschmiter) mg/kg Ms n.d.	NEN-EN 16167
PCB (28) mg/kg Ms <0,001	NEN-EN 16167
PCB (52) mg/kg Ms <0,001	NEN-EN 16167
PCB (101) mg/kg Ms <0,001	NEN-EN 16167
PCB (118) mg/kg Ms <0,001	NEN-EN 16167
PCB (138) mg/kg Ms <0,001	NEN-EN 16167
PCB (153) mg/kg Ms <0,001	NEN-EN 16167
PCB (180) mg/kg Ms <0,001	NEN-EN 16167

Calcul des Fractions solubles

5	Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	Selon norme lixiviation
2	Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
E E	Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
5	Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	Selon norme lixiviation
<u>0</u>	Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	Selon norme lixiviation
eloi	Chlorures cumulé (var. L/S)	mg/kg Ms	18	Selon norme lixiviation
Sel	Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
e	COT cumulé (var. L/S)	mg/kg Ms	0 - 200	Selon norme lixiviation
S	Cuivre cumulé (var. L/S)	mg/kg Ms	0,03	Selon norme lixiviation
202	Fluorures cumulé (var. L/S)	mg/kg Ms	5,0	Selon norme lixiviation
2	Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,2	Selon norme lixiviation
est	Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	Selon norme lixiviation
جَ لِـٰ	Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
al 7	Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
ses	Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
E E	Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
es es	Sulfates cumulé (var. L/S)	mg/kg Ms	0 - 50	Selon norme lixiviation
e	Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation

TESTING RVA L 005

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144784 Solide / Eluat

Spécification des échantillons S3(3-4m)

Unité Résultat Limite Méthode

Analyses sur éluat après lixiviation

L/S cumulé	ml/g	10,0	Selon norme lixiviation
Conductivité électrique	μS/cm	86,4	Selon norme lixiviation
pH		8,6	Selon norme lixiviation
Température	°C	20.7	Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,5	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	1,8	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	<5,0	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
COT	mg/l	<20	conforme EN 16192 (2011)

Métaux sur éluat			
Antimoine (Sb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	µg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/I	<10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/I	<0,1	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	2,8	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l °	<0,03	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.06.2024 Fin des analyses: 14.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 6

IESTING
RVA L 005

-13-Z3651139-FR-F/U

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

sont accrédités

par AL-West BV

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144784 Solide / Eluat Spécification des échantillons S3(3-4m)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144784 Solide / Eluat N° échant. Spécification des échantillons S3(3-4m)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

FRANCE

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144785 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S3(4,3-5m)

> Unité Résultat Limite Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon		٥	Conforme à NEN-EN 16179
Matière sèche	%	° 75,1	NEN-EN 15934

Hydrocarbures Aromatiques Polycycliques (ISO)

S	7		/	
dité	Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
accrédité	Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
	Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181
es n	Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
nètre	Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
paramètres non	Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
d se	Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Seuls les	Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
	Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
017	Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
17025:2017	Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
170	Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
EC	Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
EN ISO/IEC	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
N N	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
selon la norme	HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
on la	Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 16181
	HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
ŝ			•	

Composés aromatiques

p composes anomanques			
Benzène	mg/kg Ms	<0,05	ISO 22155
Toluène	mg/kg Ms	<0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155

Hydrocarbures totaux (ISO)

11,			
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0.20	conforme à NEN-EN-ISO 16558-1

Kamer van Koophandel Nr. 08110898 ppa. Marc VAT/BTW-ID-Nr.: NL 811132559 B01 Directeur ppa. Marc Dr. Paul V

ppa. Marc van Gelder Dr. Paul Wimmer

paramètres

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

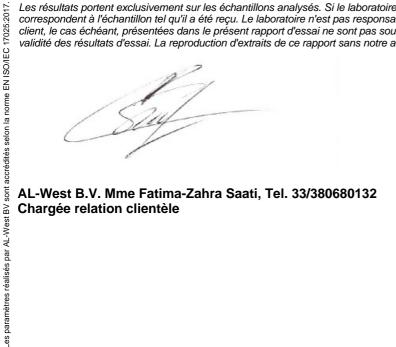
144785 Solide / Eluat N° échant.

Spécification des échantillons S3(4,3-5m)

	Unité	Résultat	Limite	Méthode
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0		ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0		ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0		ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0		ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0		ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0		ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0		ISO 16703

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.


Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 06.06.2024 Fin des analyses: 12.06.2024

externalisés sont marqués du symbole "*)

Seuls les

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144785 Solide / Eluat N° échant. Spécification des échantillons S3(4,3-5m)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144786 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S3(5-6m)

> Unité Résultat Limite Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon		o	Conforme à NEN-EN 16179
Matière sèche	%	° 72,3	NEN-EN 15934

Hydrocarbures Aromatiques Polycycliques (ISO)

ω,		/	
Naphtalène Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
	mg/kg Ms	<0,050	équivalent à NF EN 16181
ຼື Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphténe Fluorène Phénanthrène Anthracène Fluoranthène Pyrène Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
କୁ Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène Benzo(b)fluoranthène Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène Dibenzo(a,h)anthracène Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
∃ Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
	mg/kg Ms	<0,050	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène HAP (6 Borneff) - somme Somme HAP (VROM) HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
σ <u> </u>	-	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Composés aromatiques

p composes anomanques			
Benzène	mg/kg Ms	<0,05	ISO 22155
Toluène	mg/kg Ms	<0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155

Hydrocarbures totaux (ISO)

11,			
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0.20	conforme à NEN-EN-ISO 16558-1

paramètres

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

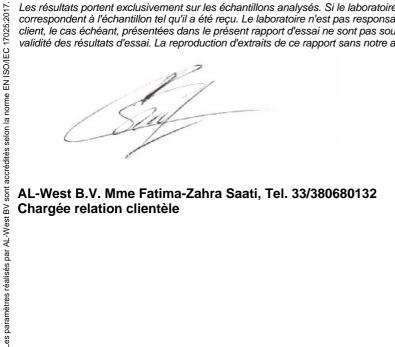
RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

144786 Solide / Eluat N° échant.

Spécification des échantillons S3(5-6m)

	Unité	Résultat	Limite	Méthode
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0		ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0		ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0		ISO 16703
Fraction C16-C20 *)	mg/kg Ms	<2,0		ISO 16703
Fraction C20-C24 *)	mg/kg Ms	<2,0		ISO 16703
Fraction C24-C28 *)	mg/kg Ms	<2,0		ISO 16703
Fraction C28-C32 *)	mg/kg Ms	<2,0		ISO 16703
Fraction C32-C36 *)	mg/kg Ms	<2,0		ISO 16703
Fraction C36-C40	mg/kg Ms	<2,0		ISO 16703


x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 06.06.2024 Fin des analyses: 13.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

externalisés sont marqués du symbole "*)

Seuls les

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144786 Solide / Eluat N° échant. Spécification des échantillons S3(5-6m)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144787 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S4(0,1-1m)

Unité	Résultat	Limite	Méthode

Prétraitement des échantillons

	Lixiviation				
2	Matière sèche	%	°	30,9	NEN-EN 15934
5	Prétraitement de l'échantillon		۰		Conforme à NEN-EN 16179
5	Masse échantillon total inférieure à 2 kg	kg	, and the second	0,60	méthode interne

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont

Ä

Les paramètres réalisés par AL-West BV sont accrédités selon la norme

Fraction >4mm (EN12457-2)	%	° 1,9	Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	° 110	Selon norme lixiviation
Lixiviation (EN 12457-2)		۰	NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	*) ml	900	Selon norme lixiviation

Analyses Physico-chimiques

Ś	pH-H2O		9,3	sédiment)
-	COT Carbone Organique Total	mg/kg Ms	2700	conforme ISO 10694 (2008)

Prétraitement pour analyses des métaux

Minéralisation à l'eau régale	•		NF-	EN 16174; NF EN 13657
i i i i i i i i i i i i i i i i i i i				(déchets)

Métaux

Arsenic (As)	mg/kg Ms	3,2	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	2,8	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	2,0	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	3,8	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	1,8	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à

NEN-EN-ISO 11885

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144787 Solide / Eluat

Spécification des échantillons \$4(0,1-1m)

Spécification des échantillons	S4(0,1-	1m)		
	Unité	Résultat	Limite	Méthode
Zinc (Zn)	mg/kg Ms	3,7		Minéralisation conforme à NEN EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Hydrocarbures Aromatiques	Polycycliques (I	SO)		
Naphtalène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	0,12		équivalent à NF EN 16181
Pyrène	mg/kg Ms	0,11		équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	0,089		équivalent à NF EN 16181
Chrysène	mg/kg Ms	0,088		équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	0,12		équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	0,11		équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	0,12		équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,10		équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	0,570 x)		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	0,627 x)		équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	0,857 ×)		équivalent à NF EN 16181
Composés aromatiques				
Benzène	mg/kg Ms	<0,050		ISO 22155
Toluène	mg/kg Ms	<0,050		ISO 22155
Ethylbenzène	mg/kg Ms	<0,050		ISO 22155
m,p-Xylène	mg/kg Ms	<0,10		ISO 22155
o-Xylène	mg/kg Ms	<0,050		ISO 22155
Naphtalène	mg/kg Ms	<0,10		ISO 22155
Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
BTEX total	*) mg/kg Ms	n.d.		ISO 22155
COHV				
Chlorure de Vinyle	mg/kg Ms	<0,02		ISO 22155
Dichlorométhane	mg/kg Ms	<0,05		ISO 22155
Trichlorométhane	mg/kg Ms	<0,05		ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05		ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025		ISO 22155
Somme cis/trans-1,2-	mg/kg Ms	\0,02 0		ISO 22155

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144787 Solide / Eluat

Spécification des échantillons S4(0,1-1m)

> Unité Résultat Limite Méthode

Hydrocarbures totaux (ISO)

Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	50,3	ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20 *)	mg/kg Ms	4,0	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	5,2	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	9,0	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	11	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	10,4	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	5,2	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167

Calcul des Fractions solubles

	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
e	Fraction >C6-C8	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
symbole	Fraction C8-C10	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
s np	Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
ıés (Hydrocarbures totaux C10-C40	mg/kg Ms	50,3	ISO 16703
arqu	Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
E	Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
s so	Fraction C16-C20 *)	mg/kg Ms	4,0	ISO 16703
lisé	Fraction C20-C24 *)	mg/kg Ms	5,2	ISO 16703
ema	Fraction C24-C28 *)	mg/kg Ms	9,0	ISO 16703
ext	Fraction C28-C32 *)	mg/kg Ms	11	ISO 16703
at/or	Fraction C32-C36 *)	mg/kg Ms	10,4	ISO 16703
tés e	Fraction C36-C40 *)	mg/kg Ms	5,2	ISO 16703
EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués	Polychlorobiphényles			
on	Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
es n	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
nètr	PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
araı	PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
es b	PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
sınıs	PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
s.	PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
2017	PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
325::	PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167
EC 17	Calcul des Fractions solubles			
Į,	Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	Selon norme lixiviation
<u>2</u>	Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
ne E	Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
	Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	Selon norme lixiviation
n a	Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	Selon norme lixiviation
selo	Chlorures cumulé (var. L/S)	mg/kg Ms	0 - 10	Selon norme lixiviation
tés	Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
réd	COT cumulé (var. L/S)	mg/kg Ms	0 - 200	Selon norme lixiviation
t acc	Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
	Fluorures cumulé (var. L/S)	mg/kg Ms	7,0	Selon norme lixiviation
.B	Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,2	Selon norme lixiviation
	Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	Selon norme lixiviation
<u>۲</u>	Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
par,	Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
sés	Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
éali	Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
resı	Sulfates cumulé (var. L/S)	mg/kg Ms	84	Selon norme lixiviation
ımèt	Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
Les paramètres réalisés par				page 3 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144787 Solide / Eluat

Spécification des échantillons S4(0,1-1m)

> Unité Résultat Limite Méthode

Analyses sur éluat après lixiviation

L/S cumulé	ml/g	10,0	Selon norme lixiviation
Conductivité électrique	μS/cm	75,7	Selon norme lixiviation
pH		9,2	Selon norme lixiviation
Température	°C	19,4	Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,7	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	<1,0	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	8,4	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
COT	mg/l	<20	conforme EN 16192 (2011)

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

Métaux sur éluat			
Antimoine (Sb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/I	<10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/I	<0,1	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/I	<2,0	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/I °	<0,03	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.06.2024 Fin des analyses: 14.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 6

par AL-West BV sont accrédités

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144787 Solide / Eluat Spécification des échantillons S4(0,1-1m)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 **144787** Solide / Eluat N° échant. Spécification des échantillons S4(0,1-1m)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

> > máthada interna

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

ka

N° échant. 144788 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S4(1-1.8m)

	Unité	Résultat	Limite	Méthode
Prótraitament des échantillans				

Masse échantillon total inférieure à 2 kg

Masse contantillori total inferioare a 2 kg	NY	0,03		memode interne
Prétraitement de l'échantillon		۰		Conforme à NEN-EN 16179
Matière sèche	%	° 78,9		NEN-EN 15934
Lixiviation				

0.63

Fraction >4mm (EN12457-2)	%	0,3	Selon norme lixiviation
Masse brute Mh pour lixiviation) g	° 120	Selon norme lixiviation
Lixiviation (EN 12457-2)		۰	NF EN 12457-2
Volume de lixiviant L ajouté pour ' l'extraction) ml	900	Selon norme lixiviation

Analyses Physico-chimiques

Ś	pH-H2O		9,0	sédiment)
-	COT Carbone Organique Total	mg/kg Ms	2100	conforme ISO 10694 (2008)

Prétraitement pour analyses des métaux

Directeur

ppa. Marc van Gelder Dr. Paul Wimmer

Minéralisation à l'eau régale	•		NF-	EN 16174; NF EN 13657
i i i i i i i i i i i i i i i i i i i				(déchets)

Métaux

Seuls les paramètres non accrédités et/ou externalisés

ISO/IEC 17025:2017.

Arsenic (As)	mg/kg Ms	8,2	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	4,5	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	3,8	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	4,4	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	1,9	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144788 Solide / Eluat

S4(1-1.8m) Spécification des échantillons

	Unité	Résultat Limite	Méthode
Zinc (Zn)	mg/kg Ms	4,2	Minéralisation conforme à NEN EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Hydrocarbures Aromatique	es Polycycliques (I	SO)	
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618 ²
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Composés aromatiques			
Benzène	mg/kg Ms	<0,050	ISO 22155
Toluène	mg/kg Ms	<0,050	ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
BTEX total	*) mg/kg Ms	n.d.	ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2-	mg/kg Ms	n.d.	ISO 22155

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144788 Solide / Eluat

Spécification des échantillons S4(1-1.8m)

> Unité Résultat Limite Méthode

Hydrocarbures totaux (ISO)

• • • • • • • • • • • • • • • • • • • •			
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	2,7	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	4,2	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	4,2	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	3,0	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167

Calcul des Fractions solubles

	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
*	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
ole	Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
symbole	Fraction C8-C10	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
g np	Fraction C5-C10	mg/kg Ms	<1,0 x)	conforme à NEN-EN-ISO 16558-1
iés (Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
arqu	Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Ę	Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
s so	Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703
ilisé	Fraction C20-C24 *)	mg/kg Ms	<2,0	ISO 16703
erna	Fraction C24-C28 *)	mg/kg Ms	2,7	ISO 16703
ext	Fraction C28-C32 *)	mg/kg Ms	4,2	ISO 16703
st/or	Fraction C32-C36 *)	mg/kg Ms	4,2	ISO 16703
tés e	Fraction C36-C40 *)	mg/kg Ms	3,0	ISO 16703
EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués	Polychlorobiphényles			
on 0	Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
es n	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
nètr	PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
araı	PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
es b	PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
sınıs	PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
s.	PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
2017	PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
)25::	PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167
EC 17	Calcul des Fractions solubles			
ő	Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	Selon norme lixiviation
<u> </u>	Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
ne E	Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
accrédités selon la norme	Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	Selon norme lixiviation
<u>n</u>	Cadmium cumulé (var. L/S)	mg/kg Ms	0,002	Selon norme lixiviation
selo	Chlorures cumulé (var. L/S)	mg/kg Ms	22	Selon norme lixiviation
tés	Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
réd	COT cumulé (var. L/S)	mg/kg Ms	0 - 200	Selon norme lixiviation
t acc	Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
	Fluorures cumulé (var. L/S)	mg/kg Ms	5,0	Selon norme lixiviation
B	Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,2	Selon norme lixiviation
	Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	Selon norme lixiviation
├ -	Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
par,	Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
sés	Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
-éali:	Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
resı	Sulfates cumulé (var. L/S)	mg/kg Ms	93	Selon norme lixiviation
ımèt	Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
Les paramètres réalisés par				page 3 de 6

page 3 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144788 Solide / Eluat

Spécification des échantillons S4(1-1.8m)

Unité Résultat Limite Méthode

Analyses sur éluat après lixiviation

L/S cumulé	ml/g	10,0	Selon norme lixiviation
Conductivité électrique	μS/cm	82,4	Selon norme lixiviation
рН		9,0	Selon norme lixiviation
Température	°C	19,4	Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,5	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	2,2	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	9,3	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
СОТ	mg/l	<20	conforme EN 16192 (2011)

Métaux sur éluat			
Antimoine (Sb)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/I	<10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	0,2	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/I	<2,0	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l °	<0,03	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.06.2024 Fin des analyses: 14.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 6

TESTING
RVA L 005

-13-23651139-FK-P88

par AL-West BV sont accrédités

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144788 Solide / Eluat Spécification des échantillons S4(1-1.8m)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144788 Solide / Eluat N° échant. Spécification des échantillons S4(1-1.8m)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144789 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S5(0,1-1m)

> Unité Résultat Limite Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon		۰	Conforme à NEN-EN 16179
Matière sèche	%	° 89,7	NEN-EN 15934

Prétraitement pour analyses des métaux

Minéralisation à l'eau régale	•		NF-EN 16174; NF EN 13657 (déchets)

Mátaux

paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou

Metaux			
Arsenic (As)	mg/kg Ms	4,8	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	9,4	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	4,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	5,8	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	6,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Zinc (Zn)	mg/kg Ms	12	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

Hydrocarbures Aromatiques Polycycliques (ISO)

` ,		/	
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Pvrène	mg/kg Ms	<0.050	équivalent à NF EN 16181

page 1 de 4

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144789 Solide / Eluat

Spécification des échantillons S5(0,1-1m)

Spécification des échantillons	S5(0,1-	lm)	
•	Unité	Résultat Limite	Méthode
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618
Composés aromatiques			
Benzène	mg/kg Ms	<0,05	ISO 22155
Toluène	mg/kg Ms	<0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2-	mg/kg Ms	n.d.	ISO 22155
Dichloroéthylènes (1992)			
Hydrocarbures totaux (ISO) Fraction aliphatique C5-C6	mg/kg Ms	<0.40	conforme à NEN-EN-ISO 1655
	mg/kg Ms		conforme à NEN-EN-ISO 1655
Fraction aliphatique >C6-C8		<0,20	
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558 conforme à NEN-EN-ISO 16558
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 1655
Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 1655
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 1655
Fraction C5-C10	mg/kg Ms	<1,0 x)	conforme à NEN-EN-ISO 1655
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	ISO 16703

<4,0

<2,0

TESTING RVA L 005

page 2 de 4

ISO 16703

ISO 16703

Fraction C12-C16 Fraction C16-C20

*) mg/kg Ms

*) mg/kg Ms

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024

N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144789 Solide / Eluat

Spécification des échantillons S5(0,1-1m)

	Unité	Résultat Limite	Méthode	
Fraction C20-C24	*) mg/kg Ms	<2,0	ISO 16703	
Fraction C24-C28	*) mg/kg Ms	<2,0	ISO 16703	
Fraction C28-C32	*) mg/kg Ms	<2,0	ISO 16703	
Fraction C32-C36	*) mg/kg Ms	<2,0	ISO 16703	
Fraction C36-C40	*) mg/kg Ms	<2,0	ISO 16703	

Polychlorobiphényles

externalisés sont marqués du symbole

Somme 6 PCB	mg/kg Ms	0,032 x)	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,032 x)	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	0,009	NEN-EN 16167
PCB (153)	mg/kg Ms	0,012	NEN-EN 16167
PCB (180)	mg/kg Ms	0,011	NEN-EN 16167

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 06.06.2024 Fin des analyses: 13.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144789 Solide / Eluat N° échant. Spécification des échantillons S5(0,1-1m)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144790 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S5(1-2m)

> Unité Résultat Limite Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon		٥	Conforme à NEN-EN 16179
Matière sèche	%	° 83,2	NEN-EN 15934

Prétraitement pour analyses des métaux

paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont

Métaux			
Arsenic (As)	mg/kg Ms	2,9	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	1,0	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	0,4	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	1,2	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	1,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Zinc (Zn)	mg/kg Ms	1,7	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

Hydrocarbures Aromatiques Polycycliques (ISO)

` ,		/	
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Pvrène	mg/kg Ms	<0.050	équivalent à NF EN 16181

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144790 Solide / Eluat

Spécification des échantillons S5(1-2m)

opeomodiem des senantinone	Unité	Résultat Limite	Méthode
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Composés aromatiques			
Benzène	mg/kg Ms	<0,05	ISO 22155
Toluène	mg/kg Ms	<0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	ISO 22155
Hydrocarbures totaux (ISO)			1
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
F // // 00.010	1	2,22	() NEW EN 100 (1000)

ė,	• • • • • • • • • • • • • • • • • • • •			
rédit	Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
accı	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
ont	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
BV.	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
est	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Ņ.	Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
ar A	Fraction C8-C10	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
és p	Fraction C5-C10	mg/kg Ms	<1,0 x)	conforme à NEN-EN-ISO 16558-1
éalis	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
es re	Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
nètr	Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
arar	Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703
Les p				page 2 de 4

RvA L 005

page 2 de 4

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024

N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

144790 Solide / Eluat N° échant.

Spécification des échantillons S5(1-2m)

	Unité	Résultat Limite	Méthode
Fraction C20-C24	*) mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

externalisés sont marqués du symbole

Somme 6 PCB	mg/kg Ms	0,0010 x)	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0010 x)	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 06.06.2024 Fin des analyses: 13.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144790 Solide / Eluat Spécification des échantillons S5(1-2m)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144791 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S6(0.07-1m)

Prétraitement des échantillons

Prétraitement de l'échantillon		0	Conforme à NEN-EN 16179
Matière sèche	%	° 84,9	NEN-EN 15934

Prétraitement pour analyses des métaux

Mátarry				
Mineralisation	a l'eau regale	·		NF-EN 16174; NF EN 13657 (déchets)

Métaux			
Arsenic (As)	mg/kg Ms	5,0	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	8,6	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	3,4	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	5,0	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	11	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Zinc (Zn)	mg/kg Ms	10	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

Hydrocarbures Aromatiques Polycycliques (ISO)

	Unité	Résultat	Limite	Méthode
Prétraitement des échantill	ons			
Prétraitement de l'échantillon	•			Conforme à NEN-EN 16179
Matière sèche	% °	84,9		NEN-EN 15934
Prétraitement pour analyse	s des métaux			
Minéralisation à l'eau régale	۰			NF-EN 16174; NF EN 13657 (déchets)
Métaux				
Arsenic (As)	mg/kg Ms	5,0		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	8,6		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	3,4		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05		conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	5,0		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	11		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Zinc (Zn)	mg/kg Ms	10		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Hydrocarbures Aromatique	es Polycycliques (I	SO)		
Naphtalène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050		équivalent à NF EN 16181

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144791 Solide / Eluat

Spécification des échantillons S6(0.07-1m)

	Unité	Résultat Limite	Méthode
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Composés aromatiques			
Benzène	mg/kg Ms	<0,05	ISO 22155
Toluène	mg/kg Ms	<0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	ISO 22155
Hydrocarbures totaux (ISO)		1 1	. '
Fraction aliphatique C5-C6	mg/kg Ms	<0.40	conforme à NEN-EN-ISO 16558
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558
Fraction aromatique > C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558
Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558
Fraction C5-C10	mg/kg Ms	<1,0 x)	conforme à NEN-EN-ISO 16558
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10 C12	*) mg/kg Ms	-1.0	ISO 16702

<4,0

<4,0

<2,0

TESTING RVA L 005

page 2 de 4

ISO 16703

ISO 16703

ISO 16703

Fraction C10-C12

Fraction C12-C16

Fraction C16-C20

*) mg/kg Ms

*) mg/kg Ms

*) mg/kg Ms

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024

N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144791 Solide / Eluat

Spécification des échantillons S6(0.07-1m)

	Unité	Résultat Limite	Méthode
Fraction C20-C24	*) mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32	*) mg/kg Ms	3,1	ISO 16703
Fraction C32-C36	*) mg/kg Ms	3,8	ISO 16703
Fraction C36-C40	*) mg/kg Ms	3.3	ISO 16703

Polychlorobiphényles

externalisés sont marqués du symbole

Somme 6 PCB	mg/kg Ms	0,014 ×)	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,014 ×)	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	0,004	NEN-EN 16167
PCB (153)	mg/kg Ms	0,004	NEN-EN 16167
PCB (180)	mg/kg Ms	0,006	NEN-EN 16167

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 06.06.2024 Fin des analyses: 13.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 3 de 4

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144791 Solide / Eluat Spécification des échantillons S6(0.07-1m)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil FRANCE

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144792 Solide / Eluat

Date de validation 06.06.2024
Prélèvement 05.06.2024
Prélèvement par: Client
Spécification des échantillons S6(1-2m)

Unité Résultat Limite Méthode

Prétraitement des échantillons

et/ou externalisés sont

paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités

Prétraitement de l'échantillon		۰		Conforme à NEN-EN 16179
Broyeur à mâchoires		•		méthode interne
Matière sèche	%	° 84,9		NEN-EN 15934

Prétraitement pour analyses des métaux

×			
Š	Minéralisation à l'eau régale	۰	NF-EN 16174; NF EN 13657
ŏ			(déchets)

Métaux			
Arsenic (As)	mg/kg Ms	3,7	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	13	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	19	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	8,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	9,2	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Zinc (Zn)	mg/kg Ms	28	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

Hydrocarbures Aromatiques Polycycliques (ISO)

'n	•			
ά 	Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Ź	Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
bal	Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181
es es	Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
e e	Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
e	Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
<u>=</u>	Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181

page 1 de 4

IESTING
RVA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144792 Solide / Eluat

Spécification des échantillons S6(1-2m)

Specification des echantillons	30(1-21	11)	
	Unité	Résultat Limite	Méthode
Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618
Composés aromatiques			
Benzène	mg/kg Ms	<0,05	ISO 22155
Toluène	mg/kg Ms	<0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
COHV	3 3 -		.00 =2.00
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2-	mg/kg Ms	n.d.	ISO 22155
Dichloroéthylènes			
Hydrocarbures totaux (ISO)			
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 1655
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 1655
Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 1655
Fraction C8-C10	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 1655
Fraction C5-C10	mg/kg Ms	<1,0 x)	conforme à NEN-EN-ISO 1655
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	ISO 16703
Fraction C12 C16	*) ma/ka Ma	.4.0	ISO 16702

<4,0

Kamer van Koophandel Nr. 08110898 ppa. Marc VAT/BTW-ID-Nr.: Dr. Paul V

Fraction C12-C16

page 2 de 4 **RvA** L 005

ISO 16703

*) mg/kg Ms

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144792 Solide / Eluat

Spécification des échantillons S6(1-2m)

	Unité	Résultat Limite	Méthode
Fraction C16-C20	*) mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

externalisés sont marqués du symbole

paramètres

Seuls les

Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 06.06.2024 Fin des analyses: 13.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144792 Solide / Eluat Spécification des échantillons S6(1-2m)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil FRANCE

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144793 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S7(0,1-1m)

> Unité Résultat Limite Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon		۰	Conforme à NEN-EN 16179
Matière sèche	%	° 86,8	NEN-EN 15934

Prétraitement pour analyses des métaux

Les paramètres réalisés par AL-West BV sont acciédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non acciédités et/ou externalisés sont

Metaux			
Arsenic (As)	mg/kg Ms	4,0	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	4,5	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	1,0	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	2,3	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	4,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Zinc (Zn)	mg/kg Ms	4,2	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

Hydrocarbures Aromatiques Polycycliques (ISO)

Raphtalène Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
			· · · · · · · · · · · · · · · · · · ·

page 1 de 4

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144793 Solide / Eluat

Spécification des échantillons S7(0,1-1m)

	Unité	Résultat Limite	Méthode
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Composés aromatiques			
Benzène	mg/kg Ms	<0,05	ISO 22155
Toluène	mg/kg Ms	<0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	ISO 22155
Hydrocarbures totaux (ISO)			
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-
Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-
Liveline conference totalis C40, C40	mg/kg Ma	20.0	100 40700

<20,0

<4,0

<4,0

<2,0

RvA L 005

ISO 16703

ISO 16703

ISO 16703

ISO 16703

Fraction C10-C12

Fraction C12-C16

Fraction C16-C20

Hydrocarbures totaux C10-C40

mg/kg Ms

*) mg/kg Ms

*) mg/kg Ms

*) mg/kg Ms

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024

N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144793 Solide / Eluat

Spécification des échantillons S7(0,1-1m)

	Unité	Résultat Limite	Méthode
Fraction C20-C24	*) mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

externalisés sont marqués du symbole

Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 06.06.2024 Fin des analyses: 13.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144793 Solide / Eluat N° échant. Spécification des échantillons S7(0,1-1m)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil FRANCE

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144794 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S7(1-2m)

> Unité Résultat Limite Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon		0	Conforme à NEN-EN 16179
Matière sèche	%	° 83,2	NEN-EN 15934

Prétraitement pour analyses des métaux

Minéralisation à l'eau régale	•		NF-EN 16174; NF EN 13657 (déchets)	

Métaux			
Arsenic (As)	mg/kg Ms	5,6	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	1,8	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	1,4	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	2,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	1,8	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Zinc (Zn)	mg/kg Ms	2,5	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

Hydrocarbures Aromatiques Polycycliques (ISO)

Matiere seche	70	03,2	IN⊏IN-⊏IN 10934
Prétraitement pour analyse	es des métaux		
Minéralisation à l'eau régale	o		NF-EN 16174; NF EN 13657 (déchets)
Métaux			
Arsenic (As)	mg/kg Ms	5,6	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	1,8	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	1,4	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	2,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	1,8	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Zinc (Zn)	mg/kg Ms	2,5	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Hydrocarbures Aromatique	es Polycycliques (IS	SO)	
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0.050	éguivalent à NF EN 16181

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144794 Solide / Eluat

Spécification des échantillons S7(1-2m)

•	Unité	Résultat Limite	Méthode
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Composés aromatiques			
Benzène	mg/kg Ms	<0,05	ISO 22155
Toluène	mg/kg Ms	<0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
COHV	ilig/kg W3	II.u.	100 22133
	// 84		100 00455
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	ISO 22155
Hydrocarbures totaux (ISO)			
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558
Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	ISO 16703

Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024

N° Client

35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

144794 Solide / Eluat N° échant.

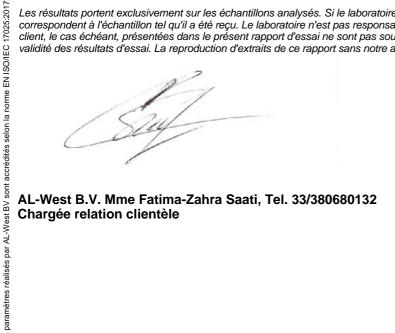
Spécification des échantillons S7(1-2m)

	Unité	Résultat Limite	Méthode
Fraction C20-C24	*) mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

externalisés sont marqués du symbole

Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167


x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 06.06.2024 Fin des analyses: 13.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144794 Solide / Eluat N° échant. Spécification des échantillons S7(1-2m)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil FRANCE

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144795 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S8(0.15-1m)

Prétraitement des échantillons

5	Masse échantillon total inférieure à 2 kg	kg	° 0,5	4	méthode interne
5	Prétraitement de l'échantillon		٥		Conforme à NEN-EN 16179
	Broyeur à mâchoires		۰		méthode interne
9	Matière sèche	%	° 82,	1	NEN-EN 15934
5					

Lixiviation

Fraction >4mm (EN12457-2)	%	۰	21,0	Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	۰	110	Selon norme lixiviation
Lixiviation (EN 12457-2)		۰		NF EN 12457-2
Volume de lixiviant L ajouté pour	*) ml		900	Selon norme lixiviation

Analyses Physico-chimiques

	pH-H2O		9,0	Conforme a NF ISO 10390 (sol et
-				sédiment)
9.5	COT Carbone Organique Total	mg/kg Ms	2900	conforme ISO 10694 (2008)

Prétraitement pour analyses des métaux

Minéralisation à l'eau régale	۰	NF-EN 16174; NF EN 13657
		(déchets)

	Unité	Résultat	Limite	Méthode
Prétraitement des échantillo	ns			
Masse échantillon total inférieure à 2 kg	kg °	0,54		méthode interne
Prétraitement de l'échantillon	۰			Conforme à NEN-EN 16179
Broyeur à mâchoires	۰			méthode interne
Matière sèche	% °	82,1		NEN-EN 15934
Lixiviation				
Fraction >4mm (EN12457-2)	% °	21,0		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g °	110		Selon norme lixiviation
Lixiviation (EN 12457-2)	•			NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	*) ml	900		Selon norme lixiviation
Analyses Physico-chimiques	S	1	'	
pH-H2O	0	9,0		Conforme a NF ISO 10390 (sol et sédiment)
COT Carbone Organique Total	mg/kg Ms	2900		conforme ISO 10694 (2008)
Prétraitement pour analyses	des métaux			
Minéralisation à l'eau régale	0			NF-EN 16174; NF EN 13657 (déchets)
Métaux				
Arsenic (As)	mg/kg Ms	4,0		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	5,5		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	2,9		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05		conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	4,0		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	3,2		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885

page 1 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144795 Solide / Eluat

	Unité	Résultat Limite	Méthode
Zinc (Zn)	mg/kg Ms	7,5	Minéralisation conforme à NEN EN-ISO 54321, mesure conform NEN-EN-ISO 11885
Hydrocarbures Aromatique	es Polycycliques (I	SO)	
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618 ²
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618 ²
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618 ²
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 1618 ²
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618 ²
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618 ²
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 1618 ²
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618 ²
Composés aromatiques			
Benzène	mg/kg Ms	<0,050	ISO 22155
Toluène	mg/kg Ms	<0,050	ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
BTEX total	*) mg/kg Ms	n.d.	ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2-	mg/kg Ms	n.d.	ISO 22155

page 2 de 6 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144795 Solide / Eluat

Spécification des échantillons S8(0.15-1m)

> Unité Résultat Limite Méthode

Hydrocarbures totaux (ISO)

11) 411 0 0 411 10 10 10 10 10 10 10 10 10 10 10 10 1			
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167

Calcul des Fractions solubles

Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
	*) mg/kg Ms	<4,0	ISO 16703
	*) mg/kg Ms	<4,0	ISO 16703
	*) mg/kg Ms	<2,0	ISO 16703
	*) mg/kg Ms	<2,0	ISO 16703
	*) mg/kg Ms	<2,0	ISO 16703
	*) mg/kg Ms	<2,0	ISO 16703
	*) mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	ISO 16703
Polychlorobiphényles			
Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167
Calcul des Fractions solubles			·
Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	0 - 10	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	0 - 200	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	6,0	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,2	Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Seienium cumule (var. L/S)			
Sélénium cumulé (var. L/S) Sulfates cumulé (var. L/S)	mg/kg Ms	0 - 50	Selon norme lixiviation

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144795 Solide / Eluat

Spécification des échantillons S8(0.15-1m)

Unité Résultat Limite Méthode

Analyses sur éluat après lixiviation

L/S cumulé	ml/g	10,0	Selon norme lixiviation
Conductivité électrique	μS/cm	65,7	Selon norme lixiviation
pH		9,1	Selon norme lixiviation
Température	°C	19.6	Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,6	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	<1,0	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	<5,0	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
СОТ	mg/l	<20	conforme EN 16192 (2011)

Métaux sur éluat

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

sont accrédités

par AL-West

Métaux sur éluat			
Antimoine (Sb)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	2,3	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l °	<0,03	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.06.2024 Fin des analyses: 14.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 6

IESTING
RVA L 005

J-13-23651139-FK-P118

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144795 Solide / Eluat Spécification des échantillons S8(0.15-1m)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144795 Solide / Eluat N° échant. Spécification des échantillons S8(0.15-1m)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil FRANCE

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144796 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S8(1-2m)

> Unité Résultat Limite Méthode

Prétraitement des échantillons

Liviniation			
Matière sèche	%	° 75,8	NEN-EN 15934
Prétraitement de l'échantillon		•	Conforme à NEN-EN 16179
Masse échantillon total inférieure à 2 kg	kg	0,72	méthode interne

Lixiviation

et/ou externalisés sont

ISO/IEC 17025:2017. Seuls les paramètres non accrédités

2	Fraction >4mm (EN12457-2)	%	° 3,3	Selon norme lixiviation
0 = 0	Masse brute Mh pour lixiviation *	g	° 120	Selon norme lixiviation
200	Lixiviation (EN 12457-2)		•	NF EN 12457-2
TILLE II	Volume de lixiviant L ajouté pour * l'extraction	ml	900	Selon norme lixiviation

Analyses Physico-chimiques

5	pH-H2O		° 9,1	Conforme a NF ISO 10390 (sol et sédiment)
-	COT Carbone Organique Total	mg/kg Ms	2800	conforme ISO 10694 (2008)

Prétraitement pour analyses des métaux

Minéralisation à l'eau régale	۰		NF-	EN 16174; NF EN 13657
i i i i i i i i i i i i i i i i i i i				(déchets)

Métaux

Arsenic (As)	mg/kg Ms	7,0	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	0,7	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	0,7	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	0,9	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	1,0	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

page 1 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144796 Solide / Eluat

Spécification des échantillons S8(1-2m)

	Unité	Résultat Limite	Méthode
Zinc (Zn)	mg/kg Ms	1,3	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Hydrocarbures Aromatique	es Polycycliques (I	SO)	
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Composés aromatiques			
Benzène	mg/kg Ms	<0,050	ISO 22155
Toluène	mg/kg Ms	<0,050	ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
BTEX total	*) mg/kg Ms	n.d.	ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Tuesca 40 Dieleleue (Ues II)		0.005	100 00455

<0,025

n.d.

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

mg/kg Ms

mg/kg Ms

ISO 22155

ISO 22155

Les paramètres

Somme cis/trans-1,2-Dichloroéthylènes

Trans-1,2-Dichloroéthylène

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144796 Solide / Eluat

Spécification des échantillons S8(1-2m)

> Unité Résultat Limite Méthode

Hydrocarbures totaux (ISO)

Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167

Calcul des Fractions solubles

	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
ole	Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
symbole	Fraction C8-C10	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
du s	Fraction C5-C10	mg/kg Ms	<1,0 x)	conforme à NEN-EN-ISO 16558-1
iés (Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
arqu	Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
nt m	Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
s so	Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703
alisé	Fraction C20-C24 *)	mg/kg Ms	<2,0	ISO 16703
terna		mg/kg Ms	<2,0	ISO 16703
n exi		mg/kg Ms	<2,0	ISO 16703
et/o		mg/kg Ms	<2,0	ISO 16703
ités	Fraction C36-C40 *)	mg/kg Ms	<2,0	ISO 16703
ĸ.	Polychlorobiphényles			
nor 8	Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
es r	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
mètr	PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
arai	PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
les p	PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
sıne	PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
S.	PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
2017	PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
)25::	PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167
EC 17(Calcul des Fractions solubles			
30/1	Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	Selon norme lixiviation
N N	Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Je E	Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
accrédités selon la norme	Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	Selon norme lixiviation
n la	Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	Selon norme lixiviation
seloi	Chlorures cumulé (var. L/S)	mg/kg Ms	0 - 10	Selon norme lixiviation
tés (Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
rédi	COT cumulé (var. L/S)	mg/kg Ms	0 - 200	Selon norme lixiviation
t acc	Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
	Fluorures cumulé (var. L/S)	mg/kg Ms	6,0	Selon norme lixiviation
BV	Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,2	Selon norme lixiviation
	Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	Selon norme lixiviation
۸L-۷	Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
par,	Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
sés	Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
éali	Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
resı	Sulfates cumulé (var. L/S)	mg/kg Ms	55	Selon norme lixiviation
ımèt	Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
Les paramètres réalisés par				page 3 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144796 Solide / Eluat

Spécification des échantillons S8(1-2m)

Unité Résultat Limite Méthode

Analyses sur éluat après lixiviation

L/S cumulé	ml/g	10,0	Selon norme lixiviation
Conductivité électrique	μS/cm	61,5	Selon norme lixiviation
рН		8,9	Selon norme lixiviation
Température	°C	19,0	Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,6	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	<1,0	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	5,5	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
СОТ	mg/l	<20	conforme EN 16192 (2011)

Métaux sur éluat			
Antimoine (Sb)	μg/I	<5,0	Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l °	<0,03	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.06.2024 Fin des analyses: 14.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 6

IESTING
RVA L 005

C-13-23651139-FR-P124

par AL-West BV sont accrédités

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144796 Solide / Eluat Spécification des échantillons S8(1-2m)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144796 Solide / Eluat Spécification des échantillons S8(1-2m)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil FRANCE

> Date 17.06.2024 N° Client 35010172

> > Méthode

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

Unité

N° échant. 144797 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S8(2-3m)

Prétraitement des échantillons		

Masse échantillon total inférieure à 2 kg	kg	° 0,6	3	méthode interne
Prétraitement de l'échantillon		۰		Conforme à NEN-EN 16179
Matière sèche	%	° 80,	0	NEN-EN 15934
Lixiviation				
' _	l		_	

Résultat

Limite

Fraction >4mm (EN12457-2)	%	° 2,1	Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	° 120	Selon norme lixiviation
Lixiviation (EN 12457-2)		•	NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	*) ml	900	Selon norme lixiviation

Analyses Physico-chimiques

Ś	pH-H2O		9,2	sédiment)
-	COT Carbone Organique Total	mg/kg Ms	1500	conforme ISO 10694 (2008)

Prétraitement pour analyses des métaux

Minéralisation à l'eau régale	۰		NF-	EN 16174; NF EN 13657
i i i i i i i i i i i i i i i i i i i				(déchets)

Métaux

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont

Arsenic (As)	mg/kg Ms	7,5	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	2,7	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	3,7	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	2,4	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	2,0	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

page 1 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144797 Solide / Eluat

Spécification des échantillons S8(2-3m)

	Unité	Résultat Limite	Méthode
Zinc (Zn)	mg/kg Ms	5,0	Minéralisation conforme à NE EN-ISO 54321, mesure conforr NEN-EN-ISO 11885
Hydrocarbures Aromatique	es Polycycliques (I	SO)	
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Anthracène Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618
Composés aromatiques			
Benzène	mg/kg Ms	<0,050	ISO 22155
Toluène	mg/kg Ms	<0,050	ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Vaphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
BTEX total	*) mg/kg Ms	n.d.	ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Frichloroéthylène Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Fétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
I,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
I,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
I,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
I,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2-	mg/kg Ms	n.d.	ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144797 Solide / Eluat

Spécification des échantillons S8(2-3m)

> Unité Résultat Limite Méthode

Hydrocarbures totaux (ISO)

• ,			
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20 *)	mg/kg Ms	3,0	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	3,0	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	3,5	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	3,8	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	3,0	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167

Calcul des Fractions solubles

. <i>F</i>	raction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
	raction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
용 F i	raction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
symbole F	raction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
်ား F ၊	raction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
ėš H	ydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
arg Fi	raction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
t Fi	raction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
s Fi	raction C16-C20 *)	mg/kg Ms	3,0	ISO 16703
iii Fi	raction C20-C24 *)	mg/kg Ms	3,0	ISO 16703
⊮ Fı	raction C24-C28 *)	mg/kg Ms	3,5	ISO 16703
ĕ Fı		mg/kg Ms	3,8	ISO 16703
∯ Fi		mg/kg Ms	3,0	ISO 16703
fę Fı	raction C36-C40 *)	mg/kg Ms	<2,0	ISO 16703
EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués So/I So/I	olychlorobiphényles			
ğ S	omme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
S S	omme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
Je P	PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
P ara	PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
ş P	PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
s P	PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
ο̈́. P	PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
ξ <u>P</u>	PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
755. P	PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167
C 14	alcul des Fractions solubles			
ỗ Fr	raction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	Selon norme lixiviation
$\frac{0}{2}$ A	ntimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
ы В	rsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
accrédités selon la norme	aryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	Selon norme lixiviation
<u></u>	admium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	Selon norme lixiviation
<u>₩</u> C	hlorures cumulé (var. L/S)	mg/kg Ms	0 - 10	Selon norme lixiviation
es C	hrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
ğ C	OT cumulé (var. L/S)	mg/kg Ms	0 - 200	Selon norme lixiviation
og C	uivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
	luorures cumulé (var. L/S)	mg/kg Ms	5,0	Selon norme lixiviation
	dice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,2	Selon norme lixiviation
	lercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	Selon norme lixiviation
<u>}</u> M	lolybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
N ar	ickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Sés P	lomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
Sealis	élénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
S	ulfates cumulé (var. L/S)	mg/kg Ms	0 - 50	Selon norme lixiviation
ξ Zi	inc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
Les paramètres réalisés par [N O O U N				page 3 de 6

page 3 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144797 Solide / Eluat

Spécification des échantillons S8(2-3m)

Unité Résultat Limite Méthode

Analyses sur éluat après lixiviation

L/S cumulé	ml/g	10,0	Selon norme lixiviation
Conductivité électrique	μS/cm	56,4	Selon norme lixiviation
рН		9,0	Selon norme lixiviation
Température	°C	18.7	Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,5	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	<1,0	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	<5,0	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
СОТ	mg/l	<20	conforme EN 16192 (2011)

Métaux sur éluat

externalisés sont marqués du symbole " *)

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou

par AL-West BV sont accrédités

Wictaux Sui Ciuat			
Antimoine (Sb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.06.2024 Fin des analyses: 14.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 6

TESTING
RVA L 005

-13-Z3651139-FR-F13U

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144797 Solide / Eluat Spécification des échantillons S8(2-3m)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144797 Solide / Eluat Spécification des échantillons S8(2-3m)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil FRANCE

> Date 17.06.2024 N° Client 35010172

> > Méthode

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

Unité

N° échant. 144798 Solide / Eluat

Date de validation 06.06.2024
Prélèvement 05.06.2024
Prélèvement par: Client
Spécification des échantillons \$8(3-4m)

Ś	Prétraitement des échantillons							
5	Masse échantillon total inférieure à 2 kg	kg	•	0,71	méthode interne			
Š	Prétraitement de l'échantillon		۰		Conforme à NEN-EN 16179			
	Matière sèche	%	۰	68,3	NEN-EN 15934			
,								

Résultat Limite

Matière sèche	%	۰	68,3		NEN-EN 15934
Lixiviation					
Fraction >4mm (EN12457-2)	%	۰	0.2		Selon norme lixiviation

114011011 > 1111111 (E1112 101 2)		70	0,2		Colon months introduced
Masse brute Mh pour lixiviation	*)	g	° 140		Selon norme lixiviation
Lixiviation (EN 12457-2)			0		NF EN 12457-2
Volume de lixiviant L ajouté pour	*)	ml	900		Selon norme lixiviation

1	Analyses Physico-chimiques						
	pH-H2O		٠ (,9			Conforme a NF ISO 10390 (sol et sédiment)

				Sediment)
COT Carbone Organique Total	mg/kg Ms	1700		conforme ISO 10694 (2008)
Prétraitement pour analyses de	s métaux			

Prétraitement pour analyse	s des métaux		
Minéralisation à l'eau régale	۰		NF-EN 16174; NF EN 13657 (déchets)
Métaux			
Arsenic (As)	mg/kg Ms	12	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	13	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	35	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	12	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	18	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à

page 1 de 6

IESTING
RVA L 005

NEN-EN-ISO 11885

marqués du

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025;2017. Seuls les paramètres non accrédités et/ou externalisés sont

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144798 Solide / Eluat

Spécification des échantillons S8(3-4m)

	Unité	Résultat Limite	Méthode
Zinc (Zn)	mg/kg Ms	34	Minéralisation conforme à NEN EN-ISO 54321, mesure conform NEN-EN-ISO 11885
Hydrocarbures Aromatique	s Polycycliques (IS	SO)	
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 1618 ²
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 1618 ²
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618 ²
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618 ²
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 1618 ²
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 1618 ²
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618 ²
Composés aromatiques			
Benzène	mg/kg Ms	<0,050	ISO 22155
Toluène	mg/kg Ms	<0,050	ISO 22155
<i>Ethylbenzène</i>	mg/kg Ms	<0,050	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
BTEX total	*) mg/kg Ms	n.d.	ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
1. I-DICHIOIOEUNIENE			
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Les paramètres

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144798 Solide / Eluat

Spécification des échantillons S8(3-4m)

Unité Résultat Limite Méthode

Hydrocarbures totaux (ISO)

Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

Somme 6 PCB mg/kg Ms n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter) mg/kg Ms n.d.	NEN-EN 16167
PCB (28) mg/kg Ms <0,001	NEN-EN 16167
PCB (52) mg/kg Ms <0,001	NEN-EN 16167
PCB (101) mg/kg Ms <0,001	NEN-EN 16167
PCB (118) mg/kg Ms <0,001	NEN-EN 16167
PCB (138) mg/kg Ms <0,001	NEN-EN 16167
PCB (153) mg/kg Ms <0,001	NEN-EN 16167
PCB (180) mg/kg Ms <0,001	NEN-EN 16167

Calcul des Fractions solubles

ַ	Odicul des i lactions solubles			
5	Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	Selon norme lixiviation
2	Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
D D	Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
5	Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	Selon norme lixiviation
<u>v</u>	Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	Selon norme lixiviation
ie io	Chlorures cumulé (var. L/S)	mg/kg Ms	11	Selon norme lixiviation
See	Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
5	COT cumulé (var. L/S)	mg/kg Ms	0 - 200	Selon norme lixiviation
S	Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation
202	Fluorures cumulé (var. L/S)	mg/kg Ms	5,0	Selon norme lixiviation
2	Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,2	Selon norme lixiviation
esi	Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	Selon norme lixiviation
جَ لِـٰ	Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
מ	Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
ses	Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
ag ea	Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	Selon norme lixiviation
S	Sulfates cumulé (var. L/S)	mg/kg Ms	87	Selon norme lixiviation
<u>=</u>	Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	Selon norme lixiviation

TESTING RVA L 005

DOC-13-23651139-FR-P135

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

page 3 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

N° Client

Date 17.06.2024

35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144798 Solide / Eluat

Spécification des échantillons S8(3-4m)

Unité Résultat Limite Méthode

Analyses sur éluat après lixiviation

L/S cumulé	ml/g	10,0	Selon norme lixiviation
Conductivité électrique	μS/cm	100	Selon norme lixiviation
рН		8,8	Selon norme lixiviation
Température	°C	18.0	Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,5	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	1,1	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	8,7	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
СОТ	mg/l	<20	conforme EN 16192 (2011)

Métaux sur éluat

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

Métaux sur éluat			
Antimoine (Sb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	µg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	µg/l	<10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	µg/l	<0,1	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	µg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l °	<0,03	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	µg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.06.2024 Fin des analyses: 14.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 6

IESTING
RVA L 005

J-13-23631139-FR-F136

par AL-West BV sont accrédités

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144798 Solide / Eluat Spécification des échantillons S8(3-4m)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144798 Solide / Eluat Spécification des échantillons S8(3-4m)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144799 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S8(4.2-5m)

> Unité Résultat Limite Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon		o	Conforme à NEN-EN 16179
Matière sèche	%	° 73,3	NEN-EN 15934

Hydrocarbures Aromatiques Polycycliques (ISO)

ω,		/	
Naphtalène Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
	mg/kg Ms	<0,050	équivalent à NF EN 16181
ຼື Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphténe Fluorène Phénanthrène Anthracène Fluoranthène Pyrène Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
କୁ Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène Benzo(b)fluoranthène Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène Dibenzo(a,h)anthracène Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
∃ Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
	mg/kg Ms	<0,050	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène HAP (6 Borneff) - somme Somme HAP (VROM) HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
σ <u> </u>	-	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Composés aromatiques

Benzène	mg/kg Ms	<0,05	ISO 22155
Toluène	mg/kg Ms	<0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155

Hydrocarbures totaux (ISO)

11) 411 0 0 411 10 10 10 144 147 (10 0)			
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1

page 1 de 3

paramètres

ppa. Marc van Gelder Dr. Paul Wimmer

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

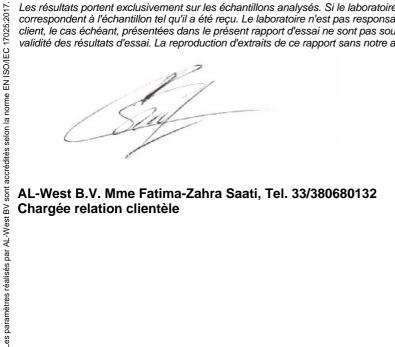
RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

144799 Solide / Eluat N° échant.

Spécification des échantillons S8(4.2-5m)

	Unité	Résultat	Limite	Méthode
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-
Fraction aromatique >C6-C8	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-
Fraction aromatique >C8-C10	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-
Fraction >C6-C8	mg/kg Ms	<0,40 x)		conforme à NEN-EN-ISO 16558-
Fraction C8-C10	mg/kg Ms	<0,40 x)		conforme à NEN-EN-ISO 16558-
Fraction C5-C10	mg/kg Ms	<1,0 ×)		conforme à NEN-EN-ISO 16558-
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0		ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0		ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0		ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0		ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0		ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0		ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0		ISO 16703


x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 06.06.2024 Fin des analyses: 12.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

Seuls les

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144799 Solide / Eluat N° échant. Spécification des échantillons S8(4.2-5m)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144800 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S8(5-6m)

Prétraitement des échantillons

Prétraitement de l'échantillon		0		Conforme à NEN-EN 16179
Broyeur à mâchoires		۰		méthode interne
Matière sèche	%	° 69,6		NEN-EN 15934

Hydrocarbures Aromatiques Polycycliques (ISO)

	Unité	Résultat	Limite	Méthode
Prétraitement des échantil	lons			
Prétraitement de l'échantillon	•			Conforme à NEN-EN 1617
Broyeur à mâchoires	۰			méthode interne
Matière sèche	% °	69,6		NEN-EN 15934
Hydrocarbures Aromatique	es Polycycliques (I	SO)		
Naphtalène	mg/kg Ms	<0,050		équivalent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050		équivalent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050		équivalent à NF EN 1618
Fluorène	mg/kg Ms	<0,050		équivalent à NF EN 1618
Phénanthrène	mg/kg Ms	0,13		équivalent à NF EN 1618
Anthracène	mg/kg Ms	<0,050		équivalent à NF EN 1618
Fluoranthène	mg/kg Ms	0,17		équivalent à NF EN 1618
Pyrène	mg/kg Ms	0,11		équivalent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050		équivalent à NF EN 1618
Chrysène	mg/kg Ms	<0,050		équivalent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050		équivalent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050		équivalent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050		équivalent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050		équivalent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050		équivalent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050		équivalent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	0,170 ×)		équivalent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	0,300 x)		équivalent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	0,410 x)		équivalent à NF EN 1618
Composés aromatiques				
Benzène	mg/kg Ms	<0,05		ISO 22155
Toluène	mg/kg Ms	<0,05		ISO 22155
Ethylbenzène	mg/kg Ms	<0,05		ISO 22155
m,p-Xylène	mg/kg Ms	<0,10		ISO 22155
o-Xylène	mg/kg Ms	<0,050		ISO 22155
Naphtalène	mg/kg Ms	<0,10		ISO 22155
Somme Xylènes	mg/kg Ms	ń.d.		ISO 22155

omposés aromatiques

g	Composes aromanques			
5	Benzène	mg/kg Ms	<0,05	ISO 22155
" 2	Toluène	mg/kg Ms	<0,05	ISO 22155
i i	Ethylbenzène	mg/kg Ms	<0,05	ISO 22155
,	m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
ב ב	o-Xylène	mg/kg Ms	<0,050	ISO 22155
n n	Naphtalène	mg/kg Ms	<0,10	ISO 22155
g	Somme Xylènes	mg/kg Ms	n.d.	ISO 22155

Hydrocarbures totaux (ISO)

Fraction aliphatique C5-C6 mg/kg Ms <0,40 conforme à NEN-EN-ISO 16558-1

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

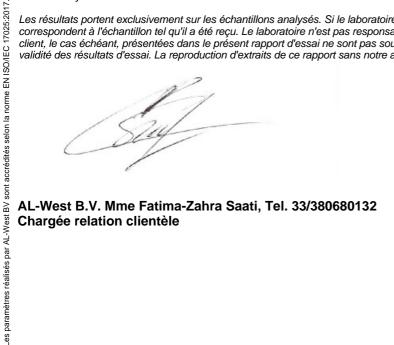
Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

144800 Solide / Eluat N° échant.

Spécification des échantillons S8(5-6m)


·	Unité	Résultat	Limite	Méthode
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10 Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0		ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0		ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0		ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0		ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0		ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0		ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0		ISO 16703
x) Les résultats ne tiennent pas compte des teneu Explication: dans la colonne de résult les incertitudes de mesure analytique sur demande, si les résultats commun performance minimaux des méthodes en ce qui concerne l'incertitude de me	ats "<" signifie inféri s spécifiques aux pa niqués sont supérieu s appliquées sont gé	eur à la limite de quant aramètres ainsi que les urs à la limite de quantii	informations sur la m fication spécifique au j	éthode de calcul sont disponibles paramètre. Les critères de

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 06.06.2024 Fin des analyses: 13.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

Seuls I

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144800 Solide / Eluat N° échant. Spécification des échantillons S8(5-6m)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144801 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S9(0.1-1m)

> Unité Résultat Limite Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon		۰	Conforme à NEN-EN 16179
Matière sèche	%	° 87,9	NEN-EN 15934

Prétraitement pour analyses des métaux

	Minéralisation à l'eau régale		•				NF-EN 16174; NF E (déchets)	N 13657
ζ.		•	•	•	•	•		

Mátaux

Metaux			
Arsenic (As)	mg/kg Ms	7,6	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	6,2	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	4,0	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	5,6	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	2,9	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Zinc (Zn)	mg/kg Ms	6,4	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

Hydrocarbures Aromatiques Polycycliques (ISO)

Mallere Secre	/0	67,9	NEN-EN 1393 4
Prétraitement pour analyse	s des métaux		
Minéralisation à l'eau régale	o		NF-EN 16174; NF EN 13657 (déchets)
Métaux			
Arsenic (As)	mg/kg Ms	7,6	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	6,2	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	4,0	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	5,6	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	2,9	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Zinc (Zn)	mg/kg Ms	6,4	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Hydrocarbures Aromatique	s Polycycliques (I	SO)	
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0.050	éguivalent à NF EN 16181

page 1 de 4

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144801 Solide / Eluat

Spécification des échantillons S9(0.1-1m)

	Unité	Résultat Limite	Méthode
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 1618 ²
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618 ²
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 1618 ²
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 1618
Composés aromatiques			
Benzène	mg/kg Ms	<0,05	ISO 22155
Toluène	mg/kg Ms	<0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	ISO 22155
Hydrocarbures totaux (ISO)		<u> </u>	
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 1655
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 1655
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 1655
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 1655
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 1655
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 1655
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10 C12	*) ma/ka Ma	-4.0	ICO 16702

<4,0

<4,0

2,8

TESTING RVA L 005

page 2 de 4

ISO 16703

ISO 16703

ISO 16703

Fraction C10-C12

Fraction C12-C16

Fraction C16-C20

*) mg/kg Ms

*) mg/kg Ms

*) mg/kg Ms

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024

N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144801 Solide / Eluat

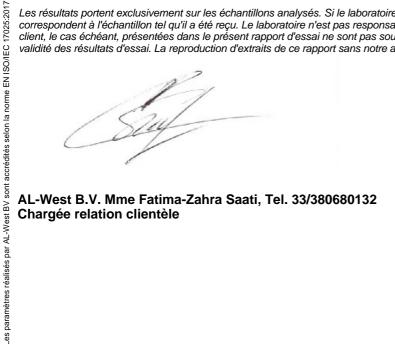
Spécification des échantillons S9(0.1-1m)

	Unité	Résultat Limite	Méthode
Fraction C20-C24	*) mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

externalisés sont marqués du symbole

Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167


x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 06.06.2024 Fin des analyses: 13.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144801 Solide / Eluat N° échant. Spécification des échantillons S9(0.1-1m)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144802 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S9(1-2m)

> Unité Résultat Limite Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon		0	Conforme à NEN-EN 16179
Matière sèche	%	° 82,4	NEN-EN 15934

Prétraitement pour analyses des métaux

Minéralisation à l'eau régale	•		NF-EN 16174; NF EN 13657 (déchets)

Mátaux

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou

Metaux			
Arsenic (As)	mg/kg Ms	5,8	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	12	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	5,8	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	6,2	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	3,3	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Zinc (Zn)	mg/kg Ms	9,3	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

Hydrocarbures Aromatiques Polycycliques (ISO)

Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

Máthada

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

Llnitá

N° échant. 144802 Solide / Eluat

Spécification des échantillons S9(1-2m)

	Unité	Résultat Limite	Méthode
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Composés aromatiques			
Benzène	mg/kg Ms	<0,05	ISO 22155
Toluène	mg/kg Ms	<0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	ISO 22155
Hydrocarbures totaux (ISO)			
Fraction aliphatique C5-C6	mg/kg Ms	<0.40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Hydrocarburgo totally C10 C40	ma/ka Ma	-20.0	100 40700

<20,0

<4,0

<4,0

<2,0

Pácultat Limita

page 2 de 4

ISO 16703

ISO 16703

ISO 16703

ISO 16703

DOC-13-23651139-FR-P150

Hydrocarbures totaux C10-C40

mg/kg Ms

*) mg/kg Ms

*) mg/kg Ms

*) mg/kg Ms

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024

N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

144802 Solide / Eluat N° échant.

Spécification des échantillons S9(1-2m)

	Unité	Résultat Limite	Méthode
Fraction C20-C24	*) mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

externalisés sont marqués du symbole

Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 06.06.2024 Fin des analyses: 13.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144802 Solide / Eluat N° échant. Spécification des échantillons S9(1-2m)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil FRANCE

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144803 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S9(2-2.7m)

Prétraitement des échantillons

Prétraitement de l'échantillon		۰	Conforme à NEN-EN 16179
Matière sèche	%	° 79,2	NEN-EN 15934

Prétraitement pour analyses des métaux

Mátarry				
Mineralisation	a l'eau regale	·		NF-EN 16174; NF EN 13657 (déchets)

Metaux			
Arsenic (As)	mg/kg Ms	4,6	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	8,9	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	4,8	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	4,9	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	2,4	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Zinc (Zn)	mg/kg Ms	8,4	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

Hydrocarbures Aromatiques Polycycliques (ISO)

	Unité	Résultat	Limite	Méthode
Prétraitement des échantill	ons			
Prétraitement de l'échantillon	•			Conforme à NEN-EN 16179
Matière sèche	% °	79,2		NEN-EN 15934
Prétraitement pour analyse	s des métaux			
Minéralisation à l'eau régale	۰			NF-EN 16174; NF EN 13657 (déchets)
Métaux				
Arsenic (As)	mg/kg Ms	4,6		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	<0,1		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	8,9		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	4,8		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05		conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	4,9		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	2,4		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Zinc (Zn)	mg/kg Ms	8,4		Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme NEN-EN-ISO 11885
Hydrocarbures Aromatique	es Polycycliques (I	SO)		
Naphtalène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050		équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050		équivalent à NF EN 16181

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144803 Solide / Eluat

Spécification des échantillons S9(2-2.7m)

•	Unité	Résultat Limite	Méthode
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Composés aromatiques			
Benzène	mg/kg Ms	<0,05	ISO 22155
Toluène	mg/kg Ms	<0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0.05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2-	mg/kg Ms	n.d.	ISO 22155
Dichloroéthylènes (1992)			
Hydrocarbures totaux (ISO)	ma/ka Ma	0.40	conforme à NEN-EN-ISO 16558-
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-
Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Ibraction C10 C12	I I ma/ka Me	-4.0	100 16702

<4,0

<4,0

<2,0

TESTING RVA L 005

page 2 de 4

ISO 16703

ISO 16703

ISO 16703

Fraction C10-C12

Fraction C12-C16

Fraction C16-C20

*) mg/kg Ms

*) mg/kg Ms

*) mg/kg Ms

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024

N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144803 Solide / Eluat

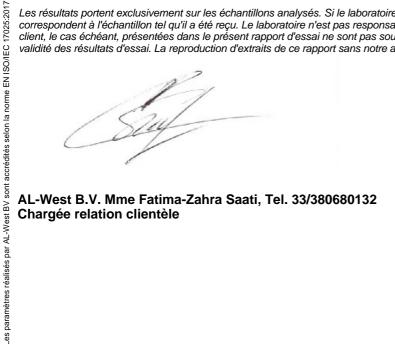
Spécification des échantillons S9(2-2.7m)

	Unité	Résultat Limite	Méthode
Fraction C20-C24	*) mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

externalisés sont marqués du symbole

Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167


x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 06.06.2024 Fin des analyses: 13.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144803 Solide / Eluat N° échant. Spécification des échantillons S9(2-2.7m)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil FRANCE

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144804 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S10(0-0.8m)

> Unité Résultat Limite Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon		۰	Conforme à NEN-EN 16179
Matière sèche	%	° 89,2	NEN-EN 15934

Prétraitement pour analyses des métaux

Mátaux			
Minéralisation à l'eau régale	•		NF-EN 16174; NF EN 13657 (déchets)

paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou

Metaux			
Arsenic (As)	mg/kg Ms	3,2	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	25	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	4,3	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	10	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	6,9	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Zinc (Zn)	mg/kg Ms	19	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

Hydrocarbures Aromatiques Polycycliques (ISO)

` ,		/	
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Pvrène	mg/kg Ms	<0.050	équivalent à NF EN 16181

page 1 de 4

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144804 Solide / Eluat

Spécification des échantillons S10(0-0.8m)

•	Unité	Résultat Limite	Méthode
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Composés aromatiques			
Benzène	mg/kg Ms	<0,05	ISO 22155
Toluène	mg/kg Ms	<0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
COHV	mg/ng wio	ind.	100 22100
Chlorure de Vinyle	mg/kg Ms	-0.03	100 22455
Dichlorométhane	mg/kg Ms	<0,02 <0,05	ISO 22155
Trichlorométhane			ISO 22155
	mg/kg Ms mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05 <0,05	ISO 22155
Tétrachloroéthylène 1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane		<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-	mg/kg Ms	<0,025	ISO 22155
Dichloroéthylènes	mg/kg Ms	n.d.	ISO 22155
Hydrocarbures totaux (ISO)			
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	ISO 16703

Ď	rraction aliphatique Co-Co	ilig/kg ivis	<0,40	COMOTHE & NEW-LIN-130 10330-1
a C C	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
5	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
,, 2	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
est	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
<u>}</u>	Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Z G	Fraction C8-C10	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
d se	Fraction C5-C10	mg/kg Ms	<1,0 x)	conforme à NEN-EN-ISO 16558-1
S	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	ISO 16703
S	Fraction C10-C12 *)	mg/kg Ms	<4,0	ISO 16703
le	Fraction C12-C16 *)	mg/kg Ms	<4,0	ISO 16703
a	Fraction C16-C20 *)	mg/kg Ms	<2,0	ISO 16703

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024

N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

144804 Solide / Eluat N° échant.

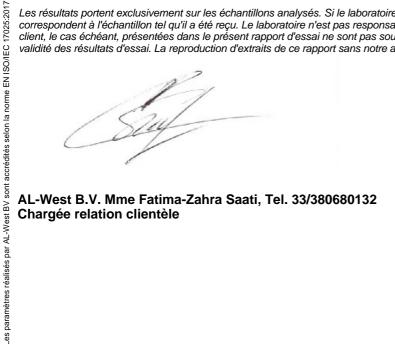
Spécification des échantillons S10(0-0.8m)

	Unité	Résultat Limite	Méthode
Fraction C20-C24	*) mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

externalisés sont marqués du symbole

Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167


x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 06.06.2024 Fin des analyses: 13.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 144804 Solide / Eluat N° échant. Spécification des échantillons S10(0-0.8m)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil FRANCE

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144805 Solide / Eluat

Date de validation 06.06.2024
Prélèvement 05.06.2024
Prélèvement par: Client

Spécification des échantillons \$10(0.8-1.2m)

Unité Résultat Limite Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon		0	Conforme à NEN-EN 16179
Matière sèche	%	° 87,6	NEN-EN 15934

Prétraitement pour analyses des métaux

redite	Minéralisation à l'eau régale	0		NF-EN 16174; NF EN 13657 (déchets)
<u>ರ</u>				

Métaux			
Arsenic (As)	mg/kg Ms	17	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	0,2	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	16	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	5,3	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	13	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	6,0	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Zinc (Zn)	mg/kg Ms	17	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

Hydrocarbures Aromatiques Polycycliques (ISO)

(· ·) · · · · · · · · · · · · · · · · · · ·					
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181		
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181		
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181		
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181		
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181		
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181		
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181		
Pvrène	mg/kg Ms	<0.050	équivalent à NF EN 16181		

page 1 de 4

13-Z3631139-T-N-101

paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144805 Solide / Eluat

Spécification des échantillons S10(0.8-1.2m)

Specification des echantilloris	310(0.0)-1. 2 111 <i>)</i>	
	Unité	Résultat Lir	mite Méthode
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Composés aromatiques			
Benzène	mg/kg Ms	<0,05	ISO 22155
Toluène	mg/kg Ms	<0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
COHV		<u>'</u>	
Chlorure de Vinyle	mg/kg Ms	<0,02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2-	mg/kg Ms	n.d.	ISO 22155
Dichloroéthylènes			
Hydrocarbures totaux (ISO)	ma/ka Ma	0.40	conforme à NEN-EN-ISO 16558-
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16556
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558- conforme à NEN-EN-ISO 16558-
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16556-
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16556-
Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16556-
Fraction C8-C10	mg/kg Ms	<0,40 x) <1,0 x)	conforme à NEN-EN-ISO 16558-
Fraction C5-C10 Hydrocarbures totaux C10-C40	mg/kg Ms mg/kg Ms	<1,0 */	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<20,0 <4,0	ISO 16703
Fraction C12 C16	*) mg/kg Ms	<4,0	ISO 10703

<4,0

<2,0

Kamer van Koophandel Nr. 08110898 Ppa. Marc VAT/BTW-ID-Nr.: Dr. Paul V

Fraction C12-C16

Fraction C16-C20

page 2 de 4 **RvA** L 005

ISO 16703

ISO 16703

*) mg/kg Ms

*) mg/kg Ms

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024

N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144805 Solide / Eluat

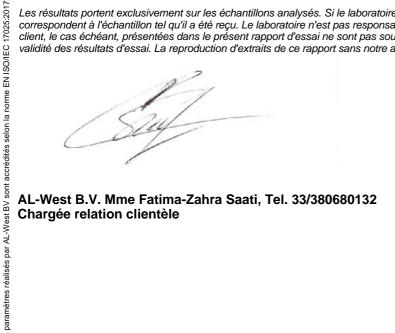
Spécification des échantillons S10(0.8-1.2m)

	Unité	Résultat Limite	Méthode
Fraction C20-C24	*) mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

externalisés sont marqués du symbole

Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167


x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 06.06.2024 Fin des analyses: 13.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 N° échant. 144805 Solide / Eluat Spécification des échantillons S10(0.8-1.2m)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil FRANCE

> Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144806 Solide / Eluat

Date de validation 06.06.2024 Prélèvement 05.06.2024 Prélèvement par: Client Spécification des échantillons S10(1.2-2m)

> Unité Résultat Limite Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon		0	Conforme à NEN-EN 16179
Matière sèche	%	° 88,1	NEN-EN 15934

Prétraitement pour analyses des métaux

Minéralisation à l'eau régale	•		NF-EN 16174; NF EN 13657 (déchets)	

paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou

Métaux			
Arsenic (As)	mg/kg Ms	5,5	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cadmium (Cd)	mg/kg Ms	0,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Chrome (Cr)	mg/kg Ms	4,2	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	2,1	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN- ISO 16772)
Nickel (Ni)	mg/kg Ms	3,3	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	5,7	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Zinc (Zn)	mg/kg Ms	5,4	Minéralisation conforme à NEN- EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

Hydrocarbures Aromatiques Polycycliques (ISO)

` ,		/	
Naphtalène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Pvrène	mg/kg Ms	<0.050	équivalent à NF EN 16181

page 1 de 4

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1421434** RM240076/CF1002764

N° échant. 144806 Solide / Eluat

Spécification des échantillons \$10(1.2-2m)

	Unité	Résultat Limite	Méthode
Benzo(a)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Composés aromatiques			
Benzène	mg/kg Ms	<0,05	ISO 22155
Toluène	mg/kg Ms	<0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	ISO 22155
o-Xylène	mg/kg Ms	<0,050	ISO 22155
Naphtalène	mg/kg Ms	<0,10	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	<0.02	ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	ISO 22155
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	ISO 22155
Hydrocarbures totaux (ISO)			
Fraction aliphatique C5-C6	mg/kg Ms	<0,40	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	conforme à NEN-EN-ISO 16558-1
Lively and the control of the contro	ma/ka Ma	20.0	100 40700

<20,0

<4,0

<4,0

<2,0

TESTING RVA L 005

page 2 de 4

ISO 16703

ISO 16703

ISO 16703

ISO 16703

Fraction C10-C12

Fraction C12-C16

Fraction C16-C20

Hydrocarbures totaux C10-C40

mg/kg Ms

*) mg/kg Ms

*) mg/kg Ms

*) mg/kg Ms

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024

N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764

N° échant. 144806 Solide / Eluat

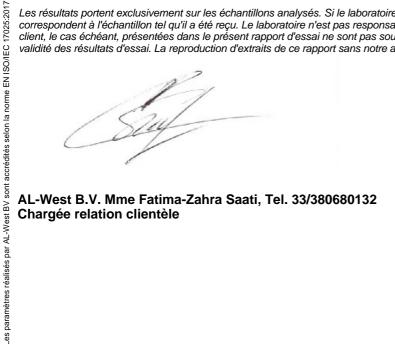
Spécification des échantillons S10(1.2-2m)

	Unité	Résultat Limite	Méthode
Fraction C20-C24	*) mg/kg Ms	<2,0	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	ISO 16703

Polychlorobiphényles

externalisés sont marqués du symbole

Somme 6 PCB	mg/kg Ms	n.d.	NEN-EN 16167				
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	NEN-EN 16167				
PCB (28)	mg/kg Ms	<0,001	NEN-EN 16167				
PCB (52)	mg/kg Ms	<0,001	NEN-EN 16167				
PCB (101)	mg/kg Ms	<0,001	NEN-EN 16167				
PCB (118)	mg/kg Ms	<0,001	NEN-EN 16167				
PCB (138)	mg/kg Ms	<0,001	NEN-EN 16167				
PCB (153)	mg/kg Ms	<0,001	NEN-EN 16167				
PCB (180)	mg/kg Ms	<0,001	NEN-EN 16167				


x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 06.06.2024 Fin des analyses: 13.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1421434 RM240076/CF1002764 **144806** Solide / Eluat N° échant. Spécification des échantillons S10(1.2-2m)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Annexe de N° commande 1421434

CONSERVATION, TEMPS DE CONSERVATION ET FLACONNAGE

Le délai de conservation des échantillons est expiré pour les analyses suivantes :

Benzène	144772, 144773, 144774, 144775,
	144776, 144777, 144778, 144779,
	144780, 144781, 144782, 144783,
	144784, 144785, 144786, 144787,
	144788, 144789, 144790, 144791,
	144792, 144793, 144794, 144795,
	144796, 144797, 144798, 144799,
	144800, 144801, 144802, 144803,
±.*	144804, 144805, 144806
m,p-Xylène	144772, 144773, 144774, 144775,
900	144776, 144777, 144778, 144779,
m,p-Xylène mpt,a mondrés ont mardnés ont m	144780, 144781, 144782, 144783,
s np	144784, 144785, 144786, 144787,
nés	144788, 144789, 144790, 144791,
arqu	144792, 144793, 144794, 144795,
£ E	144796, 144797, 144798, 144799,
social series of the series of	144800, 144801, 144802, 144803,
isés	144804, 144805, 144806
ਾਵੂ Trans-1,2-	144772, 144773, 144774, 144775,
Bichloroéthylène	144778, 144779, 144780, 144781,
	144782, 144783, 144784, 144787,
s et	144788, 144789, 144790, 144791,
dité	144792, 144793, 144794, 144795,
Soré	144796, 144797, 144798, 144801,
n ac	144802, 144803, 144804, 144805,
0	144806
17025:2017. Seuts les paramètres non accrédités et/ou Example 17025:2017. Seuts les paramètres non accrédités et/ou PARAMENTAL PROPRE PARAMENTAL PROPRE PARAMEN	144772, 144773, 144774, 144775,
ਛ >C6-C8	144776, 144777, 144778, 144779,
pag	144780, 144781, 144782, 144783,
<u>es</u>	144784, 144785, 144786, 144787,
sine	144788, 144789, 144790, 144791,
<u>ა</u>	144792, 144793, 144794, 144795,
2017	144796, 144797, 144798, 144799,
25.2	144800, 144801, 144802, 144803,
170	144804, 144805, 144806
	144772, 144773, 144774, 144775,
Somme cis/trans-1,2- Dichloroéthylènes	144778, 144779, 144780, 144781,
Z Z	144782, 144783, 144784, 144787,
Э Н	144788, 144789, 144790, 144791,
шос	144792, 144793, 144794, 144795,
<u>la</u>	144796, 144797, 144798, 144801,
elor	144802, 144803, 144804, 144805,
cedités selon la nome (se selon la nome 1,1-Dichloroéthane	144806
ਰੂੰ 1,1-Dichloroéthane	144772, 144773, 144774, 144775,
O	144778, 144779, 144780, 144781,
sont a	144782, 144783, 144784, 144787,
>> >	144788, 144789, 144790, 144791,
st B	144792, 144793, 144794, 144795,
× e	144796, 144797, 144798, 144801,
AL-	144802, 144803, 144804, 144805,
par	144806
§ Fraction aromatique	144772, 144773, 144774, 144775,
ভূ >C8-C10	144776, 144777, 144778, 144779,
- S	144780, 144781, 144782, 144783,
mèti	144784, 144785, 144786, 144787,
Les paramètres réalisés par AL-West BV Exaction aromatique >C8-C10	144788, 144789, 144790, 144791,
89	

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

Tétrachlorométhane	144792, 144793, 144794, 144795, 144796, 144797, 144798, 144799, 144800, 144801, 144802, 144803, 144804, 144805, 144806 144772, 144773, 144774, 144775, 144778, 144779, 144780, 144781, 144782, 144783, 144784, 144787, 144788, 144789, 144790, 144791, 144792, 144793, 144794, 144795, 144796, 144797, 144798, 144801, 144802, 144803, 144804, 144805,
Fraction >C6-C8	144806 144772, 144773, 144774, 144775, 144776, 144777, 144778, 144779, 144780, 144781, 144782, 144783,
(alongues and mardness sout mardness of the state	144784, 144785, 144786, 144787, 144788, 144789, 144790, 144791, 144792, 144793, 144794, 144795, 144796, 144797, 144798, 144799, 144800, 144801, 144802, 144803, 144804, 144805, 144806 144772, 144773, 144774, 144775, 144776, 144777, 144778, 144779, 144780, 144781, 144782, 144783, 144784, 144785, 144786, 144787, 144788, 144789, 144790, 144791, 144792, 144793, 144794, 144795,
Fraction C5-C10 Fraction C5-C10 Fraction C5-C10 Fraction C5-C10 Fraction C5-C10 Fraction C5-C10 Fraction aromatique Cis-1,2-Dichloroéthène Fraction aromatique >C6-C8	144796, 144797, 144798, 144799, 144800, 144801, 144802, 144803, 144804, 144805, 144806 144772, 144773, 144774, 144775, 144778, 144779, 144780, 144781, 144782, 144783, 144784, 144787, 144788, 144789, 144790, 144791, 144792, 144793, 144794, 144795, 144796, 144797, 144798, 144801, 144802, 144803, 144804, 144805, 144806
EVICATION aromatique >C6-C8 SOVIEC 17025:5:0011: Sonit	144772, 144773, 144774, 144775, 144776, 144777, 144778, 144779, 144780, 144781, 144782, 144783, 144784, 144785, 144786, 144787, 144788, 144789, 144790, 144791, 144792, 144793, 144794, 144795, 144800, 144801, 144802, 144803, 144806, 144805, 144806
Naphtalène	144804, 144805, 144806 144772, 144773, 144774, 144775, 144776, 144777, 144778, 144779, 144780, 144781, 144782, 144783, 144784, 144785, 144786, 144787, 144788, 144789, 144790, 144791, 144792, 144793, 144794, 144795, 144796, 144797, 144798, 144799, 144800, 144801, 144802, 144803, 144804, 144805, 144806
s paramètres réalisés par AL-West BV sont accrédités selon la 1'1'1'1-L'thiopin graph accrédités selon la paramètres réalisés par AL-West BV sont accrédités selon la 1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'	144772, 144773, 144774, 144775, 144778, 144779, 144780, 144781, 144782, 144783, 144784, 144787, 144788, 144789, 144790, 144791, 144792, 144793, 144794, 144795, 144796, 144797, 144798, 144801, 144802, 144803, 144804, 144805, 144806

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110
e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

	Trichloroéthylène	144772, 144773, 144774, 144775,
	•	144778, 144779, 144780, 144781,
		144782, 144783, 144784, 144787,
		144788, 144789, 144790, 144791,
		144792, 144793, 144794, 144795,
		144796, 144797, 144798, 144801,
		144802, 144803, 144804, 144805,
		144806
	1,1-Dichloroéthylène	144772, 144773, 144774, 144775,
		144778, 144779, 144780, 144781,
		144782, 144783, 144784, 144787,
		144788, 144789, 144790, 144791,
		144792, 144793, 144794, 144795
		144796, 144797, 144798, 144801.
		144802, 144803, 144804, 144805
		144806
	Chlamina da Vinida	
*	Chlorure de Vinyle	144772, 144773, 144774, 144775,
- Φ		144778, 144779, 144780, 144781,
g		144782, 144783, 144784, 144787,
syn		144788, 144789, 144790, 144791,
큥		144792, 144793, 144794, 144795,
és		144796, 144797, 144798, 144801,
ııdı		144802, 144803, 144804, 144805
E		144806
ont	1,2-Dichloroéthane	144772, 144773, 144774, 144775,
és s	1,2-Dicilior detriane	144778, 144779, 144780, 144781,
alis		
em		144782, 144783, 144784, 144787,
ext		144788, 144789, 144790, 144791,
no/		144792, 144793, 144794, 144795
set		144796, 144797, 144798, 144801,
dité		144802, 144803, 144804, 144805,
EC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole		144806
ac	Dichlorométhane	144772, 144773, 144774, 144775,
nor		144778, 144779, 144780, 144781,
res		144782, 144783, 144784, 144787
πèt		144788, 144789, 144790, 144791
arai		144792, 144793, 144794, 144795
Sp		144796, 144797, 144798, 144801,
S		144802, 144803, 144804, 144805
Seu		
7.		144806
201	o-Xylène	144772, 144773, 144774, 144775,
25:		144776, 144777, 144778, 144779,
17		144780, 144781, 144782, 144783,
EC		144784, 144785, 144786, 144787,
180/		144788, 144789, 144790, 144791,
9		144792, 144793, 144794, 144795,
Ē		144796, 144797, 144798, 144799
Ĕ		144800, 144801, 144802, 144803
a N		144804, 144805, 144806
'n	Ethylhonzòno	144772, 144773, 144774, 144775,
selc	Ethylbenzène	
tés		144776, 144777, 144778, 144779,
édii		144780, 144781, 144782, 144783,
accr		144784, 144785, 144786, 144787
ij		144788, 144789, 144790, 144791,
)SC		144792, 144793, 144794, 144795,
ξ		144796, 144797, 144798, 144799
Ves		144800, 144801, 144802, 144803,
-		144804, 144805, 144806
ar A	Somme Xylènes	144772, 144773, 144774, 144775,
Š	23	144776, 144777, 144778, 144779,
ilisé		144780, 144781, 144782, 144783,
éa		144784, 144785, 144786, 144787, 144787, 144787, 144787, 144788, 144787,
_		
res		
mètres r		144788, 144789, 144790, 144791,
paramètres réalisés par AL-West BV sont accrédités selon la norme EN		

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands

144796, 144797, 144798, 144799,

Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

144800, 144801, 144802, 144803, 144804, 144805, 144806 1,1,2-Trichloroéthane 144772, 144773, 144774, 144775, 144778, 144779, 144780, 144781, 144782, 144783, 144784, 144787, 144788, 144789, 144790, 144791, 144792, 144793, 144794, 144795, 144796, 144797, 144798, 144801, 144802, 144803, 144804, 144805, 144806 **Trichlorométhane** 144772, 144773, 144774, 144775, 144778, 144779, 144780, 144781, 144782, 144783, 144784, 144787, 144788, 144789, 144790, 144791, 144792, 144793, 144794, 144795, 144796, 144797, 144798, 144801, symbole " *) 144802, 144803, 144804, 144805, 144806 Fraction aliphatique 144772, 144773, 144774, 144775, 144776, 144777, 144778, 144779, 144780, 144781, 144782, 144783, >C8-C10 144784, 144785, 144786, 144787, 144788, 144789, 144790, 144791, externalisés sont 144792, 144793, 144794, 144795, 144796, 144797, 144798, 144799, 144800, 144801, 144802, 144803, 144804, 144805, 144806 Fraction aliphatique 144772, 144773, 144774, 144775, 144776, 144777, 144778, 144779, 144780, 144781, 144782, 144783, C5-C6 paramètres non accrédités 144784, 144785, 144786, 144787, 144788, 144789, 144790, 144791, 144792, 144793, 144794, 144795, 144796, 144797, 144798, 144799, 144800, 144801, 144802, 144803, 144804, 144805, 144806 ISO/IEC 17025:2017. Seuls les Tétrachloroéthylène 144772, 144773, 144774, 144775, 144778, 144779, 144780, 144781, 144782, 144783, 144784, 144787, 144788, 144789, 144790, 144791, 144792, 144793, 144794, 144795, 144796, 144797, 144798, 144801, 144802, 144803, 144804, 144805, 144806 Fraction C8-C10 144772, 144773, 144774, 144775, H 144776, 144777, 144778, 144779, accrédités selon la norme 144780, 144781, 144782, 144783, 144784, 144785, 144786, 144787, 144788, 144789, 144790, 144791, 144792, 144793, 144794, 144795, 144796, 144797, 144798, 144799, 144800, 144801, 144802, 144803, 144804, 144805, 144806 Toluène 144772, 144773, 144774, 144775, paramètres réalisés par AL-West BV 144776, 144777, 144778, 144779, 144780, 144781, 144782, 144783, 144784, 144785, 144786, 144787, 144788, 144789, 144790, 144791, 144792, 144793, 144794, 144795, 144796, 144797, 144798, 144799, 144800, 144801, 144802, 144803, 144804, 144805, 144806

page 4 de 4

Annexe 9 Synthèse des résultats dans les sols

Nos references : RM240076_ICADE_RUNGIS_RDB_V2

Décimation de l'échantille	N9			S4 (0.02																										
Désignation de l'échantillo Sondage (Profondeur en m/s		Critères de de ASPITET	<u> </u>	S1 (0,03- 0,7m)	S1 (1-2m)	S1(2-3m)	S1(3-3,5m)	S1(4-5m)	S1(5-6m)	S2(0,3-1m)	S2(1-2m)	S2(2-2,8m)	S3(0,05-1)	S3(1-2m)	S3(2-3m)	S3(3-4m)	S3(4,3-5m)	S3(5-6m)	S4(0,1-1m)	S4(1-1.8m)	S5(0,1-1m)	S5(1-2m)	S6(0.07-1m)	S6(1-2m)	S7(0,1-1m)	S7(1-2m)	S8(0.15-1m)	S8(1-2m)	S8(2-3m)	S8(3-4m)
Date de prélevement		Gamme de	Arrêté du 12/12/2014	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024
	PID (ppmV)	valeurs couramment	Déchets inertes (admission en	0	0,1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Indice organoleptique	Odeur	observées dans les sols	ISDI)	Non																										
	Aspect	"ordinaires" de toutes	L/S =10 l/kg	RAS																										
Analyse sur échantillon "bru Paramètres généraux	ıt"																													
Matière sèche Métaux et métalloïdes	%			89,7	84,1	78,7	78,4	78	77,1	84,9	83,4	77,7	85,6	78,5	76,4	59,7	75,1	72,3	80,9	78,9	89,7	83,2	84,9	84,9	86,8	83,2	82,1	75,8	80	68,3
Arsenic (As) Cadmium (Cd)	mg/kg MS mg/kg MS	1,0 - 25,0 0,05 - 0,45		2,7 <0,1	5,5 <0,1	7,7 <0,1	13 <0.2			9,7 <0.1	16 <0.1	4,6 <0.1	6,1 <0.1	4,6 <0.1	12 <0.1	18 <0.1			3,2 <0,1	8,2 <0.1	4,8 <0,1	2,9 <0.1	5 <0.1	3,7 0.1	4 <0.1	5,6 <0,1	4 <0.1	7 <0.1	7,5 <0.1	12 0.1
Chrome total (Cr) Cuivre (Cu)	mg/kg MS mg/kg MS	10,0 - 90,0 2,0 - 20,0		5,2 2,3	1,7 2,6	11 22	16			4 8,6	3,5 5,4	1,8 1,4	5,3 1,9	2,2 1,4	6,3 12	20 51			2,8	4,5 3,8	9,4 4,1	0,4	8,6 3,4	13 19	4,5 1	1,8 1,4	5,5 2,9	0,7	2,7 3,7	13 35
Mercure (Hg) Nickel (Ni)	mg/kg MS mg/kg MS	0,02 - 0,10 2,0 - 60,0		<0,05 3,3	<0,05 1,3	<0,05 7,7	<0,05 15			<0,05 4,3	<0,05 4,6	<0,05 1,4	<0,05 3,5	<0,05 1,6	<0,05 6	<0,05 21			<0,05 3,8	<0,05 4,4	<0,05 5,8	<0,05 1,2	<0,05 5	<0,05 8,1	<0,05 2,3	<0,05 2,1	<0,05 4	<0,05 0,9	<0,05 2,4	<0,05 12
Plomb (Pb) Zinc (Zn)	mg/kg MS mg/kg MS	9,0 - 50,0 10 - 100		4,3 7,3	1,6 4	10 24	14 34			3,4 7,1	1,5 6,1	1 2,6	2,1 4,1	1,4 3,2	2,9 11	26 57			1,8 3,7	1,9 4,2	6,1 12	1,1 1,7	11 10	9,2 28	4,1 4,2	1,8 2,5	3,2 7,5	1 1,3	2 5	18 34
BETEX Benzène	mg/kg MS			<0,050	<0,050	<0,050	<0,050	<0,05	<0,05	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,05	<0,05	<0,050	<0,050	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,050	<0,050	<0,050	<0,050
Toluène Ethylbenzène	mg/kg MS mg/kg MS			<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,05 <0,05	<0,05 <0,05	<0,050 <0,050	<0,05 <0,05	<0,05 <0,05	<0,050 <0,050	<0,050 <0,050	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050						
m.p-Xylène o-Xylène	mg/kg MS mg/kg MS		6	<0,10 <0,050																										
Somme des BTEX Hydrocarbures volatils Eraction alignatique C5-C6	mg/kg MS		0	n.d.	n.d. <0.40	n.d.	n.d. <0.40	n.d.	n.d.	n.d.	n.d.	n.d.	n.d. <0.40																	
Fraction aliphatique C5-C6 Fraction aliphatique C6-C8 Fraction aliphatique C8-C10	mg/kg MS mg/kg MS mg/kg MS			<0,40	<0,40 <0,20 <0.20	<0,40	<0,40 <0,20 <0.20	<0,40 <0,20 <0.20	<0,40 <0,20 <0.20	<0,40 <0,20 <0.20	<0,40 <0,20 <0.20	<0,40 <0,20 <0.20																		
Fraction aromatique C6-C8 Fraction aromatique C8-C10	mg/kg MS mg/kg MS			<0,20 <0,20 <0.20	<0,20	<0,20 <0,20 <0.20	<0,20 <0,20 <0.20	<0,20 <0,20 <0.20	<0,20 <0,20 <0.20	<0,20 <0,20 <0.20	<0,20 <0,20 <0.20																			
Fraction 26-C8 Fraction C8-C10	mg/kg MS mg/kg MS			<0,20 <0,40 <0.40	<0,40 <0.40	<0,40 <0,40	<0,20 <0,40 <0.40	<0,20 <0,40 <0.40	<0,20 <0,40 <0.40	<0,20 <0,40 <0.40	<0,20 <0,40 <0.40	<0,20 <0,40 <0.40	<0,40 <0.40	<0,20 <0,40 <0.40	<0,20 <0,40 <0.40	<0,20 <0,40 <0.40	<0,20 <0,40 <0.40	<0,20 <0,40 <0.40	<0,40 <0.40	<0,20 <0,40 <0.40	<0,20 <0,40 <0.40	<0,20 <0,40 <0.40	<0,20 <0,40 <0.40							
Somme HC C5-C10 Hydrocarbures C10-C40	mg/kg MS			<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0
Fraction C10-C12	mg/kg MS			<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0
Fraction C12-C16 Fraction C16-C20	mg/kg MS mg/kg MS			<4,0 <2,0	<4,0 3,10	<4,0 <2,0	<4,0 <2,0	<4,0 <2,0	<4,0 <2,0	<4,0 4,00	<4,0 <2,0	<4,0 3,00	<4,0 <2,0																	
Fraction C20-C24 Fraction C24-C28	mg/kg MS mg/kg MS			2,60 5,10	<2,0 <2,0	2,70 2,80	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0	5,20 9,00	<2,0 2,70	<2,0 <2,0	3,00 3,50	<2,0 <2,0															
Fraction C28-C32 Fraction C32-C36	mg/kg MS mg/kg MS			6,60 6,00	<2,0 <2,0	<2,0 2,50	2,80 <2,0	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0	11,00 10,40	4,20 4,20	<2,0 <2,0	<2,0 <2,0	3,10 3,80	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0	3,80 3,00	<2,0 <2,0							
Fraction C36-C40 Somme HC C10-C40	mg/kg MS mg/kg MS		500	2,50 26,60	<2,0 <20,0	5,20 50,30	3,00 <20,0	<2,0 <20,0	<2,0 <20,0	3,30 <20,0	<2,0 <20,0																			
Naphtalène	mg/kg MS			<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtylène Acénaphtène	mg/kg MS mg/kg MS			<0,050 <0,050	<0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050																			
Fluorène Phénanthrène Anthracène	mg/kg MS mg/kg MS mg/kg MS			<0,050 <0,050 <0.050																										
Fluoranthène Pyrène	mg/kg MS mg/kg MS mg/kg MS			<0,050	<0,050	<0,050	<0,050	<0,050 <0,050 <0.050	<0,050	0,069	<0,050 <0,050 <0.050	<0,050 <0,050 <0.050	<0,050 <0,050 <0.050	<0,050 <0,050 <0.050	<0,050 <0,050 <0.050	<0,050 <0,050 <0.050	<0,050	<0,050 <0,050	0,12	<0,050 <0,050 <0.050	<0,050 <0,050	<0,050 <0,050 <0.050	<0,050 <0,050 <0.050	<0,050	<0,050	<0,050 <0,050 <0.050	<0,050	<0,050 <0,050 <0.050	<0,050 <0,050 <0.050	<0,050 <0,050
Benzo(a)anthracène Chrysène	mg/kg MS mg/kg MS			<0,050	<0,050	<0,050 <0,050 <0.050	<0,050 <0.050	<0,050 <0,050 <0.050	<0,050 <0,050 <0.050	<0,050 <0,050 <0.050	<0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050 <0.050	<0,050 <0,050 <0.050	<0,050	<0,050 <0,050	0,089	<0,050 <0.050	<0,050 <0,050 <0.050	<0,050 <0,050 <0.050	<0,050 <0,050 <0.050	<0,050 <0,050 <0.050	<0,050 <0.050	<0,050 <0,050 <0.050	<0,050 <0,050 <0.050	<0,050 <0,050 <0.050	<0,050 <0,050 <0.050	<0,050 <0.050
Benzo(b)fluoranthène Benzo(k)fluoranthène	mg/kg MS mg/kg MS			<0,050 <0,050	0,12 <0,050	<0,050 <0,050																								
Benzo(a)pyrène Dibenzo(a.h)anthracène	mg/kg MS mg/kg MS			<0,050 <0,050	0,11 <0,050	<0,050 <0,050																								
Benzo(g.h.i)pérylène Indéno(1.2.3-cd)pyrène	mg/kg MS mg/kg MS			<0,050 <0,050	0,12 0,1	<0,050 <0,050																								
Somme des 16 HAP (EPA) COHV	mg/kg MS		50	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0,069	n.d.	0,857	n.d.																	
Chlorure de Vinyle Dichlorométhane	mg/kg MS mg/kg MS			<0,02 <0,05	<0,02 <0,05	<0,02 <0,05	<0,02 <0,05			<0,02 <0,05			<0,02 <0,05																	
Trichlorométhane (ou chlorofo Tétrachlorométhane (ou tétrac	chl mg/kg MS			<0,05 <0,05	<0,05	<0,05 <0,05	<0,05 <0,05			<0,05 <0,05			<0,05 <0,05																	
Trichloroéthylène Tétrachloroéthylène 1.1-Dichloroéthylène	mg/kg MS mg/kg MS			<0,05 <0,05	<0,05 <0,05	<0,05 <0,05 <0.05	<0,05 <0,05			<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05	<0,05 <0,05 <0.05	<0,05 <0,05 <0.05	<0,05 <0,05			<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05 <0.05	<0,05 <0,05 <0.05	<0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05 <0.05	<0,05 <0,05 <0.05
1.1.1-Trichloroéthane 1.1.2-Trichloroéthane	mg/kg MS mg/kg MS			<0,05 <0,05 <0.10	<0,05 <0,05 <0.10	<0,05 <0,05 <0.10	<0,05 <0,05 <0.10			<0,05 <0,05 <0.10			<0,05 <0,05 <0.10	<0,05 <0,05																
1.1-Dichloroéthane 1.2-Dichloroéthane	mg/kg MS mg/kg MS mg/kg MS			<0,10 <0,05 <0.10	<0,10 <0,05 <0.10	<0,10 <0,05 <0.10	<0,10 <0,05 <0.10			<0,10 <0,05 <0.10			<0,10 <0,05 <0.10																	
cis-Dichloroéthylène (cDCE) Trans-Dichloroéthylène (tDCE)	mg/kg MS mg/kg MS			<0,10 <0,025 <0,025	<0,10 <0,025 <0,025	<0,025 <0,025	<0,025 <0,025			<0,10 <0,025 <0,025	<0,025	<0,025 <0,025	<0,025 <0,025	<0,025 <0,025	<0,10 <0,025 <0,025	<0,10 <0,025 <0,025			<0,10 <0,025 <0,025	<0,025 <0,025	<0,10 <0,025 <0,025	<0,025 <0,025	<0,10 <0,025 <0,025	<0,025	<0,025 <0,025	<0,025 <0,025	<0,025 <0,025	<0,10 <0,025 <0,025	<0,10 <0,025 <0,025	<0,025 <0,025
Somme cDCE + tDCE Somme des COHV	mg/kg MS mg/kg MS			n.d.	n.d.	n.d.	n.d.			n.d.			n.d.																	
PCB (28)	mg/kg MS			<0,001	<0,001	<0,001	<0,001			<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001			<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (52) PCB (101)	mg/kg MS mg/kg MS			<0,001 0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001			<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001			<0,001 <0,001	<0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001						
PCB (118) PCB (138)	mg/kg MS mg/kg MS			<0,001 0,004	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001			<0,001 0,001	<0,001 <0,001	<0,001 0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001			<0,001 <0,001	<0,001 <0,001	<0,001 0,009	<0,001 <0,001	<0,001 0,004	<0,001 <0,001						
PCB (153) PCB (180)	mg/kg MS mg/kg MS			0,004 0,004	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001			0,001 0,001	<0,001 <0,001	0,001 0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001			<0,001 <0,001	<0,001 <0,001	0,012 0,011	0,001 <0,001	0,004 0,006	<0,001 <0,001						
Somme 7 PCB Analyse sur éluat	mg/kg MS		1	0,013	n.d.	n.d.	n.d.			0,003	n.d.	0,003	n.d.	n.d.	n.d.	n.d.			n.d.	n.d.	0,032	0,001	0,014	n.d.						
Métaux et métalloïdes cumu Antimoine (Sb) cumulé	lés mg/kg MS		0,06	<0,05	<0,05	<0,05	<0,05			<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05			<0,05	<0,05							<0,05	<0,05	<0,05	<0,05
Arsenic (As) cumulé Baryum (Ba) cumulé	mg/kg MS mg/kg MS		0,50 20	<0,05 <0,1	<0,05 <0,1	<0,05 <0,1	<0,05 <0,1			<0,05 <0,1			<0,05 <0,1	<0,05 <0,1							<0,05 <0,1	<0,05 <0,1	<0,05 <0,1	<0,05 <0,1						
Cadmium (Cd) cumulé Chrome total (Cr) cumulé	mg/kg MS mg/kg MS		0,04 0,50	<0,001 <0,02	0,002 <0,02	<0,001 <0,02	<0,001 <0,02			<0,001 <0,02	<0,001 <0,02	<0,001 <0,02	<0,001	<0,001 <0,02	<0,001 <0,02	<0,001 <0,02			<0,001 <0,02	0,002 <0,02							<0,001 <0,02	<0,001 <0,02	<0,001 <0,02	<0,001 <0,02
Cuivre (Cu) cumulé Mercure (Hg) cumulé	mg/kg MS mg/kg MS		2 0,01	<0,02 <0,0003	<0,02 <0,0003	<0,02 <0,0003	<0,02 <0,0003			<0,02 <0,0003	<0,02 <0,0003	<0,02 <0,0003	<0,02 <0,0003	<0,02 <0,0003	<0,02 <0,0003	0,03 <0,0003			<0,02 <0,0003	<0,02 <0,0003							0,02 <0,0003	<0,02 <0,0003	<0,02 <0,0003	<0,02 <0,0003
Molybdène (Mo) cumulé Nickel (Ni) cumulé	mg/kg MS mg/kg MS		0,50 0,40	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05			<0,05 <0,05			<0,05 <0,05	<0,05 <0,05							<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05						
Plomb (Pb) cumulé Sélénium (Se) cumulé	mg/kg MS mg/kg MS		0,50 0,10	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05			<0,05 <0,05			<0,05 <0,05	<0,05 <0,05							<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05						
Zinc (Zn) cumulé	mg/kg MS		4	<0,02	0,02	<0,02	<0,02			<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02			<0,02	<0,02							<0,02	<0,02	<0,02	<0,02
Sulfates cumulé** Chlorures cumulé**	mg/kg MS mg/kg MS		1 000 800	69	66	95 32	83 53			< 50 24	< 10	54 42	< 50 15	150 < 10	< 50 13	< 50 18			84 < 10	93							< 50 < 10	55 < 10	< 50 < 10	87 11
Fraction soluble cumulé** COT cumulé	mg/kg MS mg/kg MS		4 000 500	< 1000 < 200	< 1000 < 200	< 1000 < 200	< 1000 < 200			< 1000 < 200			< 1000 < 200	< 1000 < 200							< 1000 < 200	< 1000 < 200	< 1000 < 200	< 1000 < 200						
Fluorures cumulé Indice phénol cumulé	mg/kg MS mg/kg MS		10 1	4 < 0,2	3 < 0,2	5 < 0,2	5 < 0,2			6 < 0,2	< 0,2	4 < 0,2	3 < 0,2	2 < 0,2	3 < 0,2	5 < 0,2			7 < 0,2	5 < 0,2							6 < 0,2	6 < 0,2	5 < 0,2	5 < 0,2
																-														

Rapport de base

Désignation de l'échantillon		Critàres de d	comparaison	S8(4.2-5m)	S8(5-6m)	S9(0,1-1m)	S9(1-2m)	S9(2-2,7m)	S10(0-0,8m)	S10(0,8-1,2m)	\$10/1 2-2m\
Sondage (Profondeur en m/so	ol)	ASPITET ASPITET	Arrêté du	` ′	` ′		` ′				
Date de prélevement		Gamme de	12/12/2014	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024
	PID (ppmV)	valeurs couramment	Déchets inertes (admission en	0	0	0	0	0	0	0	0
Indice organoleptique	Odeur	observées dans les sols	ISDI)	Non							
	Aspect	"ordinaires" de toutes	L/S =10 l/kg	RAS							
Analyse sur échantillon "brut Paramètres généraux											
Matière sèche Métaux et métalloïdes	%			73,3	69,6	87,9	82,4	79,2	89,2	87,6	88,1
Arsenic (As) Cadmium (Cd)	mg/kg MS mg/kg MS	1,0 - 25,0 0,05 - 0,45				7,6 <0,1	5,8 <0,1	4,6 <0,1	3,2 0,1	17 0,2	5,5 0,1
Chrome total (Cr) Cuivre (Cu) Morgano (Hg)	mg/kg MS mg/kg MS	10,0 - 90,0 2,0 - 20,0				6,2	12 5,8	8,9 4,8	25 4,3	16 5,3	4,2 2,1
Mercure (Hg) Nickel (Ni) Plomb (Pb)	mg/kg MS mg/kg MS mg/kg MS	0,02 - 0,10 2,0 - 60,0 9,0 - 50,0				<0,05 5,6 2,9	<0,05 6,2 3,3	<0,05 4,9 2,4	<0,05 10 6,9	<0,05 13 6	<0,05 3,3 5,7
Zinc (Zn) BTEX	mg/kg MS	10 - 100				6,4	9,3	8,4	19	17	5,4
Benzène Toluène	mg/kg MS mg/kg MS			<0,05 <0,05							
Ethylbenzène m.p-Xylène	mg/kg MS mg/kg MS			<0,05 <0,10							
o-Xylène Somme des BTEX	mg/kg MS mg/kg MS		6	<0,050 n.d.							
Hydrocarbures volatils Fraction aliphatique C5-C6	mg/kg MS			<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40
Fraction aliphatique C6-C8 Fraction aliphatique C8-C10	mg/kg MS mg/kg MS			<0,20 <0,20	<0,20	<0,20 <0,20	<0,20	<0,20 <0,20	<0,20	<0,20 <0,20	<0,20 <0,20
Fraction aromatique C6-C8 Fraction aromatique C8-C10 Fraction 2 C6 C8	mg/kg MS mg/kg MS			<0,20 <0,20	<0,20 <0,20	<0,20	<0,20	<0,20	<0,20 <0,20	<0,20 <0,20	<0,20
Fraction >C6-C8 Fraction C8-C10	mg/kg MS mg/kg MS			<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40 <0,40	<0,40
Somme HC C5-C10 Hydrocarbures C10-C40	mg/kg MS			<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0
Fraction C10-C12 Fraction C12-C16	mg/kg MS mg/kg MS			<4,0 <4,0							
Fraction C16-C20 Fraction C20-C24	mg/kg MS mg/kg MS			<2,0 <2,0	<2,0 <2,0	2,80 <2,0	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0
Fraction C24-C28 Fraction C28-C32	mg/kg MS mg/kg MS			<2,0 <2,0 <2,0							
Fraction C32-C36 Fraction C36-C40	mg/kg MS mg/kg MS			<2,0 <2,0							
Somme HC C10-C40 HAP	mg/kg MS		500	<20,0	<20,0	<20,0	<20,0	<20,0	<20,0	<20,0	<20,0
Naphtalène Acénaphtylène	mg/kg MS mg/kg MS			<0,050 <0,050							
Acénaphtène Fluorène	mg/kg MS mg/kg MS			<0,050 <0,050							
Phénanthrène Anthracène	mg/kg MS mg/kg MS			<0,050 <0,050	0,13 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050
Fluoranthène Pyrène Benzo(a)anthracène	mg/kg MS mg/kg MS mg/kg MS			<0,050 <0,050 <0,050	0,17 0,11 <0,050	<0,050 <0,050 <0,050	<0,050 <0,050 <0,050	<0,050 <0,050 <0,050	<0,050 <0,050 <0,050	<0,050 <0,050 <0,050	<0,050 <0,050 <0,050
Chrysène Benzo(b)fluoranthène	mg/kg MS mg/kg MS			<0,050 <0,050 <0,050							
Benzo(k)fluoranthène Benzo(a)pyrène	mg/kg MS mg/kg MS			<0,050 <0,050	<0,050 <0,050	<0,050 <0,050 <0,050	<0,050 <0,050 <0,050	<0,050 <0,050 <0,050	<0,050 <0,050 <0,050	<0,050 <0,050 <0,050	<0,050 <0,050 <0,050
Dibenzo(a.h)anthracène Benzo(g.h.i)pérylène	mg/kg MS mg/kg MS			<0,050 <0,050							
Indéno(1.2.3-cd)pyrène Somme des 16 HAP (EPA)	mg/kg MS mg/kg MS		50	<0,050 n.d.	<0,050 0,41	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.
COHV Chlorure de Vinyle	mg/kg MS					<0,02	<0,02	<0,02	<0,02	<0,02	<0,02
Dichlorométhane Trichlorométhane (ou chloroform	0					<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05
Tétrachlorométhane (ou tétrach Trichloroéthylène	mg/kg MS					<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05
Tétrachloroéthylène 1.1-Dichloroéthylène 1.1.1-Trichloroéthane	mg/kg MS mg/kg MS mg/kg MS					<0,05 <0,05 <0,05	<0,05 <0,05 <0,05	<0,05 <0,05 <0,05	<0,05 <0,05 <0,05	<0,05 <0,05 <0,05	<0,05 <0,05 <0,05
1.1.2-Trichloroéthane 1.1-Dichloroéthane	mg/kg MS mg/kg MS					<0,10 <0,05	<0,10 <0,05	<0,10 <0,05	<0,10 <0,05	<0,10 <0,05	<0,10 <0,05
1.2-Dichloroéthane cis-Dichloroéthylène (cDCE)	mg/kg MS mg/kg MS					<0,10 <0,025	<0,10 <0,025	<0,10 <0,025	<0,10 <0,025	<0,10 <0,025	<0,10 <0,025
Trans-Dichloroéthylène (tDCE) Somme cDCE + tDCE	mg/kg MS mg/kg MS					<0,025 n.d.	<0,025 n.d.	<0,025 n.d.	<0,025 n.d.	<0,025 n.d.	<0,025 n.d.
Somme des COHV PCB	mg/kg MS										
PCB (28) PCB (52)	mg/kg MS mg/kg MS					<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001
PCB (101) PCB (118)	mg/kg MS mg/kg MS					<0,001 <0,001	<0,001	<0,001 <0,001	<0,001	<0,001 <0,001	<0,001
PCB (138) PCB (153)	mg/kg MS mg/kg MS					<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001
PCB (180) Somme 7 PCB	mg/kg MS mg/kg MS		1			<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.
Analyse sur éluat Métaux et métalloïdes cumulé											
Antimoine (Sb) cumulé Arsenic (As) cumulé	mg/kg MS mg/kg MS		0,06 0,50								
Baryum (Ba) cumulé Cadmium (Cd) cumulé Chrome total (Cr) cumulé	mg/kg MS mg/kg MS		0,04 0,50								
Cuivre (Cu) cumulé Mercure (Hg) cumulé	mg/kg MS mg/kg MS mg/kg MS		0,50 2 0,01								
Molybdène (Mo) cumulé Nickel (Ni) cumulé	mg/kg MS mg/kg MS		0,50 0,40								
Plomb (Pb) cumulé Sélénium (Se) cumulé	mg/kg MS mg/kg MS		0,40 0,50 0,10								
Zinc (Zn) cumulé	mg/kg MS		4								
Sulfates cumulé** Chlorures cumulé**	mg/kg MS mg/kg MS		1 000 800								
Fraction soluble cumulé** COT cumulé	mg/kg MS mg/kg MS		4 000 500								
Fluorures cumulé Indice phénol cumulé	mg/kg MS mg/kg MS		10 1								
<u> </u>											

Annexe 9 : Synthèse des résultats dans les sols

Annexe 10 Coupes des piézomètres

Nos references : RM240076_ICADE_RUNGIS_RDB_V2

ICADE - RUNGIS (94)

Date: 06/06/2024 Outil forage: Tarière Profondeur: 0,00 - 6,00 m

Piézomètre : Pz1

		<u> </u>	iezometre : Pz	<u> </u>		
Profondeur (m)	Lithologie	Observations organoleptiques: (Odeur, Couleur suspecte)	Mesure PID (ppmV)	Tubage	Equipement forage	Niveau d'eau
0	Enrobé Sable beige ocre Marne			Tube PEHD plein Ø52/60mm	Coulis (injection 0,30 ngravitaire)	
1-	Calcaire beige dur Alternance de blocs centimétriqu				Bentonite (injection graviaire)	
2-	es marneux et calcaire beige				2,00 m	
3-	Calcaire beige dur	Ø	0	Crépine Ø52/60mm		
4-	Marne beige Calcaire beige dur				Graviers	07/06/2024 86 B E B
5 –	Marne beige					0
6	Argile verte			6,00 m	6,00 m	

ICADE - RUNGIS (94)

Date: 06/06/2024 Outil forage: Tarière Profondeur: 0,00 - 6,00 m

Piézomètre : Pz2

		<u> </u>	iezometre : PZZ			
Profondeur (m)	Lithologie	Observations organoleptiques: (Odeur, Couleur suspecte)	Mesure PID (ppmV)	Tubage	Equipement forage	Niveau d'eau
0	Enrobé limon marron				Coulis (injection 0,30 ngravitaire)	
1-				Tube PVC plein Ø52/60mm	Bentonite (injection gravitaire)	
2-	Marne beige			2,00 m	2,00 m	
3		- Ø	0			07/06/2024 8
4-	Calcaire beige dur			Crépine Ø52/60mm	Graviers	
5 –	Argile verte compacte					
6				6,00 m	6,00 m	

ICADE - RUNGIS (94)

Date: 05/06/2024 Outil forage: Tarière Profondeur: 0,00 - 6,00 m

Piézomètre : Pz3

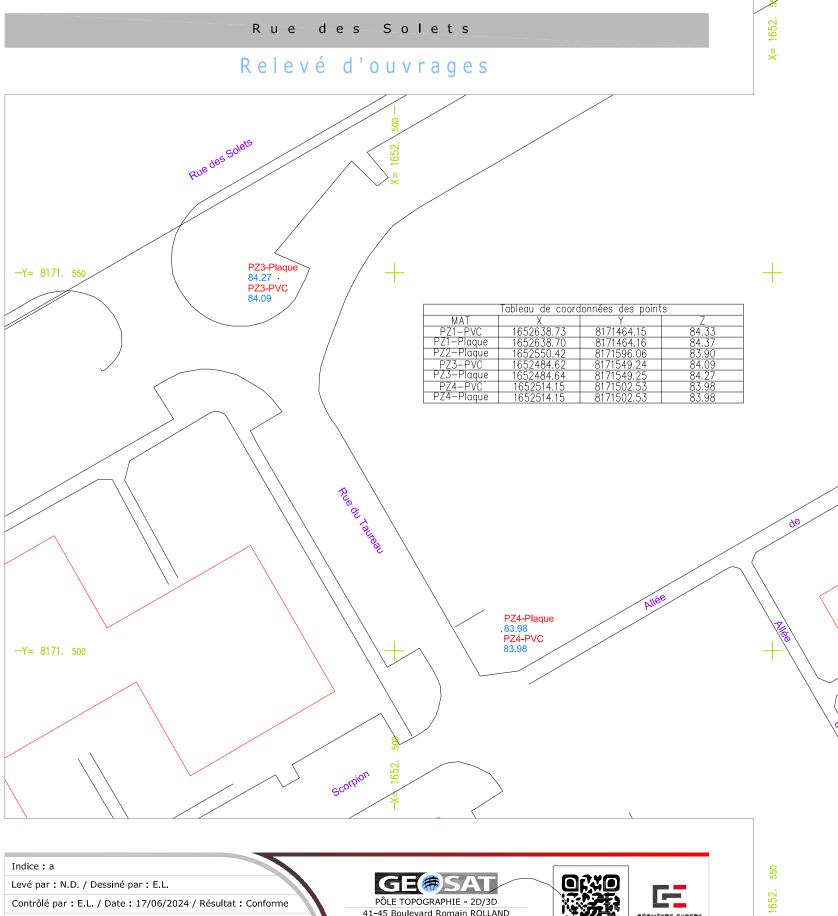
		•	iezometre : PZ	•		
Profondeur (m)	Lithologie	Observations organoleptiques: (Odeur, Couleur suspecte)	Mesure PID (ppmV)	Tubage	Equipement forage	Niveau d'eau
0	Limon			Tube PVC plein Ø52/60mm	Coulis (injection 0,30 ngravitaire) Bentonite (injection gravitaire)	
2-	Marne beige marron			2,00 m	1,50 m 2,00 m	
3 –	Marne beige	Ø	0			
4-	Marne beige	_		Crépine Ø52/60mm	Graviers	3, <mark> </mark> 3,7106/2024 8
5-	Argile verte compacte					
6				6,00 m	6,00 m	

ICADE - RUNGIS (94)

Date: 05/06/2024 Outil forage: Tarière Profondeur: 0,00 - 6,00 m

Piézomètre : Pz4

			iezometre : P24	-		
Profondeur (m)	Lithologie	Observations organoleptiques: (Odeur, Couleur suspecte)	Mesure PID (ppmV)	Tubage	Equipement forage	Niveau d'eau
0	Limon marron				Coulis (injection 0,30 ngravitaire)	
1-	Limon marron à nodules calcaire			Tube PVC plein Ø52/60mm	Bentonite (injection gravitaire)	
2-	Limon			2,00 m	2,00 m	
3 -	marron verdâtre à nodules calcaires Marne beige blanchâtre Limon argileux	Ø	0			
4 -	marron à nodules calcaire Marne beige humide			Crépine Ø52/60mm	Graviers	3,71 H 87/06/2024 H 8
5 -	Argile verte compacte					
6	~~~~			6,00 m	6,00 m	



Annexe 11 Rapport de nivellement des piézomètres

Nos references : RM240076_ICADE_RUNGIS_RDB_V2

DEPARTEMENT DU VAL-DE-MARNE COMMUNE DE RUNGIS

Chantier: DIE REMEDIATION Dossier: Date Echelle: 242959 14/06/2024 1/500

Système planimétrique : RGF93 - Lambert 93 CC49 Système altimétrique : NGF par GNSS

Y= 8171. 600

Annexe 12 Fiches de prélèvement des eaux souterraines

réalisé ?

Non

Blanc de matériel :

Fiche de prélèvement des eaux souterraines Selon la norme NF X 31-615 - Prélèvement et échantillonnage des eaux souterraines sur des sites contaminés

Date de prélèvement : 14/06/2024

N° affaire: RM240076

Client: ARCADIS / ICADE Département: 94 Nom du site: Icade Rungis Commune: Rungis Nom du chargé de réalisation : C. Milard Caractéristiques de l'ouvrage contrôlé Date de réalisation de Nom de l'ouvrage : Pz1 06/06/2024 <u>l'ouvrage :</u> Profondeur initiale de Ouvrage Type d'ouvrage : Piézomètre l'ouvrage (m/rep): Icade Rungis Localisation 8171464,15 X: 1652638,73 Υ: Système de projection : Lambert 93 CC49 lype de protection de Bouche à cléf ras de sol Nature du tubage: PVC surface : Cote du dispositif de Cote au sommet au tube interieur (m NGF Equipement 84,33 84,37 protection (m NGF) Diamètre int/ext du tubage (mm) : 52/60 Position de la crépine : 2-6 m Etat/Etanchéité de surface : Bon Remarques générales Photographie de sur l'ouvrage : l'ouvrage : Mesures avant prélèvement lauteur du repere Origine des mesures : Bouche à clef Références des mesures: Date de la mesure : 14/06/2024 10h05 Heure de la mesure : Valeur PID à l'ouverture (ppmV) : Epaisseur de flottant Niveau de flottant (m/rep) : Mesures avant purge: (cm) : Hauteur d'eau dans Niveau d'eau (m/rep) : 3,98 1,97 l'ouvrage (m) : Volume d'eau dans 5,95 4,2 Profondeur de l'ouvrage (m/rep) : Ecrémage manuel avant prélèvement, prélèvement de flottant Méthode d'écrémage : Volume écrémé (l) : Designation de l'echantillon de flottant Echantillonnage flottant (Oui/Non): l'échantillonnage des Purge de l'ouvrage avant prélèvement viotif si purge non Twister 12V Mode de purge : Type de pompe : Statique réalisée : Debit moyen de purge Mode de traitement Duree de la purge CA 10 (l/min): des eaux de purge Niveau d'éau apres 5,41 Abattement mesuré (m) : 1,43 Volume purgé (l) : 60 nurge (m/ren) Relevé des paramètres en cours de purge : Oxygene Température Turbidité Niveau d'eau Conductivité (µS/cm) Heure de la mesure : Eh (mV): pH: dissous (m/rep): (°C): (NTU): (mg/l): 10h07 14,6 T0 750 157 7,36 T1 10h12 7,17 750 162 14,4 T2 T3 T stabilisé 10h17 7,08 750 165 14,4 Prélèvement des eaux souterraines Heure de prélèvement Type de préleveur : Profondeur de prélèvement (m/rep) : 10h20 5,95 Twister 12V (début et fin): Designation de Pz1 Description de Odeur: Non Irisations: Non l'échantillon : Designation du doubion l'échantillon : 3/3 Couleur: Beige Fines / MES: remperature a renvoi Conditionnement des Glacière Date d'envoi des échantillons : 14/06/2024 échantillons Agrolab Remarques: L'ouvrage se dénoie rapidement Laboratoire(s): Nettoyage des outils Nettoyage des outils Oui Cas du tuyau : Changé entre chaque ouvrage (pompe et tuyau) :

Désignation de l'échantillon

blanc matériel, le cas échéant :

(pompe et tuyau) :

Blanc de matériel :

réalisé ?

Non

Fiche de prélèvement des eaux souterraines Selon la norme NF X 31-615 - Prélèvement et échantillonnage des eaux souterraines sur des sites contaminés

Date de prélèvement : 20/06/2024

N° affaire: RM240076

Client: ARCADIS / ICADE Département: 94 Nom du site: Icade Rungis Commune: Rungis Nom du chargé de réalisation : C. Milard Caractéristiques de l'ouvrage contrôlé Date de réalisation de Nom de l'ouvrage : Pz2 06/06/2024 <u>l'ouvrage :</u> Profondeur initiale de Ouvrage Piézomètre Type d'ouvrage : l'ouvrage (m/rep): **Icade Rungis** Localisation X: 8171596,06 Lambert 93 CC49 1652550,42 Υ: Système de projection : Type de protection de Bouche à cléf ras de sol Nature du tubage: PVC surface : Cote du dispositif de Cote au sommet au tube interieur (m NGF, Equipement protection (m NGF) Diamètre int/ext du tubage (mm) : 52/60 Position de la crépine : 2-6 m Etat/Etanchéité de surface : Bon Remarques générales Photographie de sur l'ouvrage : l'ouvrage : Mesures avant prélèvement lauteur du repere Origine des mesures : Bouche à clef Références des mesures: Date de la mesure : 20/06/2024 11h35 Heure de la mesure : Valeur PID à l'ouverture (ppmV) : Epaisseur de flottant Niveau de flottant (m/rep) : Mesures avant purge: (cm) : Hauteur d'eau dans Niveau d'eau (m/rep) : 2,58 3,42 l'ouvrage (m) : Volume d'eau dans Profondeur de l'ouvrage (m/rep) : 7,3 Ecrémage manuel avant prélèvement, prélèvement de flottant Méthode d'écrémage : Volume écrémé (l) : pesignation de l'echantillon de flottant Echantillonnage flottant (Oui/Non): l'échantillonnage des Purge de l'ouvrage avant prélèvement viotif si purge non Mode de purge : Twister 12V Type de pompe : Statique réalisée : Debit moyen de purge Mode de traitement Duree de la purge CA 12 (l/min): des eaux de purge : Niveau d'éau apres 4,25 Abattement mesuré (m) : 1,67 Volume purgé (l) : 60 nurge (m/ren) Relevé des paramètres en cours de purge : Oxygene Température Turbidité Niveau d'eau Heure de la mesure : Conductivité (µS/cm) Eh (mV): pH: dissous (m/rep): (°C): (NTU): (mg/l): 11h38 16,5 T0 1000 137 6,8 T1 11h42 6,77 147 16,6 940 T2 11h46 6,53 940 152 16,2 T3 T stabilisé 11h50 6,49 940 158 16,3 Prélèvement des eaux souterraines Heure de prélèvement Profondeur de prélèvement (m/rep) : Type de préleveur : Twister 12V (début et fin) : Designation de Pz2 Description de Odeur: Non Irisations: Non l'échantillon : Designation du doubion l'échantillon : 3/3 Couleur: Beige Fines / MES: remperature a renvoi Conditionnement des Glacière Date d'envoi des échantillons : 20/06/2024 échantillons Agrolab Remarques: L'ouvrage se dénoie rapidement Laboratoire(s): Nettoyage des outils Nettoyage des outils Oui Cas du tuyau : Changé entre chaque ouvrage

Désignation de l'échantillon

blanc matériel, le cas échéant :

réalisé ?

Blanc de matériel :

Fiche de prélèvement des eaux souterraines Selon la norme NF X 31-615 - Prélèvement et échantillonnage des eaux souterraines sur des sites contaminés

Date de prélèvement : 14/06/2024

N° affaire: RM240076

Client: ARCADIS / ICADE Département: 94 Nom du site: Icade Rungis Commune: Rungis Nom du chargé de réalisation : C. Milard Caractéristiques de l'ouvrage contrôlé Date de réalisation de Nom de l'ouvrage : Pz3 06/06/2024 <u>l'ouvrage :</u> Profondeur initiale de Ouvrage Type d'ouvrage : Piézomètre l'ouvrage (m/rep): Icade Rungis Localisation 8171549,25 X: 1652484,64 Υ: Système de projection : Lambert 93 CC49 lype de protection de Bouche à cléf ras de sol Nature du tubage: PVC surface : Cote du dispositif de Cote au sommet au tube interieur (m NGF Equipement 84,09 84,27 protection (m NGF) Diamètre int/ext du tubage (mm) : 52/60 Position de la crépine : 2-6 m Etat/Etanchéité de surface : Bon Remarques générales Photographie de sur l'ouvrage : l'ouvrage : Mesures avant prélèvement lauteur du repere Origine des mesures : Bouche à clef Références des mesures: Date de la mesure : 14/06/2024 9h25 Heure de la mesure : Valeur PID à l'ouverture (ppmV) : Epaisseur de flottant Niveau de flottant (m/rep) : Mesures avant purge: (cm) : Hauteur d'eau dans Niveau d'eau (m/rep) : 3,81 2,31 l'ouvrage (m) : Volume d'eau dans 6,12 4,9 Profondeur de l'ouvrage (m/rep) : Ecrémage manuel avant prélèvement, prélèvement de flottant Méthode d'écrémage : Volume écrémé (l) : Designation de l'echantillon de flottant Echantillonnage flottant (Oui/Non): l'échantillonnage des Purge de l'ouvrage avant prélèvement viotif si purge non Twister 12V Mode de purge : Type de pompe : Statique réalisée : Debit moyen de purge Mode de traitement Duree de la purge CA 10 (l/min): des eaux de purge Niveau d'éau apres 5,62 Abattement mesuré (m) : 1,81 Volume purgé (l) : 60 nurge (m/ren) Relevé des paramètres en cours de purge : Oxygene Température Turbidité Niveau d'eau Conductivité (µS/cm) Heure de la mesure : Eh (mV): pH: dissous (m/rep): (°C): (NTU): (mg/l): 14,9 T0 9h35 940 174 7,2 T1 9h40 6,83 920 177 14,9 T2 T3 T stabilisé 9h45 6,86 910 184 14,9 Prélèvement des eaux souterraines Heure de prélèvement Profondeur de prélèvement (m/rep) : Type de préleveur : Twister 12V (début et fin) : Designation de Pz3 Description de Odeur: Non Irisations: Non l'échantillon : Designation du doubion l'échantillon : 1/2 Couleur: Beige claire Fines / MES: remperature a renvoi Conditionnement des Date d'envoi des échantillons : Glacière 14/06/2024 <u>échantillons</u> Agrolab Remarques: L'ouvrage se dénoie rapidement Laboratoire(s): Nettoyage des outils Nettoyage des outils Oui Cas du tuyau : Changé entre chaque ouvrage (pompe et tuyau) :

Non

Désignation de l'échantillon

blanc matériel, le cas échéant :

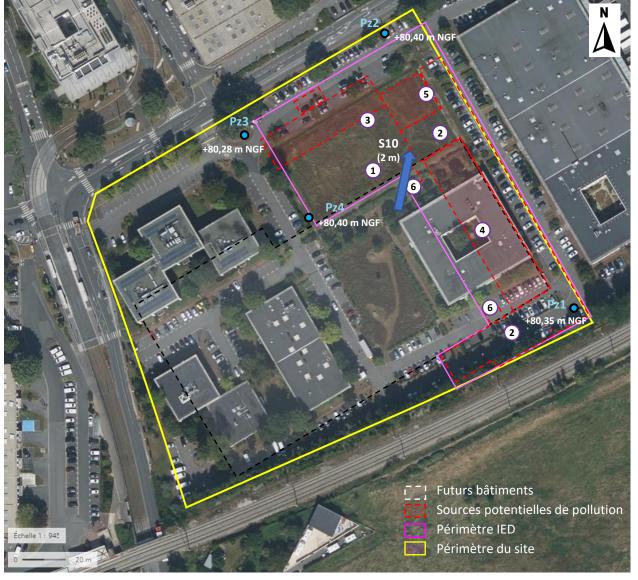
réalisé ?

Blanc de matériel :

Fiche de prélèvement des eaux souterraines Selon la norme NF X 31-615 - Prélèvement et échantillonnage des eaux souterraines sur des sites contaminés

Date de prélèvement : 14/06/2024

Client: ARCADIS / ICADE N° affaire: RM240076 Département: 94 Nom du site: Icade Rungis Commune: Rungis Nom du chargé de réalisation : C. Milard Caractéristiques de l'ouvrage contrôlé Date de réalisation de Nom de l'ouvrage : Pz4 05/06/2024 <u>l'ouvrage :</u> Profondeur initiale de Ouvrage Piézomètre Type d'ouvrage : l'ouvrage (m/rep): **Icade Rungis** Localisation X: Lambert 93 CC49 1652514,15 Υ: 8171502,53 Système de projection : Type de protection de Nature du tubage: PVC Bouche à cléf ras de sol surface : Cote du dispositif de Cote au sommet au tube interieur (m NGF Equipement 83,98 83,98 protection (m NGF) Diamètre int/ext du tubage (mm) : 52/60 Position de la crépine : 2-6 m Etat/Etanchéité de surface : Bon Remarques générales Photographie de sur l'ouvrage : l'ouvrage: Mesures avant prélèvement lauteur du repere Origine des mesures : Bouche à clef Références des mesures: Date de la mesure : 14/06/2024 8h43 Heure de la mesure : Valeur PID à l'ouverture (ppmV) : Epaisseur de flottant Niveau de flottant (m/rep) : Mesures avant purge: (cm) : Hauteur d'eau dans Niveau d'eau (m/rep) : 3,58 2,48 l'ouvrage (m) : Volume d'eau dans 6,06 Profondeur de l'ouvrage (m/rep) : Ecrémage manuel avant prélèvement, prélèvement de flottant Méthode d'écrémage : Volume écrémé (l) : Designation de l'echantillon de flottant Echantillonnage flottant (Oui/Non): l'échantillonnage des Purge de l'ouvrage avant prélèvement viotif si purge non Mode de purge : Twister 12V Type de pompe : Statique réalisée : Debit moyen de purge Mode de traitement Duree de la purge CA 13 (l/min): des eaux de purge : Niveau d'éau apres 3,71 Abattement mesuré (m) : Volume purgé (l) : 78 0,13 nurge (m/ren) Relevé des paramètres en cours de purge : Oxygene Température Turbidité Niveau d'eau Heure de la mesure : Conductivité (µS/cm) Eh (mV): pH: dissous (m/rep): (°C): (NTU): (mg/l): 8h55 13,3 T0 650 7,24 164 T1 8h58 13,4 7,18 680 164 T2 9Hh01 7,05 650 164 13,2 T3 T stabilisé 9h08 6,92 640 168 13,3 Prélèvement des eaux souterraines Heure de prélèvement Profondeur de prélèvement (m/rep) : Type de préleveur : Twister 12V (début et fin): Designation de Pz4 Description de Odeur: Non Irisations: Non l'échantillon : Désignation du doublon l'échantillon : 1/3 Couleur: Beige Fines / MES: remperature a renvoi Conditionnement des Glacière Date d'envoi des échantillons : 14/06/2024 échantillons Agrolab Remarques: L'ouvrage se dénoie rapidement Laboratoire(s): Nettoyage des outils Nettoyage des outils Oui Cas du tuyau : Changé entre chaque ouvrage (pompe et tuyau) :


Non

Désignation de l'échantillon

blanc matériel, le cas échéant :

Annexe 13 Report des niveaux piézométriques

ENVIRONMEMENT		Report des niveaux piézométriques					
		Date	Indice	Objet	Etabli.	Vérif.	Appr.
Annexe 10		22/05/2024	A1 Création du document		LOD	GUB	FBA
ICADE	DUNCIS (OA)	Echelle	chelle Référence affaire		Docu	ment	Page
ICADE	RUNGIS (94)	Graphique	RM240076		Annexe		1/1

Sources potentielles de pollution :

- 1 Remblais et activités historiques (site global)
- 2 Cuves fuel / HVO enterrées (22 x 120 000 l) y compris dépotage et canalisations associées
- (3) 4 Transformateurs à huile minérale + 1 cuve de 60 m3 de récupération des huiles
- 4 59 générateurs électriques et réservoirs journaliers associées de fuel / HVO (1600 I)
- 5 Séparateur et dépotage
- 6 Local pompe

Investigations:

Piézomètre

Annexe 14 Bordereaux d'analyses sur les eaux souterraines

Nos references : RM240076_ICADE_RUNGIS_RDB_V2

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil FRANCE

> Date 20.06.2024 N° Client 35010172

Informations complémentaires sur la commande 1425086

RM240076A Rungis BDC CF1002835

Madame, Monsieur

A réception, la température de l'enceinte de vos échantillons était supérieure à 8°C. Ceci peut affecter la fiabilité de certains résultats.

Respectueusement,

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025;2017. Seuls les paramètres non accrédités et/ou externalisés sont

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BRÉAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> 20.06.2024 Date N° Client 35010172

RAPPORT D'ANALYSES

1425086 RM240076A Rungis BDC CF1002835

N° échant. **165879** Eau Date de validation 17.06.2024 Prélèvement 14.06.2024 10:20

Prélèvement par: Client Spécification des échantillons Pz1

	Unité	Résultat	Méthode
Métaux			
Arsenic (As)	μg/l	<5,0	Conforme à EN-ISO17294-2 (200
Cadmium (Cd)	μg/l	<0,10	Conforme à EN-ISO17294-2 (200
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO17294-2 (200
Cuivre (Cu)	μg/l	<2,0	Conforme à EN-ISO17294-2 (200
Mercure	μg/l	<0,030	conforme à NEN-EN-ISO 12846
Nickel (Ni)	μg/l	6,8	Conforme à EN-ISO17294-2 (200
Plomb (Pb)	μg/l	<5,0	Conforme à EN-ISO17294-2 (200
Zinc (Zn)	μg/l	<2,0	Conforme à EN-ISO17294-2 (200
HAP			
Naphtalène	μg/l	<0,02	méthode interne
Acénaphtylène	μg/l	<0,050	méthode interne
Acénaphtène	μg/l	<0,01	méthode interne
Fluorène	μg/l	<0,010	méthode interne
Phénanthrène	μg/l	<0,010	méthode interne
Anthracène	μg/l	<0,010	méthode interne
Fluoranthène	μg/l	<0,010	méthode interne
Pyrène	μg/l	<0,010	méthode interne
Benzo(a)anthracène	μg/l	<0,010	méthode interne
Chrysène	μg/l	<0,010	méthode interne
Benzo(b)fluoranthène	μg/l	<0,010	méthode interne
Benzo(k)fluoranthène	μg/l	<0,01	méthode interne
Benzo(a)pyrène	μg/l	<0,010	méthode interne
Dibenzo(ah)anthracène	μg/l	<0,010	méthode interne
Benzo(g,h,i)pérylène	μg/l	<0,010	méthode interne
Indéno(1,2,3-cd)pyrène	μg/l	<0,010	méthode interne
Somme HAP	μg/l	n.d.	méthode interne
Somme HAP (VROM)	μg/l	n.d.	méthode interne
Somme HAP (16 EPA)	μg/l	n.d.	méthode interne
Composés aromatiques			
Benzène	μg/l	<0,2	Conforme à EN-ISO 11423-1
Toluène	μg/l	<0,5	Conforme à EN-ISO 11423-
Ethylbenzène	μg/l	<0,5	Conforme à EN-ISO 11423-1
m,p-Xylène	μg/l	<0,2	Conforme à EN-ISO 11423-

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1425086 RM240076A Rungis BDC CF1002835 N° échant. **165879** Eau

	Unité	Résultat	Méthode
o-Xylène	μg/l	<0,50	Conforme à EN-ISO 11423-1
Somme Xylènes	µg/l	n.d.	Conforme à EN-ISO 11423-1
COHV			
Dichlorométhane	μg/l	<0,5	Conforme à EN-ISO 10301
Tétrachlorométhane	μg/l	<0,1	Conforme à EN-ISO 10301
Trichlorométhane	μg/l	<0,5	Conforme à EN-ISO 10301
1,1-Dichloroéthane	μg/l	<0,5	Conforme à EN-ISO 10301
1,2-Dichloroéthane	μg/l	<0,5	Conforme à EN-ISO 10301
1,1,1-Trichloroéthane	μg/l	<0,5	Conforme à EN-ISO 10301
1,1,2-Trichloroéthane	μg/l	<0,5	Conforme à EN-ISO 10301
1,1- Dichloroéthylène	μg/l	<0,1	Conforme à EN-ISO 10301
Chlorure de Vinyle	μg/l	<0,2	Méthode interne (mesurage conforme à EN-ISO 10301 et conforme à ISO 11423-1)
cis-1,2-Dichloroéthène	μg/l	<0,50	Conforme à EN-ISO 10301
Trans-1,2-Dichloroéthylène	μg/l	<0,50	Conforme à EN-ISO 10301
Somme cis/trans-1,2- Dichloroéthylènes	μg/l	n.d.	Conforme à EN-ISO 10301
Trichloroéthylène	μg/l	<0,5	Conforme à EN-ISO 10301
Tétrachloroéthylène	μg/l	<0,1	Conforme à EN-ISO 10301
Composés volatils			
Fraction aliphatique C5-C6	μg/l	<2,0	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	μg/l	<4,0 ×)	conforme à NEN-EN-ISO 16558-1
Fraction >C8-C10	μg/l	<4,0 ×)	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	μg/l	<2,0	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	μg/l	<2,0	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	μg/l	<2,0	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	μg/l	<10 x)	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	μg/l	<2,0	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux			
Hydrocarbures totaux C10-C40	μg/l	<50	Équivalent à EN-ISO 9377-2
Fraction C10-C12	*) µg/l	<10	Équivalent à EN-ISO 9377-2
Fraction C12-C16	*) µg/l	<10	Équivalent à EN-ISO 9377-2
Fraction C16-C20	*) µg/l	<5,0	Équivalent à EN-ISO 9377-2
Fraction C20-C24	*) µg/l	<5,0	Équivalent à EN-ISO 9377-2
Fraction C24-C28	*) µg/l	<5,0	Équivalent à EN-ISO 9377-2
Fraction C28-C32	*) µg/l	<5,0	Équivalent à EN-ISO 9377-2
Fraction C32-C36	*) µg/l	<5,0	Équivalent à EN-ISO 9377-2
Fraction C36-C40	*) µg/l	<5,0	Équivalent à EN-ISO 9377-2

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Les paramètres réalisés par AL-West BV

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1425086** RM240076A Rungis BDC CF1002835 N° échant. **165879** Eau

Début des analyses: 17.06.2024 Fin des analyses: 19.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 20.06.2024 N° Client 35010172

> > Méthode

RAPPORT D'ANALYSES

Cde 1425086 RM240076A Rungis BDC CF1002835

N° échant. 165880 Eau Date de validation 17.06.2024 Prélèvement 14.06.2024 09:50

l Initá

Prélèvement par: Client Spécification des échantillons Pz3

	Office	Nesulai	Methode
Métaux			
Arsenic (As)	μg/l	<5,0	Conforme à EN-ISO17294-2 (2004)
Cadmium (Cd)	µg/l	<0,10	Conforme à EN-ISO17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO17294-2 (2004)
Cuivre (Cu)	μg/l	5,1	Conforme à EN-ISO17294-2 (2004)
Mercure	μg/l	<0,030	conforme à NEN-EN-ISO 12846
Nickel (Ni)	μg/l	<5,0	Conforme à EN-ISO17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	Conforme à EN-ISO17294-2 (2004)
Zinc (Zn)	μg/l	2,4	Conforme à EN-ISO17294-2 (2004)
HAP			
Naphtalène	μg/l	<0,02	méthode interne
Acénaphtylène	µg/l	<0,050	méthode interne
A (1.1)	- "	0.04	

Résultat

Naphtalène	μg/l	<0,02	méthode interne
Acénaphtylène	μg/l	<0,050	méthode interne
Acénaphtène	μg/l	<0,01	méthode interne
Fluorène	μg/l	<0,010	méthode interne
Phénanthrène	μg/l	<0,010	méthode interne
Anthracène	μg/l	<0,010	méthode interne
Fluoranthène	μg/l	0,012	méthode interne
Pyrène	μg/l	0,073	méthode interne
Benzo(a)anthracène	μg/l	<0,010	méthode interne
Chrysène	μg/l	<0,010	méthode interne
Benzo(b)fluoranthène	μg/l	<0,010	méthode interne
Benzo(k)fluoranthène	μg/l	<0,01	méthode interne
Benzo(a)pyrène	μg/l	<0,010	méthode interne
Dibenzo(ah)anthracène	μg/l	<0,010	méthode interne
Benzo(g,h,i)pérylène	μg/l	<0,010	méthode interne
Indéno(1,2,3-cd)pyrène	μg/l	<0,010	méthode interne
Somme HAP	μg/l	0,012 ×)	méthode interne
Somme HAP (VROM)	μg/l	0,012 ×)	méthode interne
Somme HAP (16 EPA)	μg/l	0,085 ×)	méthode interne

_	,		
(Comp	ASAS.	aromatiques	

· · · · · · · · · · · · · · · · · · ·			
Benzène	μg/l	<0,2	Conforme à EN-ISO 11423-1
Toluène	μg/l	<0,5	Conforme à EN-ISO 11423-1
Ethylbenzène	μg/l	<0,5	Conforme à EN-ISO 11423-1
m,p-Xylène	μg/l	<0,2	Conforme à EN-ISO 11423-1
o-Xylène	μg/l	<0,50	Conforme à EN-ISO 11423-1

page 1 de 3

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025;2017. Seuls les paramètres non accrédités et/ou externalisés sont

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1425086 RM240076A Rungis BDC CF1002835 N° échant. 165880 Eau

		ou cau	
	Unité	Résultat	Méthode
Somme Xylènes	μg/l	n.d.	Conforme à EN-ISO 11423-
COHV			
Dichlorométhane	μg/l	<0,5	Conforme à EN-ISO 10301
Tétrachlorométhane	µg/l	<0,1	Conforme à EN-ISO 10301
Trichlorométhane	µg/l	<0,5	Conforme à EN-ISO 10301
1,1-Dichloroéthane	µg/l	<0,5	Conforme à EN-ISO 10301
1,2-Dichloroéthane	µg/l	<0,5	Conforme à EN-ISO 10301
1,1,1-Trichloroéthane	µg/l	<0,5	Conforme à EN-ISO 10301
1,1,2-Trichloroéthane	µg/l	<0,5	Conforme à EN-ISO 10301
1,1- Dichloroéthylène	µg/l	<0,1	Conforme à EN-ISO 10301
Chlorure de Vinyle	µg/I	<0,2	Méthode interne (mesurage conforme à EN-ISO 10301 et conforme à ISO 11423-1)
cis-1,2-Dichloroéthène	μg/l	<0,50	Conforme à EN-ISO 10301
Trans-1,2-Dichloroéthylène	μg/l	<0,50	Conforme à EN-ISO 10301
Somme cis/trans-1,2- Dichloroéthylènes	μg/l	n.d.	Conforme à EN-ISO 10301
Trichloroéthylène	µg/l	<0,5	Conforme à EN-ISO 10301
Tétrachloroéthylène	µg/l	<0,1	Conforme à EN-ISO 10301
Composés volatils			
Fraction aliphatique C5-C6	μg/l	<2,0	conforme à NEN-EN-ISO 16558-
Fraction >C6-C8	μg/l	<4,0 x)	conforme à NEN-EN-ISO 16558-
Fraction >C8-C10	µg/l	<4,0 x)	conforme à NEN-EN-ISO 16558-
Fraction aliphatique >C6-C8	µg/l	<2,0	conforme à NEN-EN-ISO 16558-
Fraction aromatique >C6-C8	µg/l	<2,0	conforme à NEN-EN-ISO 16558-
Fraction aliphatique >C8-C10	μg/l	<2,0	conforme à NEN-EN-ISO 16558-
Fraction C5-C10	μg/l	<10 ×)	conforme à NEN-EN-ISO 16558-
Fraction aromatique >C8-C10	μg/l	<2,0	conforme à NEN-EN-ISO 16558-
Hydrocarbures totaux			
Hydrocarbures totaux C10-C40	μg/l	<50	Équivalent à EN-ISO 9377-2
Fraction C10-C12	*) µg/l	<10	Équivalent à EN-ISO 9377-2
Fraction C12-C16	*) µg/l	<10	Équivalent à EN-ISO 9377-2
Fraction C16-C20	*) µg/l	<5,0	Équivalent à EN-ISO 9377-2
Fraction C20-C24	*) µg/l	<5,0	Équivalent à EN-ISO 9377-2
Fraction C24-C28	*) µg/l	<5,0	Équivalent à EN-ISO 9377-2
Fraction C28-C32	*) µg/l	<5,0	Équivalent à EN-ISO 9377-2
	*) µg/l	<5,0	Équivalent à EN-ISO 9377-2
Fraction C32-C36	' μg/ι		

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

es paramètres réalisés par AL-West BV

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1425086** RM240076A Rungis BDC CF1002835 N° échant. **165880** Eau

Début des analyses: 17.06.2024 Fin des analyses: 19.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

DIE REMEDIATION (13) Monsieur Guillaume BREAUTÉ 8 Rue Guy Moquet 95100 Argenteuil **FRANCE**

> Date 20.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1425086 RM240076A Rungis BDC CF1002835

N° échant. **165881** Eau Date de valid Date de validation 17.06.2024 14.06.2024 09:10

Prélèvement par: Client Spécification des échantillons Pz4

	Unité	Résultat	Méthode
Métaux			
Arsenic (As)	μg/l	<5,0	Conforme à EN-ISO17294-2 (200
Cadmium (Cd)	μg/l	<0,10	Conforme à EN-ISO17294-2 (200
Chrome (Cr)	μg/l	<2,0	Conforme à EN-ISO17294-2 (200
Cuivre (Cu)	μg/l	<2,0	Conforme à EN-ISO17294-2 (200
Mercure	μg/l	<0,030	conforme à NEN-EN-ISO 12846
Nickel (Ni)	μg/l	<5,0	Conforme à EN-ISO17294-2 (200
Plomb (Pb)	μg/l	<5,0	Conforme à EN-ISO17294-2 (200
Zinc (Zn)	μg/l	<2,0	Conforme à EN-ISO17294-2 (200
HAP			
Naphtalène	μg/l	0,05	méthode interne
Acénaphtylène	μg/l	<0,050	méthode interne
Acénaphtène	μg/l	<0,01	méthode interne
Fluorène	μg/l	<0,010	méthode interne
Phénanthrène	μg/l	0,014	méthode interne
Anthracène	μg/l	<0,010	méthode interne
Fluoranthène	μg/l	0,016	méthode interne
Pyrène	μg/l	0,017	méthode interne
Benzo(a)anthracène	μg/l	<0,010	méthode interne
Chrysène	μg/l	<0,010	méthode interne
Benzo(b)fluoranthène	μg/l	<0,010	méthode interne
Benzo(k)fluoranthène	μg/l	<0,01	méthode interne
Benzo(a)pyrène	μg/l	<0,010	méthode interne
Dibenzo(ah)anthracène	μg/l	<0,010	méthode interne
Benzo(g,h,i)pérylène	μg/l	<0,010	méthode interne
Indéno(1,2,3-cd)pyrène	μg/l	<0,010	méthode interne
Somme HAP	μg/l	0,016 ×)	méthode interne
Somme HAP (VROM)	μg/l	0,080 ×)	méthode interne
Somme HAP (16 EPA)	μg/l	0,097 ×)	méthode interne
Composés aromatiques			
Benzène	μg/l	<0,2	Conforme à EN-ISO 11423-1
Toluène	μg/l	<0,5	Conforme à EN-ISO 11423-
Ethylbenzène	μg/l	<0,5	Conforme à EN-ISO 11423-1
m,p-Xylène	μg/l	<0,2	Conforme à EN-ISO 11423-
o-Xylène	μg/l	<0.50	Conforme à EN-ISO 11423-7

Composés aromatiques

Benzène	μg/l	<0,2	Conforme à EN-ISO 11423-1
Toluène	μg/l	<0,5	Conforme à EN-ISO 11423-1
Ethylbenzène	μg/l	<0,5	Conforme à EN-ISO 11423-1
m,p-Xylène	μg/l	<0,2	Conforme à EN-ISO 11423-1
o-Xylène	μg/l	<0,50	Conforme à EN-ISO 11423-1

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde 1425086 RM240076A Rungis BDC CF1002835 N° échant. 165881 Eau

	Unité	Résultat	Méthode
Somme Xylènes	μg/l	n.d.	Conforme à EN-ISO 11423-1
COHV			
Dichlorométhane	µg/l	<0,5	Conforme à EN-ISO 10301
Tétrachlorométhane	μg/l	<0,1	Conforme à EN-ISO 10301
Trichlorométhane	μg/l	<0,5	Conforme à EN-ISO 10301
1,1-Dichloroéthane	μg/l	<0,5	Conforme à EN-ISO 10301
1,2-Dichloroéthane	μg/l	<0,5	Conforme à EN-ISO 10301
1,1,1-Trichloroéthane	μg/l	<0,5	Conforme à EN-ISO 10301
1,1,2-Trichloroéthane	μg/l	<0,5	Conforme à EN-ISO 10301
1,1- Dichloroéthylène	μg/l	<0,1	Conforme à EN-ISO 10301
1,1,1-Trichloroéthane 1,1,2-Trichloroéthane 1,1- Dichloroéthylène Chlorure de Vinyle cis-1,2-Dichloroéthène Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes Trichloroéthylènes Trichloroéthylène Tétrachloroéthylène Composés volatils Fraction aliphatique C5-C6 Fraction >C6-C8 Fraction >C6-C8 Fraction aliphatique >C6-C8 Fraction aliphatique >C6-C8 Fraction aliphatique >C6-C8 Fraction aliphatique >C6-C8 Fraction aromatique >C6-C8 Fraction aromatique >C6-C8 Fraction aliphatique >C6-C8	μg/l	<0,2	Méthode interne (mesurage conforme à EN-ISO 10301 et conforme à ISO 11423-1)
cis-1,2-Dichloroéthène	μg/l	<0,50	Conforme à EN-ISO 10301
Trans-1,2-Dichloroéthylène	μg/l	<0,50	Conforme à EN-ISO 10301
Somme cis/trans-1,2- Dichloroéthylènes	μg/l	n.d.	Conforme à EN-ISO 10301
Trichloroéthylène	μg/l	<0,5	Conforme à EN-ISO 10301
Tétrachloroéthylène	μg/l	<0,1	Conforme à EN-ISO 10301
Composés volatils			
Fraction aliphatique C5-C6	µg/l	<2,0	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	µg/l	<4,0 ×)	conforme à NEN-EN-ISO 16558-1
Fraction >C8-C10	μg/l	<4,0 ×)	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	μg/l	<2,0	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	μg/l	<2,0	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	μg/l	<2,0	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	μg/l	<10 x)	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	μg/l	<2,0	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux			
Hydrocarbures totaux C10-C40	μg/l	<50	Équivalent à EN-ISO 9377-2
Fraction C10-C12	*) µg/l	<10	Équivalent à EN-ISO 9377-2
Fraction C12-C16	*) µg/l	<10	Équivalent à EN-ISO 9377-2
Fraction C16-C20	*) µg/l	<5,0	Équivalent à EN-ISO 9377-2
Fraction C20-C24	*) µg/l	<5,0	Équivalent à EN-ISO 9377-2
Fraction C24-C28	*) µg/l	<5,0	Équivalent à EN-ISO 9377-2
			é

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

*) µg/l

*) µg/l

*) µg/l

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que les informations sur la méthode de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

<5,0

<5,0

<5,0

Kamer van Koophandel Nr. 08110898 VAT/BTW-ID-Nr.: NL 811132559 B01 Directeur ppa. Marc van Gelder Dr. Paul Wimmer **RvA** L 005

es paramètres réalisés par AL-West BV

Équivalent à EN-ISO 9377-2

Équivalent à EN-ISO 9377-2

Équivalent à EN-ISO 9377-2

Fraction C28-C32

Fraction C32-C36

Fraction C36-C40

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2024 N° Client 35010172

RAPPORT D'ANALYSES

Cde **1425086** RM240076A Rungis BDC CF1002835 N° échant. **165881** Eau

Début des analyses: 17.06.2024 Fin des analyses: 20.06.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

Annexe 15 Tableaux d'analyses sur les eaux souterraines

ICADE - Rungis (94) Rapport de base

Désignation de l'échantillon			Critères de 0	comparaison					
Designation de l'echantimon		Guide	AM du	AM du	Directives OMS.				
Date de prélevement		d'évaluation de l'état des eaux	11/01/2007 Annexe I	11/01/2007 Annexe II	2004 - Annexe 4 Mise à jour de	14/06/24	20/06/24	14/06/24	14/06/24
Piézométrie	Niveau des eaux (NGF)	souterraines Juin 2019	(MAJ du 30/12/22)	(MAJ du 30/12/22)	2017	Pz1	Pz2	Pz3	Pz4
Analyses physico-chimiques pH		Ja 2019	6.5 - 9.0	337 . 27 . 22 ,		7,08	6,49	6,86	6,92
Conductivité à 20 °C	μS/cm		1 100			750	940	910	640
Redox Température	mV °C					165,00 14,40	158,00 16,30	184,00 14,90	168,00 13,30
Eléments Traces Métalliques (ETM)						14,40	10,30	14,50	15,50
Arsenic (As)	μg/L	10	10	100	10	<5,0	<5,0	<5,0	<5,0
Cadmium (Cd)	μg/L	5	5	5	3	<0,10	<0,10	<0,10	<0,10
Chrome (Cr)	μg/L		50	50	50	<2,0	<2,0	<2,0	<2,0
Cuivre (Cu)	μg/L	1	2 000	1	2 000	<2,0	<2,0	5,1	<2,0
Mercure (Hg) Nickel (Ni)	μg/L μg/L	l	20		6 10	<0,030 6,8	<0,030 <5,0	<0,030 <5,0	<0,030 <5,0
Plomb (Pb)	µg/L	10	10	50	10	<5,0	<5,0	<5,0	<5,0
Zinc (Zn)	µg/L			5 000		<2,0	<2,0	2,4	<2,0
BTEX	_								
Benzène Talabar	µg/L		1		10	<0,2	<0,2	<0,2	<0,2
Toluène Ethylhonzòna	µg/L				700	<0,5	<0,5	<0,5	<0,5
Ethylbenzène m.p-Xylène	μg/L μg/L				300	<0,5 <0,2	<0,5 <0,2	<0,5 <0,2	<0,5 <0,2
o-Xylène	µg/L					<0,50	<0,50	<0,50	<0,50
Somme des Xylènes	μg/L				500	n.d.	n.d.	n.d.	n.d.
Somme des BTEX	μg/L					n.d.	n.d.	n.d.	n.d.
HAP		1000			T	0.00	0.00	0.00	0.05
Naphtalène Acénaphtylène	μg/L μg/L	1.0 - 2.0				<0,02 <0,050	<0,02 <0,050	<0,02 <0,050	0,05 <0,050
Acénaphtène	µg/L					<0,01	<0,030	<0,01	<0,030
Fluorène	µg/L					<0,010	<0,010	<0,010	<0,010
Phénanthrène	μg/L					<0,010	<0,010	<0,010	0,014
Anthracène Fluoranthène ⁶	μg/L					<0,010 <0,010	<0,010 0,020	<0,010 0,012	<0,010 0,016
Pyrène	μg/L μg/L					<0,010	0,020	0,012	0,017
Benzo(a)anthracène	μg/L					<0,010	<0,010	<0,010	<0,010
Chrysène 46	µg/L					<0,010	<0,010	<0,010	<0,010
Benzo(b)fluoranthène ^{4.6} Benzo(k)fluoranthène ^{4.6}	μg/L μg/L					<0,010 <0,01	<0,010 <0,01	<0,010 <0,01	<0,010 <0,01
Benzo(a)pyrène ⁶	µg/L		0,01		0,7	<0,010	<0,010	<0,010	<0,010
Dibenzo(ah)anthracène	μg/L					<0,010	<0,010	<0,010	<0,010
Benzo(g.h.i)pérylène ^{4.6} Indéno(1.2.3-cd)pyrène ^{4.6}	μg/L μg/L					<0,010 <0,010	<0,010 <0,010	<0,010 <0,010	<0,010 <0,010
Somme 4 HAP ⁴	μg/L μg/L		0,1			n.d.	0,020	0,012	0,016
Somme 6 HAP ⁶	µg/L		O / .	1		n.d.	0,020	0,012	0,08
HAP (EPA) - somme 16	μg/L					n.d.	0,109	0,085	0,097
Hydrocarbures C5-C40	_								
Fraction aliphatique C5-C6	µg/L					<2,0	<2,0	<2,0	<2,0
Fraction aliphatique >C6-C8 Fraction aliphatique >C8-C10	μg/L μg/L					<2,0 <2,0	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0
Fraction aniphatique >Co-CTO Fraction aromatique >C6-C8	μg/L μg/L					<2,0	<2,0	<2,0	<2,0
Fraction aromatique >C8-C10	µg/L					<2,0	<2,0	<2,0	<2,0
Fraction C6-C8	μg/L					<4,0	<4,0	<4,0	<4,0
Fraction C8-C10	μg/L					<4,0	<4,0	<4,0	<4,0
Hydrocarbures volatils C5-C10	μg/L					<10	<10	<10	<10
Fraction C10-C12 Fraction C12-C16	μg/L μg/L				+	<10 <10	<10 <10	<10 <10	<10 <10
Fraction C16-C20	μg/L μg/L				 	<5,0	<5,0	<5,0	<5,0
Fraction C20-C24	µg/L				<u></u>	<5,0	<5,0	<5,0	<5,0
Fraction C24-C28	μg/L					<5,0	<5,0	<5,0	<5,0
	1				1	<5,0	<5,0	<5,0	<5,0
Fraction C28-C32	µg/L								
Fraction C32-C36	μg/L					<5,0	<5,0	<5,0	<5,0 <5.0
Fraction C32-C36 Fraction C36-C40	μg/L μg/L			1000		<5,0 <5,0	<5,0	<5,0 <5,0	<5,0
Fraction C32-C36 Fraction C36-C40 Hydrocarbures totaux C10-C40 COHV	µg/L µg/L µg/L			1000		<5,0 <5,0 <50	<5,0 <50	<5,0 <5,0 <50	<5,0 <50
Fraction C32-C36 Fraction C36-C40 Hydrocarbures totaux C10-C40 COHV Dichlorométhane	µg/L µg/L µg/L µg/L			1000	20	<5,0 <5,0 <50 <0,5	<5,0 <50 <0,5	<5,0 <5,0 <50 <0,5	<5,0 <50 <0,5
Fraction C32-C36 Fraction C36-C40 Hydrocarbures totaux C10-C40 COHV Dichlorométhane Tétrachlorométhane	µg/L µg/L µg/L µg/L µg/L			1000	4	<5,0 <5,0 <50 <0,5 <0,1	<5,0 <50 <0,5 <0,1	<5,0 <5,0 <50 <0,5 <0,1	<5,0 <50 <0,5 <0,1
Fraction C32-C36 Fraction C36-C40 Hydrocarbures totaux C10-C40 COHV Dichlorométhane	µg/L µg/L µg/L µg/L			1000		<5,0 <5,0 <50 <0,5	<5,0 <50 <0,5	<5,0 <5,0 <50 <0,5	<5,0 <50 <0,5
Fraction C32-C36 Fraction C36-C40 Hydrocarbures totaux C10-C40 COHV Dichlorométhane Tétrachlorométhane Trichlorométhane (ou chloroforme) 1.1-Dichloroéthane 1.2-Dichloroéthane	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L		3	1000	4	<5,0 <5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5	<5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5	<5,0 <5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5	<5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5
Fraction C32-C36 Fraction C36-C40 Hydrocarbures totaux C10-C40 COHV Dichlorométhane Tétrachlorométhane Trichlorométhane (ou chloroforme) 1.1-Dichloroéthane 1.2-Dichloroéthane 1.1.1-Trichloroéthane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L		3	1000	4 300	<5,0 <5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5	<5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5	<5,0 <5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5	<5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5
Fraction C32-C36 Fraction C36-C40 Hydrocarbures totaux C10-C40 COHV Dichlorométhane Tétrachlorométhane Trichlorométhane (ou chloroforme) 1.1-Dichloroéthane 1.2-Dichloroéthane 1.1.1-Trichloroéthane 1.1.2-Trichloroéthane	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L		3	1000	4 300	<5,0 <5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5	<5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5	<5,0 <5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5	<5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5
Fraction C32-C36 Fraction C36-C40 Hydrocarbures totaux C10-C40 COHV Dichlorométhane Tétrachlorométhane Trichlorométhane (ou chloroforme) 1.1-Dichloroéthane 1.2-Dichloroéthane 1.1.1-Trichloroéthane 1.1.2-Trichloroéthane 1.1.2-Trichloroéthane 1.1.1- Dichloroéthylène	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L			1000	4 300 30	<5,0 <5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5	<5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5	<5,0 <5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5	<5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5
Fraction C32-C36 Fraction C36-C40 Hydrocarbures totaux C10-C40 COHV Dichlorométhane Tétrachlorométhane Trichlorométhane (ou chloroforme) 1.1-Dichloroéthane 1.2-Dichloroéthane 1.1.1-Trichloroéthane 1.1.2-Trichloroéthane 1.1.2-Trichloroéthane Chlorure de Vinyle	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L		3	1000	4 300	<5,0 <5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5	<5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5	<5,0 <5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5	<5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5
Fraction C32-C36 Fraction C36-C40 Hydrocarbures totaux C10-C40 COHV Dichlorométhane Tétrachlorométhane Trichlorométhane (ou chloroforme) 1.1-Dichloroéthane 1.2-Dichloroéthane 1.1-Trichloroéthane 1.1.2-Trichloroéthane 1.1- Dichloroéthylène Chlorure de Vinyle cis-1.2-Dichloroéthène (cDCE)	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L			1000	4 300 30	<5,0 <5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5	<5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5	<5,0 <5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5	<5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5
Fraction C32-C36 Fraction C36-C40 Hydrocarbures totaux C10-C40 COHV Dichlorométhane Tétrachlorométhane Trichlorométhane (ou chloroforme) 1.1-Dichloroéthane 1.2-Dichloroéthane 1.1.1-Trichloroéthane 1.1.2-Trichloroéthane 1.1- Dichloroéthylène Chlorure de Vinyle cis-1.2-Dichloroéthène (cDCE) Trans-1.2-Dichloroéthylène (tDCE) Somme cDCE + tDCE	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L			1000	4 300 30	<5,0 <5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5	<5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5	<5,0 <5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5	<5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5
Fraction C32-C36 Fraction C36-C40 Hydrocarbures totaux C10-C40 COHV Dichlorométhane Tétrachlorométhane Trichlorométhane (ou chloroforme) 1.1-Dichloroéthane 1.2-Dichloroéthane 1.1-Trichloroéthane 1.1-Trichloroéthane 1.1-Dichloroéthane 1.1-Dichloroéthylène Chlorure de Vinyle cis-1.2-Dichloroéthylène (cDCE) Trans-1.2-Dichloroéthylène (tDCE) Somme cDCE + tDCE Trichloroéthylène (TCE)	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10		1000	4 300 30 0,3 50 20	<5,0 <5,0 <5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,1 <0,2 <0,50 <0,50 n.d. <0,5	<5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,1 <0,2 <0,50 <0,50 n.d.	<5,0 <5,0 <5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5	<5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,1 <0,2 <0,50 <0,50 n.d. <0,5
Fraction C32-C36 Fraction C36-C40 Hydrocarbures totaux C10-C40 COHV Dichlorométhane Tétrachlorométhane Trichlorométhane (ou chloroforme) 1.1-Dichloroéthane 1.2-Dichloroéthane 1.1.1-Trichloroéthane 1.1.2-Trichloroéthane 1.1- Dichloroéthylène Chlorure de Vinyle cis-1.2-Dichloroéthène (cDCE) Trans-1.2-Dichloroéthylène (tDCE) Somme cDCE + tDCE	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10		1000	4 300 30 0,3	<5,0 <5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,1 <0,2 <0,50 <0,50 n.d.	<5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,1 <0,2 <0,50 <0,50 n.d.	<5,0 <5,0 <5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5	<5,0 <50 <0,5 <0,1 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,1 <0,2 <0,50 <0,50 n.d.

Nicolas Quenzer Tour Europe 33 place des Corolles 92400 Courbevoie Tel 06-98-43-04-32

> ICADE Management – Foncière Tertiaire 27 rue Camille Desmoulins – CS 10166 92445 Issy-Les-Moulineaux

Courbevoie, le 14 février 2024

A l'attention de M. Bertrand GELOEN

N Réf: SG / CC-2024-02-01

Objet : Récupération de chaleur fatale du Data Center de Rungis - Lettre

d'intérêt

Lettre AR N° 2C 177 055 7574 0

Monsieur le Directeur,

En tant qu'opérateur du réseau de chaleur de la ville de Rungis, et dans le cadre de nos échanges concernant votre projet de construction d'un Data Center sur le parc d'affaires Paris-Orly-Rungis, nous tenons à vous confirmer l'intérêt que nous portons à la valorisation de la chaleur fatale du Datacenter sur le réseau de chaleur de Rungis.

Sans présumer des contraintes économiques, des nouveaux choix techniques potentiels, de la modification nécessaire de la convention de fourniture de chaleur avec la SEMMARIS et des intérêts définitifs des abonnés du réseau, je vous confirme que le réseau de chaleur est compatible avec la valorisation de la chaleur provenant du datacenter.

En effet, les régimes de température du réseau en basse température permettent d'envisager la valorisation de cette ressource sur le territoire. De plus, la densité énergétique, rapport entre l'énergie valorisable et la distance à parcourir pour véhiculer la chaleur fatale du datacenter au réseau, semble tout à fait compatible avec un intérêt technico-économique, sous couvert d'un engagement de livraison de chaleur au long terme et à prix compétitif bien entendu.

Enfin, en tant qu'exploitant du réseau de chaleur urbain précité, la société ENERUNGIS confirme que ce projet de valorisation de la chaleur fatale du Datacenter aura un effet positif sur la décarbonation du territoire en remplaçant notamment les productions de chaleur fonctionnant au gaz naturel sur la zone.

Nos premiers échanges ont déjà permis d'identifier des pistes de collaboration concrètes que nous comptons approfondir lors de nos prochaines sessions de travail :

- Date prévue de livraison du Data Center de Rungis : 2035,
- Régime de température : 22°C / 28°C avant réhausse par pompes à chaleur
- Potentiel de puissance récupérable par le réseau de chaleur :
 - De l'ordre de 10 MW dans un premier temps pour répondre aux besoins des développements de la ville de Rungis et du parc d'Icade à court terme, permettant ainsi se substituer à la chaleur issue des chaudières gaz de la SEMMARIS.
 - Et de l'ordre de 5 MW supplémentaires dans un second temps pour répondre aux besoins des développements de la ville et du parc ICADE à moyen et long terme, en phase avec la montée en charge du datacenter.

Dans l'espoir que ce projet se concrétise, nous demeurons à votre disposition. Je vous prie de croire, Monsieur le Directeur Général, en l'expression de nos salutations distinguées.

Je reste à votre disposition et vous prie d'agréer, Monsieur, l'expression de ma considération la meilleure.

Nicolas QUENZER (<u>nicolas.quenzer@dalkia.fr</u>), Adjoint Directeur Commercial Réseaux de Chaleur et de Froid Urbains

ARCHITECTE

27 rue Camille Desmoulins 92445 Issy-les-Moulineaux Tel : 01 41 57 70 00

MAÎTRE D'OUVRAGE DÉLÈGUE

ENIA Architectes 73 Rue Victor Hugo 93170 Bagnolet

ARCHITECTES

Coordination des Etudes & BIM Management

Imogis 28 rue Diderot 92000 NANTERRE Tel: +33 141 39 06 66

MEP

STRUCTURE

Tel: 01 84 03 04 34

TERRELL Immeuble Kinetik 40 av. Pierre Lefaucheux 92100 Boulogne-Billancourt France T +33 1 46 21 07 46

TERRELL

CCingénierie 28 rue Diderot 92000 NANTERRE Tel: +33 1 47 77 67 00

ENVIRONNEMENT

ARCADIS ESG 200-216, Rue Raymond Losserand 75014 PARIS Tel: 01 46 23 77 77

ARCADIS

CL INFRA 23, Allée des Impressionnistes Immeuble le Sisley - 6 éme étage 93420 VILLEPINTE Tel: 01 34 12 58 28

PA**YSAGIS**TE

STEPHANIE MALLIER Écosite du Val de Drôme Place Michel Paulus 26400 Eurre Tel: 06 26 21 46 52

All Atelier du Vivant Stéphanie Mallier paysagiste

ETUDE ACOUSTIQUE

ACOUSTIQUE & CONSEIL 16 rue de la Pierre Levée 75011 Paris Tel : 01 55 28 85 12

Acoustique & Conseil

BUREAU DE CONTROLE Coordonnateur SPS

> DATA CENTER RUNGIS Rue des Solets 94150 RUNGIS

Titre document					ÉMETTEUR			
Note technique Récupération de chaleur			IMOGIS 28, rue Diderot ; 92018 NANTERRE Cedex		IMOJi5			
AFFAIRE	EMETTEUR	PHASE	LOT	TYPE	NIVEAU	BAT/ZONE	NUMERO	INDICE
DCR	CCI	APS	cvc	NDC	TN	TZ	8002	00

REV	DATE	MODIFICATIONS	ETABLI PAR	VERIFIE PAR
00	28/06/2024	1 ^{ère} emission APS	CCI	IMO

ICADE Projet DATA CENTER-RUNGIS

RUE DES SOLETS, 94 150 RUNGIS

INTERFACE AVEC LE RESEAU DE CHAUFFAGE URBAIN

06/06/2024

Sommaire

۹.	Contexte & opportunité	04 à 07
В.	Vue générale du Data Center de RUNGIS	.08
C.	Calendrier de fourniture de chaleur fatale issue du DATA CENTER RUNGIS	.09
D.	DATA CENTER RUNGIS- Solution envisageable	10
Ε.	Concept général / Export de chaleur à 27°C/28°C -Solution#1	l 1 à 1 5
F.	Développement possible du réseau urbain redistribution	16

Contexte

Un réseau de chaleur est voisin de l'opération : Réseau de chaleur du Marché International de Rungis MIN

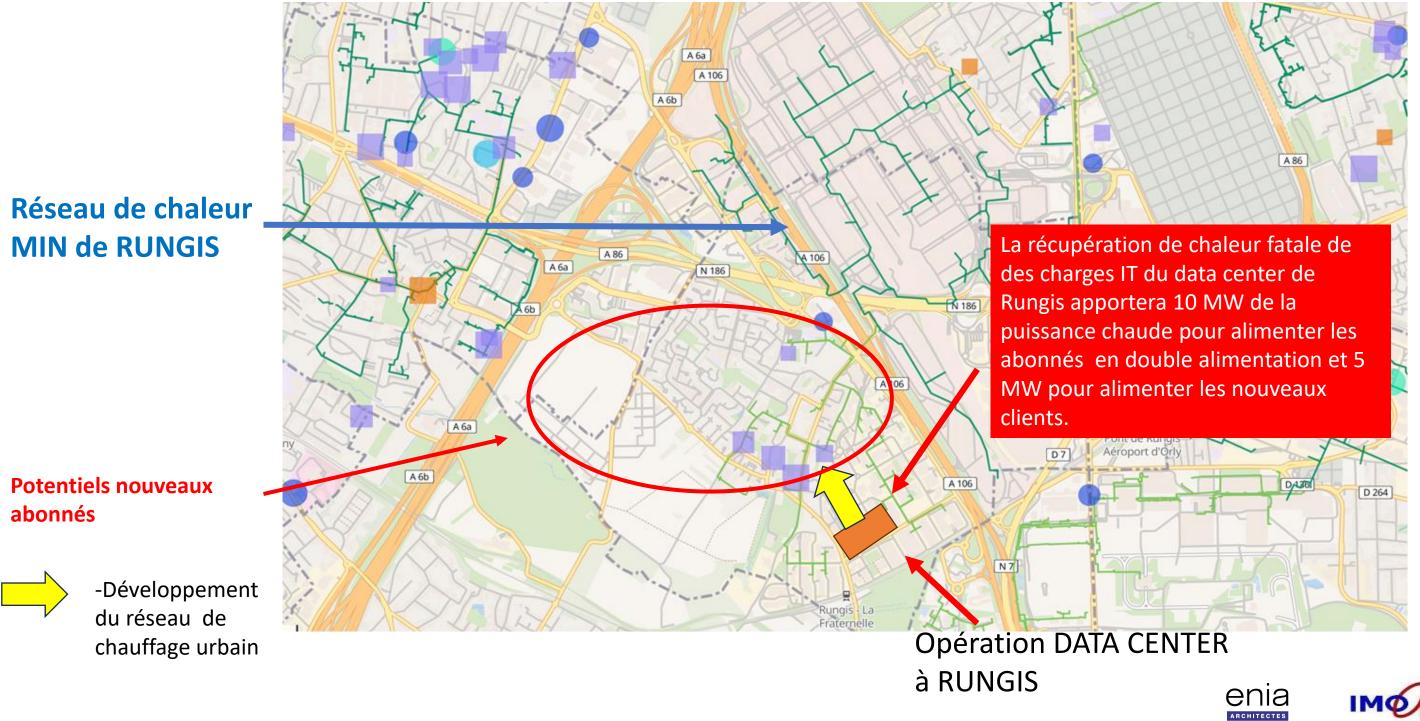
Historique du développement du réseau de chaleur :

- Une des plus importantes usines d'incinération d'Ile-de-France est située sur le marché de RUNGIS.
- Pour réduire son empreinte carbone, l'exploitant du MIN a créé un réseau de récupération de chaleur permettant de couvrir les besoins du MIN.
- Plus récemment, la Ville de Rungis a réalisé un réseau en interface avec le réseau du MIN, afin de capter une partie de la chaleur disponible et d'en faire bénéficier l'ensemble de la ville pour le chauffage.
- De nombreux bâtiments et notamment la zone ICADE ont ainsi été raccordés à cette extension.
- La Ville de RUNGIS a confié à DALKIA, via sa filiale ad hoc ENE RUNGIS, une délégation du service publique, l'exploitation de ce réseau pour une période déterminée.
- Selon DALKIA, la puissance calorifique fournie par le MIN correspond à 17MW, elle est équivalente à 33 GWh de chaleur, par -7°C à l'extérieur.
- Il est envisageable de remplacer une partie de la fourniture de chaleur à hauteur de 8MW à 10MW, par la chaleur fatale issue du data center construit à RUNGIS

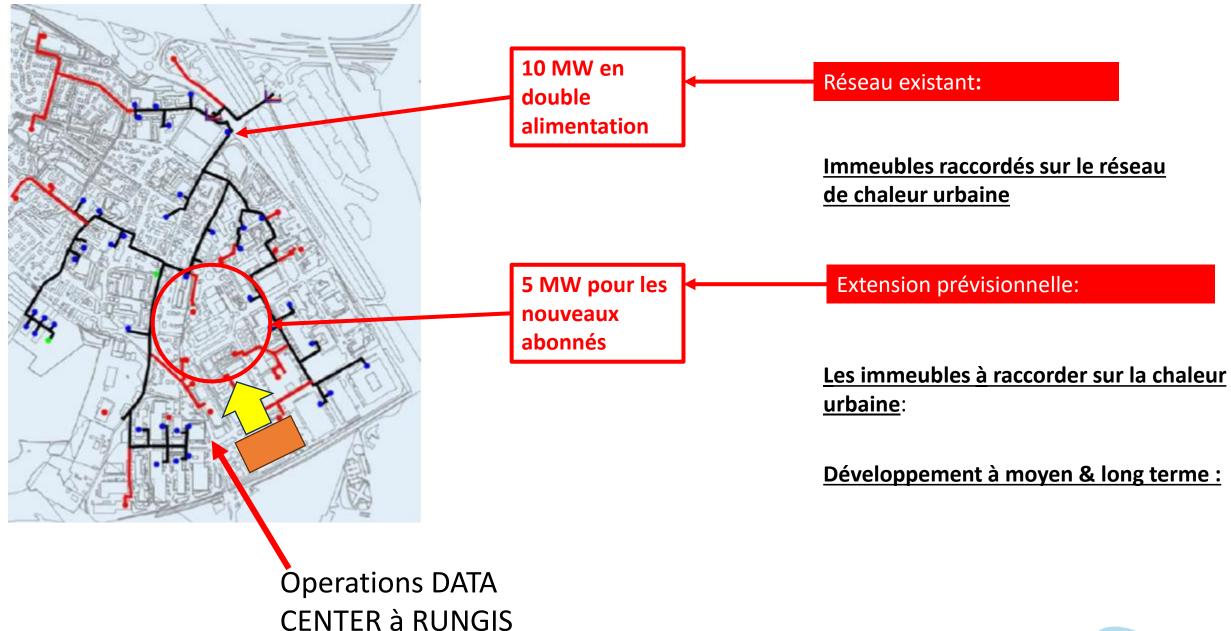
Opportunité

Opportunité créée par le projet ICADE data center :

- La Ville de Rungis aura l'opportunité de consommer les calories issues du projet de data center de la même manière que les calories issues de l'usine d'incinération.
- Le principe consistera à utiliser, via des pompes à chaleur, l'eau chaude produite par le data center pour arriver aux paramètres du réseau de la Ville de Rungis.
- DALKIA propose de doubler l'alimentation de SEMMARIS par le réseau de chaleur fatale venant du data center de RUNGIS dans le but d'améliorer la performance environnementale du réseau de chaleur
- A la mise en service de la première tranche du data center, les infrastructures d'échange réalisées dans le cadre du projet permettront de subvenir aux besoins de 10 MW identifiés par DALKIA.
- Lors de la réalisation des tranches futures du projet de data center, une attente complémentaire permettant de distribuer 5 MW sera laissée en réserve pour desservir le développement du réseau à plus long terme.
- Nous prévoyons d'étudier avec DALKIA l'éventuel impact positif sur le mix énergétique de la fourniture de chaleur fatale par le data center, via une moindre utilisation du gaz.



Contexte


Un accroissement de la puissance consommée de 5MW est programmée

Contexte

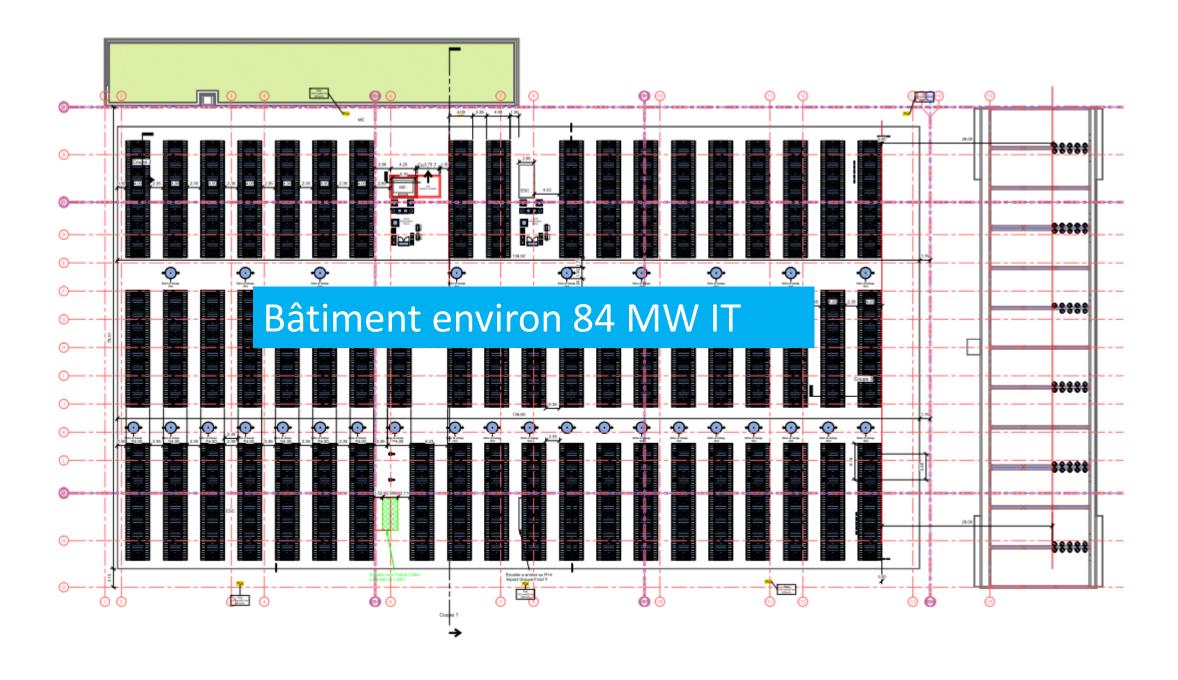
Réseau de chaleur de la Ville de RUNGIS: Réseau existant et Extension prévisionnelle Un accroissement de la puissance consommée de 5MW est programmée par le raccordement de l'immobilier d'ICADE

Réseau de chaleur Ville de RUNGIS:

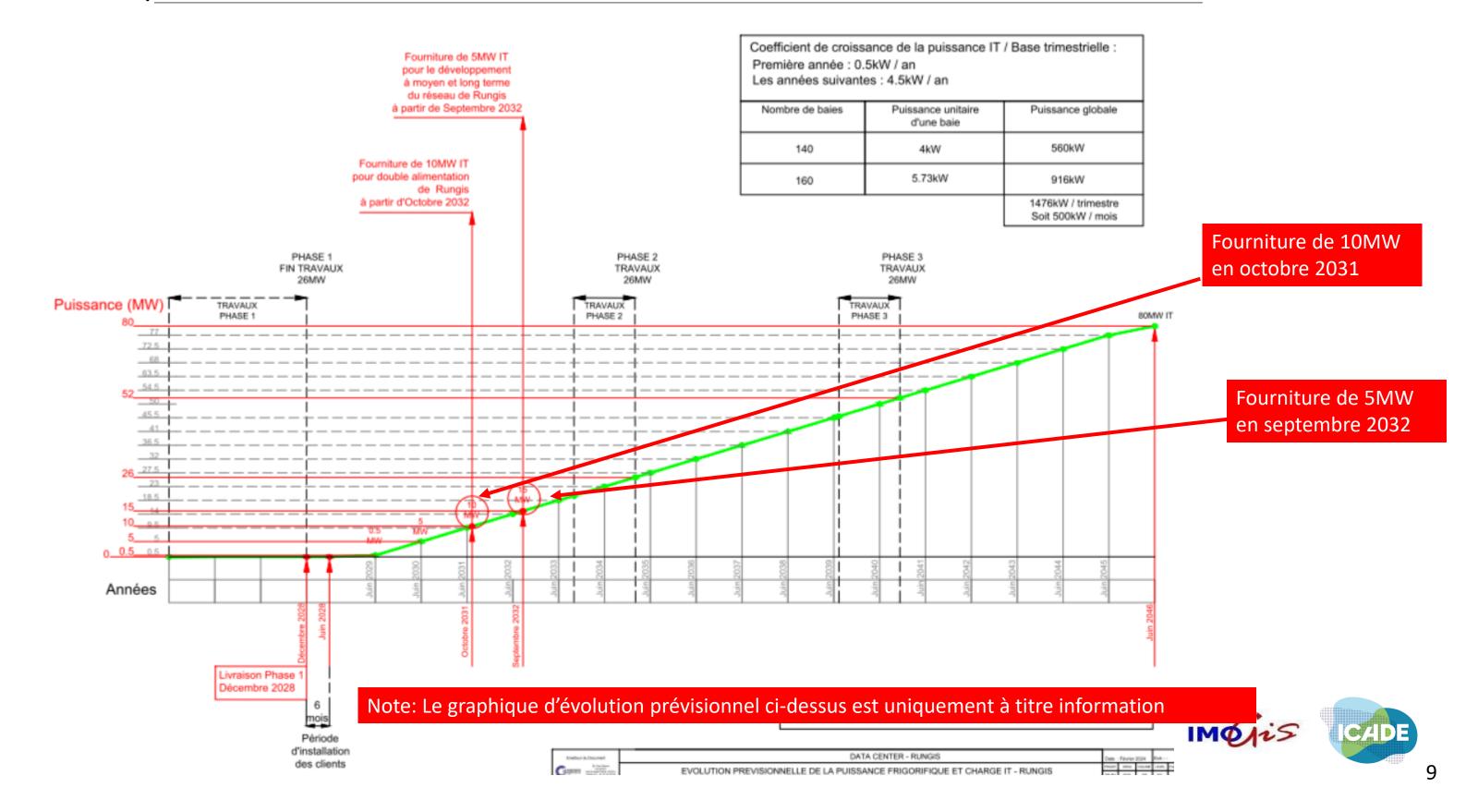
Développement du réseau de chaleur urbaine:

Réseau existant

Extension prévisionnelle

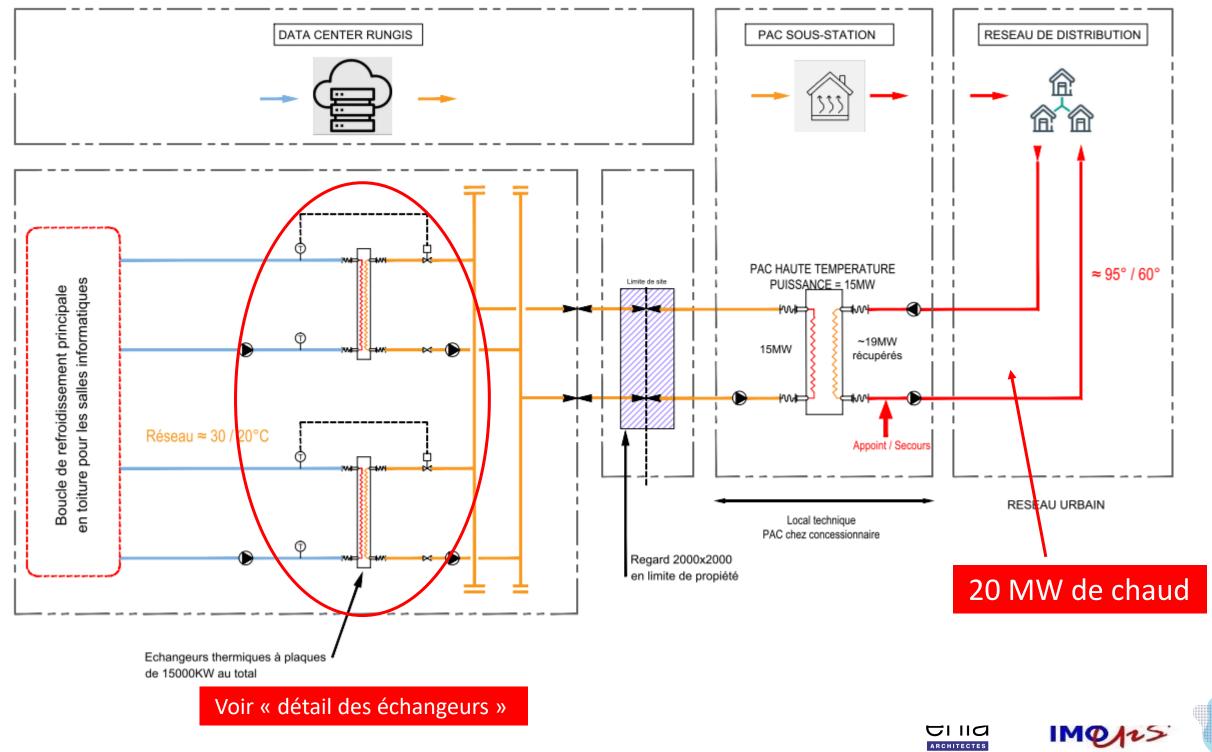

Développement du réseau de chauffage urbain

Plan de principe du DATA CENTER


*IT = Information Technology: la puissance IT correspond à la puissance électrique disponible pour le matériel informatique.

Calendrier prévisionnel de fourniture de chaleur fatale issue du DATA CENTER RUNGIS

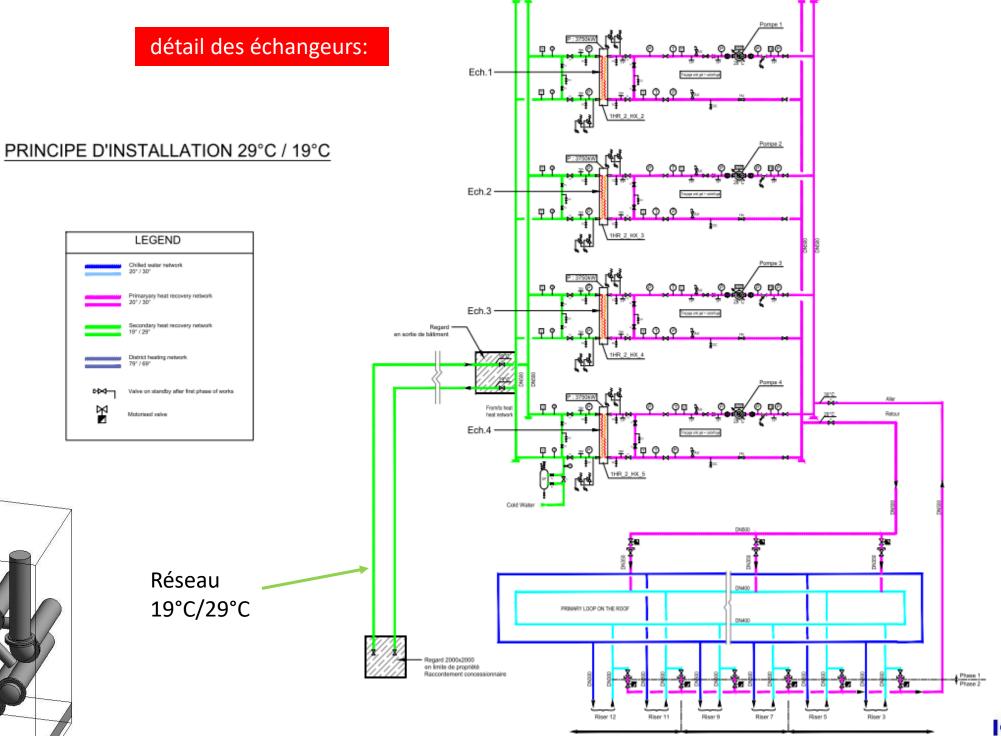
DATA CENTER RUNGIS – Solution envisageable


Plusieurs solutions de récupération de chaleur sont envisageables dans le cadre d'une collaboration entre le propriétaire du centre informatique et les services publics. Le principe retenu:

 Importation de froid à partir d'un réseau de refroidissement urbain pour refroidir partiellement les charges thermiques informatiques via un échangeur de chaleur soit l'exportation de chaleur fatale à basse température.
 Ce principe sera identifié dans les prochaines diapositives comme:

« Concept général / Export de chaleur fatale à ≈28°C/29°C »

Ce concept permettra de fournir une puissance chaude de 20MW vers le réseau de chauffage urbain.



Locaux techniques comportant les échangeurs de chaleurs-Principe général:

Locaux techniques comportant les échangeurs de chaleurs : Son principe général repose sur la mise en œuvre des échangeurs afir

Son principe général repose sur la mise en œuvre des échangeurs afin d'assurer la récupération de chaleur et d'isoler les réseaux du Data Center des réseaux du concessionnaire.

Démarches pour garantir la puissance fournie et éviter les pertes de chaleur sur le

réseau de récupération de chaleur:

Des classes d'isolation sont données dans le <u>Tableau 1.</u>

Tous les réseaux de récupération de chaleur seront isolés thermiquement avec 30mm d'isolant type « Isover » ayant une conductivité thermique de 0.037 W/m*K équivalent à la classe 1 selon la norme NF EN 12828

		Réseaux dans le	
Données d'entrée	Réseaux à l'extérieur	bâtiment	Réseaux enterrés
coefficient de perte	1.17 W/m² K	1.17 W/m ² K	1.17 W/m ² K
surface d'1ml de tube de diamètre 500mm	0.20m²	0.20m²	0.20m²
Température extérieure considérée	-11 °C	27 °C	10 °C
Longueur des tubes	200 ml	80 ml	120 ml
Température de fluide considérée	30 °C	30 °C	30 °C
Perte de chaleur des tubes calculée	1919W	56W	562W
Total de perte de chaleur du circuit de			
récupération de chaleur (sur la parcelle d'ICAD)			2537W
			0.017%
Ce qui représente par rapport à 15	000kW de puissance à récupèrée	:	des pertes

CONCLUSION : <u>LES PERTES THERMIQUES DU</u>
RESEAU DE RECUPERATION DE CHALEUR SONT
NEGLIGEABLES

	Coefficient de transmis	sion thermique maximal
Classe d'isolation	Tuyauteries de diamètre extérieur d ₁ ≤ 0,4 m	Tuyauteries de diamètre extérieur d ₁ ≥ 0,4 m ou surfaces planes ^{a)}
	W/(mK)	W/(mK)
0	_	
1	3,3 d ₁ + 0,22	1,17
2	2,6 d ₁ + 0,20	0,88
3	2,0 d ₁ + 0,18	0,66
4	1,5 a ₁ + 0,16	0,49
5	1,1 04 + 0,14	0,35
6	0,8 c4 + 0,12	0,22

ialie.							
		CI	asse 1				
d ₁	UL		3. (W/mK)				
mm	W/(mK)	0,03	0,04	0,05	0,06	W	
10	0,25	1	3	6	11		
20	0,29	5	7	11	16		
30	0,32	8	12	17	23		
40	0,35	10	14	20	28		
60	0,42	12	18	26	37		
80	0,48	14	22	31	41		
100	0,55	15	23	32	44		
200	0,88	19	26	35	46		
300	1,21	21	29	39	50		
Plan	(1,17)	22	30	37	45	(

Coefficient de transmission thermique

Epaisseur d'isolant

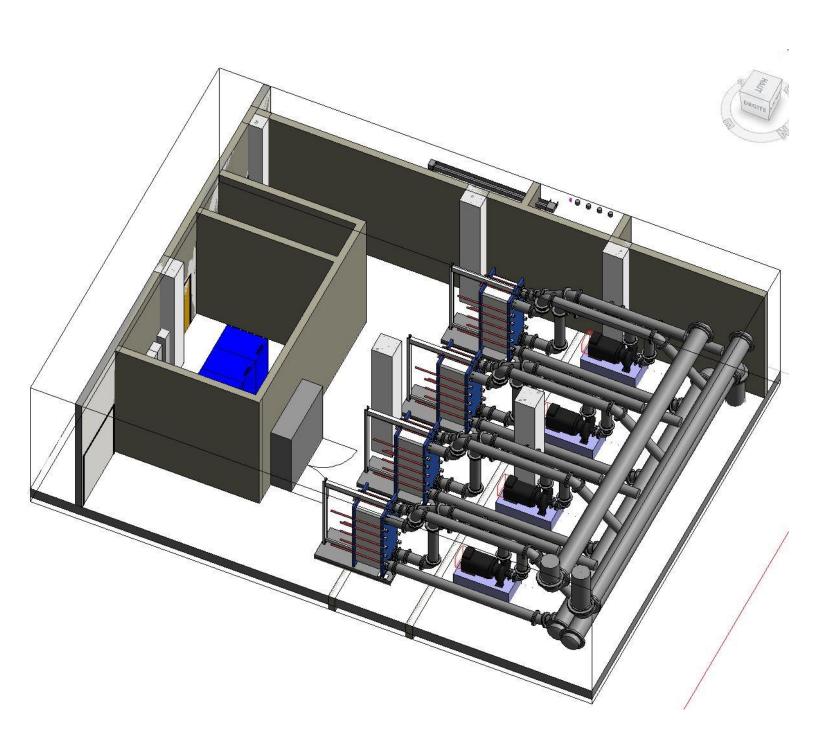
Implantation du local d'échangeurs

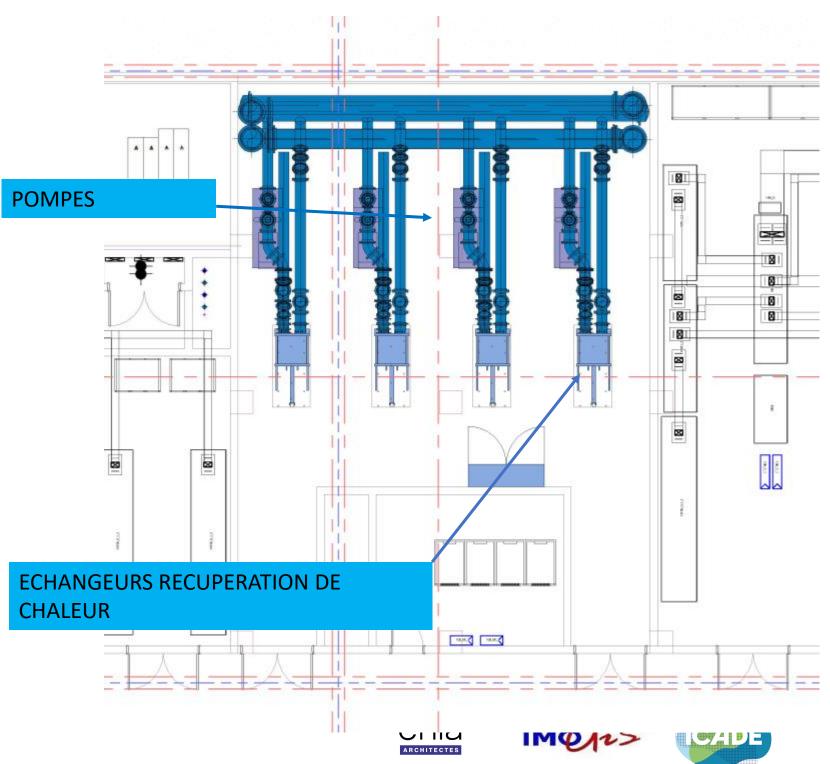
REGARD DE RACCORDEMENT DU CONCESSIONAIRE

RESEAUX DE RECUPERATION DE CHALEUR / 2 X DN 500

LOCAL TECHNIQUE ECHANGEURS
RECUPERATION DE CHALEUR AU NIV RDC

PLAN MASSE



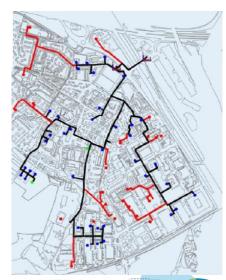


Local technique comportant les échangeurs de chaleur

Développement possible du réseau urbain-redistribution

Développement à court terme:

Bâtiments déjà raccordé sur le réseau de chaleur urbain:
Bâtiments de bureaux
Hôtels
Projets résidentiels



Développements à moyen & long terme:

Nouveaux abonés:

- Bureaux
- Logements collectifs
- Résidence / hôtel

MERCI DE VOTRE ATTENTION

Data Center – Ilots Sydney et Adelaïde – Parc d'affaires Paris-Orly-Rungis (94)

ICADE

Pièce n°72 – Description des mesures prises pour limiter la consommation d'énergie de l'installation

Version Finale du 28 Octobre 2024 Mise à jour le 3 Mars 2025

SOMMAIRE

1	Conte	exte reglementaire	3	
2	Mesu	res prises pour limiter la consommation d'énergie de l'installation	4	
	2.1	Valorisation de la chaleur fatale	4	
	2.1.1	Alimentation au réseau	4	
	2.1.2	Solutions techniques pour la récupération de chaleur	4	
	2.2	Installation de panneaux photovoltaïques	7	
	2.3	Choix d'équipements performants	9	
	2.4	Labels et certifications	9	
3	Liste	des annexes	10	
Lis	ste des	figures		
Fig	ure 1 : R	éseau de chaleur existant (source : ICADE)		5
Fig	ure 2 : E	xtensions prévisionnelles du réseau de chaleur (source : ICADE)		6
Fig	ure 3 : D	isposition schématique des panneaux photovoltaïques sur la toiture (source : Imogis)		7
Fig	ure 4 : Lo	ocalisation des ombrières photovoltaïques – en vert (source : Imogis)		8
Fig	ure 5 : E	xemple d'ombrières photovoltaïques sur places de stationnement (source : Imogis)		8

1 Contexte réglementaire

Le projet de data center que souhaite réaliser ICADE est une installation d'une puissance supérieure à 20 MW soumise à autorisation environnementale.

Les data centers, qui plus est, les installations de grandes envergures comme celle pensée par ICADE, sont énergivores. Ils nécessitent une grande quantité d'énergie pour fonctionner. Il est donc essentiel de trouver un équilibre entre les avantages technologiques et économiques des data centers et leur impact environnemental.

Par conséquent, conformément au point 17 du l de l'article D. 181-15-2 du Code de l'Environnement, une description des mesures prises pour limiter la consommation d'énergie de l'installation doit être fournie, notamment, les éléments sur l'optimisation de l'efficacité énergétique, tels que la récupération secondaire de chaleur.

2 Mesures prises pour limiter la consommation d'énergie de l'installation

Pour répondre au mieux aux attentes en matière de performances énergétiques ambitieuses, une attention particulière sera apportée à l'optimisation de la performance énergétique du bâtiment depuis sa conception et tout au long de son exploitation.

2.1 Valorisation de la chaleur fatale

L'une des premières mesures prises pour limiter la consommation d'énergie de l'installation est la récupération de la chaleur secondaire, autrement appelée valorisation de la chaleur fatale.

2.1.1 Alimentation au réseau

Le périmètre du projet est localisé proche d'un réseau de chaleur : le réseau de chaleur du Marché d'Intérêt National de Rungis (MIN). La ville de Rungis a confié à DALKIA, via sa filiale ad hoc ENERUNGIS, une délégation du service public, l'exploitation de ce réseau pour une période déterminée. Selon DALKIA, la puissance calorifique fournie par le MIN correspond à 17 MW et est équivalente à 33 GWh de chaleur, par une température de -7°C à l'extérieur.

Il est envisageable de remplacer une partie de la fourniture de chaleur à hauteur de 8 à 10 MW par la chaleur fatale issue du datacenter construit à Rungis.

La ville de Rungis aura l'opportunité de consommer les calories issue du projet de datacenter de la même manière que les calories issues de l'usine d'incinération.

Le principe consistera à utiliser, via des pompes à chaleur, l'eau chaude produite par le datacenter pour arriver aux paramètres du réseau de la ville de Rungis.

ICADE s'engage à dimensionner les installations de récupération de chaleur fatale pour fournir **une puissance de 15 MW** à l'opérateur du réseau de chaleur de Rungis selon le calendrier ci-dessous :

- De l'ordre de 10 MW dans un premier temps pour répondre aux besoins des développements de la ville de Rungis et du parc ICADE à court terme;
- Et de l'ordre de 5 MW supplémentaires dans un second temps pour répondre aux besoins des développements de la ville de Rungis et du parc ICADE à moyen et long terme, en phase avec la montée en charge du datacenter.

ICADE dispose d'un engagement officiel (courrier) de la part de Dalkia pour la récupération de la chaleur fatale du datacenter de Rungis.

La fourniture de chaleur fatale par le datacenter à DALKIA aura un impact positif sur le mix énergétique et contribuera à une moindre utilisation du gaz.

2.1.2 Solutions techniques pour la récupération de chaleur

Plusieurs solutions de récupération de chaleur ont été envisagées dans le cadre d'une collaboration entre ICADE et les services publics.

Le principe qui a été retenu est l'importation de froid à partir d'un réseau de refroidissement urbain pour refroidir partiellement les charges thermiques informatiques via un échangeur de chaleur, soit l'exportation de chaleur fatale à basse température (28°C/29°C).

Ce concept permet de fournir un puissance chaude de 20 MW vers le réseau de chauffage urbain.

Le détail de la solution retenue est présenté à l'annexe 1.

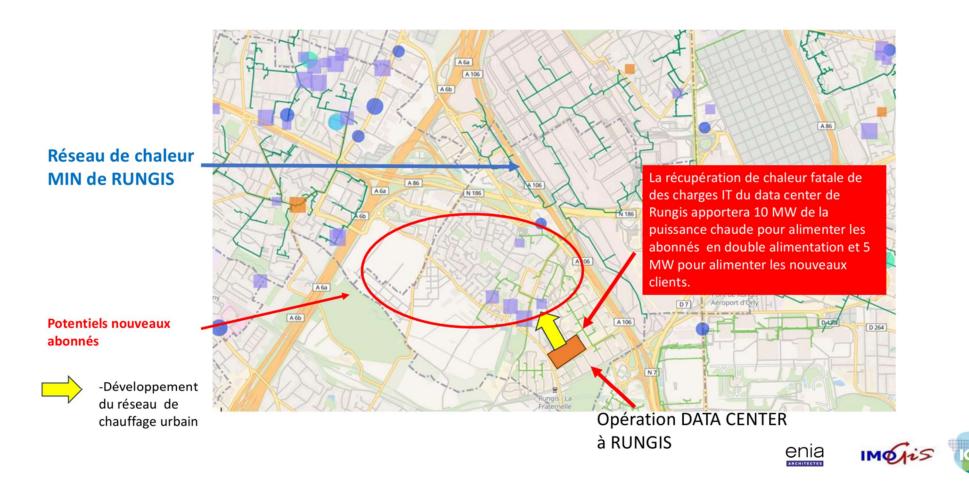


Figure 1 : Réseau de chaleur existant (source : ICADE)

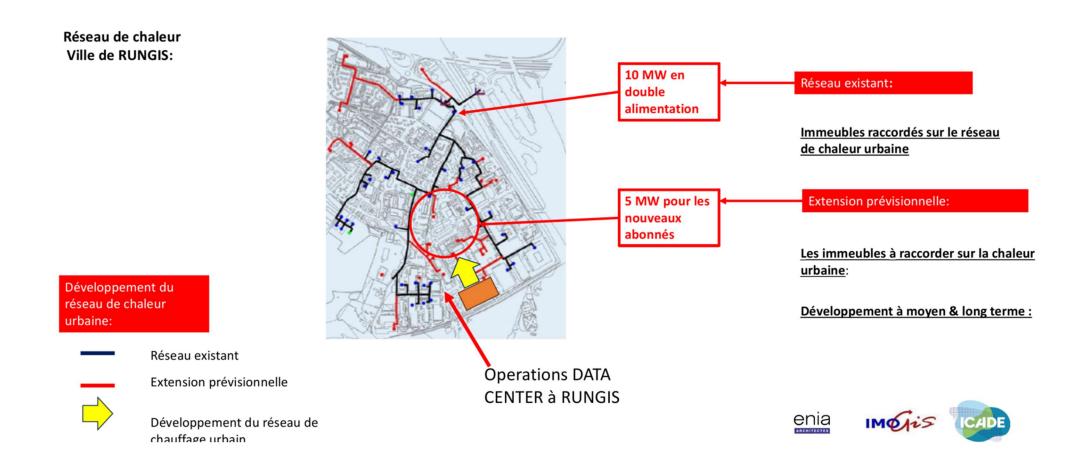


Figure 2 : Extensions prévisionnelles du réseau de chaleur (source : ICADE)

2.2 Installation de panneaux photovoltaïques

Une production d'énergie renouvelable sera assurée par des panneaux photovoltaïques. Ces panneaux seront installés en sur-toiture ainsi que sur des ombrières au droit du parc de stationnement du site.

La surface totale cumulée de l'installation sera supérieure à 3 000 m², ce qui correspond à 30% de la surface du bâtiment « Datacenter ».

Panneaux photovoltaïques en sur-toiture du bâtiment « Datacenter » :

Afin de couvrir la plus grande surface tout en optimisant l'exposition aux rayonnements solaires, les panneaux photovoltaïques sont implantés en sur-toiture et légèrement incliné (3°) afin d'assurer le ruissellement des eaux de pluie.

Une zone d'accessibilité pour la maintenance à intervalle régulier a été préservée, garantissant un fonctionnement optimal des panneaux.

La surface de l'installation photovoltaïque en sur-toiture est d'environ 2 000 m². Cela représente un total d'environ 1 026 panneaux photovoltaïques pour une puissance produite de 420,265 MWh.

Une disposition schématique est présentée sur la figure suivante :

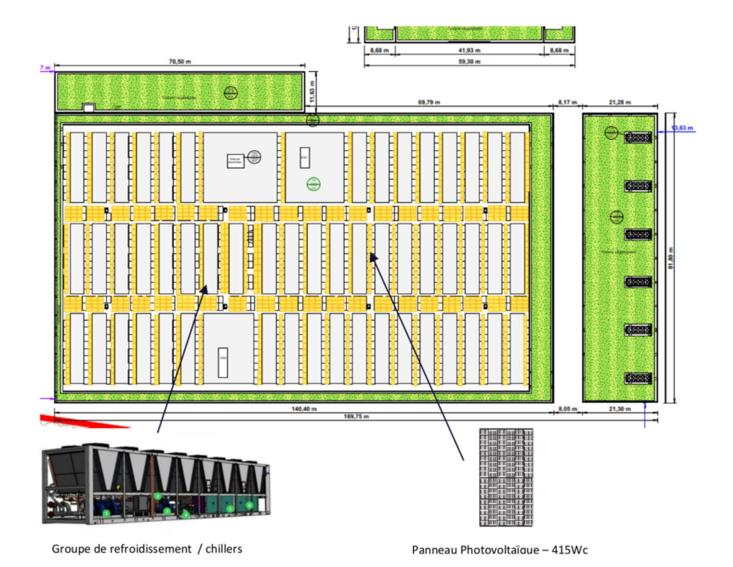


Figure 3 : Disposition schématique des panneaux photovoltaïques sur la toiture (source : Imogis)

Ombrières photovoltaïques

Deux ombrières photovoltaïques d'une surface unitaire d'environ 500 m² seront installés sur les places de stationnement au nord du site. Les panneaux seront inclinés d'environ 5° avec une orientation sud-sud-est.

Une surface de 500 m² de surface d'ombrières correspond à environ 256 panneaux soit une puissance produite d'environ 106 MWh par ombrière par an ; soit pour les deux ombrières mises en place une puissance totale produite de 212 MWh par an.

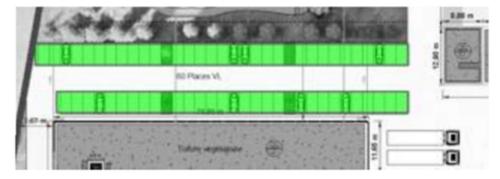


Figure 4 : Localisation des ombrières photovoltaïques – en vert (source : Imogis)

La figure suivante donne un exemple d'ombrières photovoltaïques sur places de stationnement.

Figure 5 : Exemple d'ombrières photovoltaïques sur places de stationnement (source : Imogis)

La totalité de la production photovoltaïque sera auto-consommée et contribuera à l'alimentation électrique des systèmes de production frigorifique du bâtiment « Datacenter ».

Le système sera conçu selon les normes DTU en vigueur applicables au système en question.

A ce stade, il est prévu que les panneaux photovoltaïques du projet produisent au total 632,265 MWh par an. La note de calcul détaillant cette estimation est jointe en annexe 2.

2.3 Choix d'équipements performants

La limitation de la consommation énergétique est aussi permise par le choix d'équipements performants au sein de l'installation.

Cette performance s'illustre au travers de différents indicateurs d'efficacité énergétique tels que le PUE annuel (Power Usage Effectiveness = rapport entre le total de l'énergie consommé de l'installation par rapport à la consommation de la partie informatique) ou WUE (Water Usage Effectiveness = rapport entre le nombre de litres d'eau consommés par rapport à la consommation de la partie informatique).

Dans le cadre du projet d'ICADE, il est prévu d'atteindre un PUE annuel de 1,25, et un PUE maximal de 1,5 et un WUE proche de 0.

2.4 Labels et certifications

ICADE s'engage à répondre au cahier des charges de la réglementation RE2020 (réglementation énergétique et environnementale de l'ensemble de la construction neuve) au Seuil 2028 sur la partie « Bureau » mais aussi celui de plusieurs labels et certifications environnementaux tels que :

- o HQE (Haute Qualité Environnementale) Niveau Excellent
- LEED (Leadership in Energy and Environmental Design) Niveau Silver
- BREEAM (Building Research Establishment Environmental Assessment Method) Niveau Excellent
- BBCA (Bâtiment Bas Carbone) Niveau Performance sur la partie "Bureaux".

3 Liste des annexes

Annexe 1 : Note sur la récupération de la chaleur et courrier d'engagement de Dalkia

Annexe 2 : Note de calcul détaillant l'estimation de production des panneaux photovoltaïques

Data Center – Ilots Sydney et Adelaïde – Parc d'affaires Paris-Orly-Rungis (94) Description des mesures prises pour limiter la consommation d'énergie de l'installation	Version mise à jour en mars 2025 n
Annexe 1	
Note sur la récupération de la chaleur et courrier d'engagement	nent de Dalkia

Nicolas Quenzer Tour Europe 33 place des Corolles 92400 Courbevoie Tel 06-98-43-04-32

> ICADE Management – Foncière Tertiaire 27 rue Camille Desmoulins – CS 10166 92445 Issy-Les-Moulineaux

Courbevoie, le 14 février 2024

A l'attention de M. Bertrand GELOEN

N Réf: SG / CC-2024-02-01

Objet : Récupération de chaleur fatale du Data Center de Rungis - Lettre

d'intérêt

Lettre AR N° 2C 177 055 7574 0

Monsieur le Directeur,

En tant qu'opérateur du réseau de chaleur de la ville de Rungis, et dans le cadre de nos échanges concernant votre projet de construction d'un Data Center sur le parc d'affaires Paris-Orly-Rungis, nous tenons à vous confirmer l'intérêt que nous portons à la valorisation de la chaleur fatale du Datacenter sur le réseau de chaleur de Rungis.

Sans présumer des contraintes économiques, des nouveaux choix techniques potentiels, de la modification nécessaire de la convention de fourniture de chaleur avec la SEMMARIS et des intérêts définitifs des abonnés du réseau, je vous confirme que le réseau de chaleur est compatible avec la valorisation de la chaleur provenant du datacenter.

En effet, les régimes de température du réseau en basse température permettent d'envisager la valorisation de cette ressource sur le territoire. De plus, la densité énergétique, rapport entre l'énergie valorisable et la distance à parcourir pour véhiculer la chaleur fatale du datacenter au réseau, semble tout à fait compatible avec un intérêt technico-économique, sous couvert d'un engagement de livraison de chaleur au long terme et à prix compétitif bien entendu.

Enfin, en tant qu'exploitant du réseau de chaleur urbain précité, la société ENERUNGIS confirme que ce projet de valorisation de la chaleur fatale du Datacenter aura un effet positif sur la décarbonation du territoire en remplaçant notamment les productions de chaleur fonctionnant au gaz naturel sur la zone.

Nos premiers échanges ont déjà permis d'identifier des pistes de collaboration concrètes que nous comptons approfondir lors de nos prochaines sessions de travail :

- Date prévue de livraison du Data Center de Rungis : 2035,
- Régime de température : 22°C / 28°C avant réhausse par pompes à chaleur
- Potentiel de puissance récupérable par le réseau de chaleur :
 - De l'ordre de 10 MW dans un premier temps pour répondre aux besoins des développements de la ville de Rungis et du parc d'Icade à court terme, permettant ainsi se substituer à la chaleur issue des chaudières gaz de la SEMMARIS.
 - Et de l'ordre de 5 MW supplémentaires dans un second temps pour répondre aux besoins des développements de la ville et du parc ICADE à moyen et long terme, en phase avec la montée en charge du datacenter.

Dans l'espoir que ce projet se concrétise, nous demeurons à votre disposition. Je vous prie de croire, Monsieur le Directeur Général, en l'expression de nos salutations distinguées.

Je reste à votre disposition et vous prie d'agréer, Monsieur, l'expression de ma considération la meilleure.

Nicolas QUENZER (<u>nicolas.quenzer@dalkia.fr</u>), Adjoint Directeur Commercial Réseaux de Chaleur et de Froid Urbains

27 rue Camille Desmoulins 92445 Issy-les-Moulineaux Tel : 01 41 57 70 00 MAÎTRE D'OUVRAGE DÉLÈGUE

ARCHITECTE

ENIA Architectes 73 Rue Victor Hugo 93170 Bagnolet Tel: 01 84 03 04 34 ARCHITECTES

Coordination des Etudes & BIM Management

Imogis 28 rue Diderot 92000 NANTERRE Tel: +33 141 39 06 66

STRUCTURE

TERRELL Immeuble Kinetik 40 av. Pierre Lefaucheux 92100 Boulogne-Billancourt France T +33 1 46 21 07 46

CCingénierie **TERRELL** 28 rue Diderot 92000 NANTERRE Tel: +33 1 47 77 67 00

ENVIRONNEMENT

ARCADIS ESG 200-216, Rue Raymond Losserand 75014 PARIS Tel: 01 46 23 77 77

ARCADIS

CL INFRA 23, Allée des Impressionnistes Immeuble le Sisley - 6 éme étage 93420 VILLEPINTE Tel: 01 34 12 58 28

PA**YSAGIS**TE

STEPHANIE MALLIER Écosite du Val de Drôme Place Michel Paulus 26400 Eurre Tel: 06 26 21 46 52

All Atelier du Vivant Stéphanie Mallier paysagiste

ACOUSTIQUE & CONSEIL

16 rue de la Pierre Levée 75011 Paris Tel: 01 55 28 85 12

ETUDE ACOUSTIQUE

Acoustique & Conseil

BUREAU DE CONTROLE

Coordonnateur SPS

DATA CENTER RUNGIS Rue des Solets 94150 RUNGIS

Titre document ÉMETTEUR IMOGIS 28, rue Diderot ; 92018 NANTERRE Cedex Note technique Récupération de IMOJis chaleur INDICE AFFAIRE **EMETTEUR** PHASE LOT TYPE NIVEAU BAT/ZONE NUMERO CVC DCR CCI NDC ΤZ 8002 00

REV	DATE	MODIFICATIONS	ETABLI PAR	VERIFIE PAR
00	28/06/2024	1 ^{ère} emission APS	CCI	IMO

ICADE Projet DATA CENTER-RUNGIS

RUE DES SOLETS, 94 150 RUNGIS

INTERFACE AVEC LE RESEAU DE CHAUFFAGE URBAIN

06/06/2024

Sommaire

۹.	Contexte & opportunité	04 à 07
В.	Vue générale du Data Center de RUNGIS	.08
C.	Calendrier de fourniture de chaleur fatale issue du DATA CENTER RUNGIS	.09
D.	DATA CENTER RUNGIS- Solution envisageable	10
Ε.	Concept général / Export de chaleur à 27°C/28°C -Solution#1	l 1 à 1 5
F.	Développement possible du réseau urbain redistribution	16

Contexte

Un réseau de chaleur est voisin de l'opération : Réseau de chaleur du Marché International de Rungis MIN

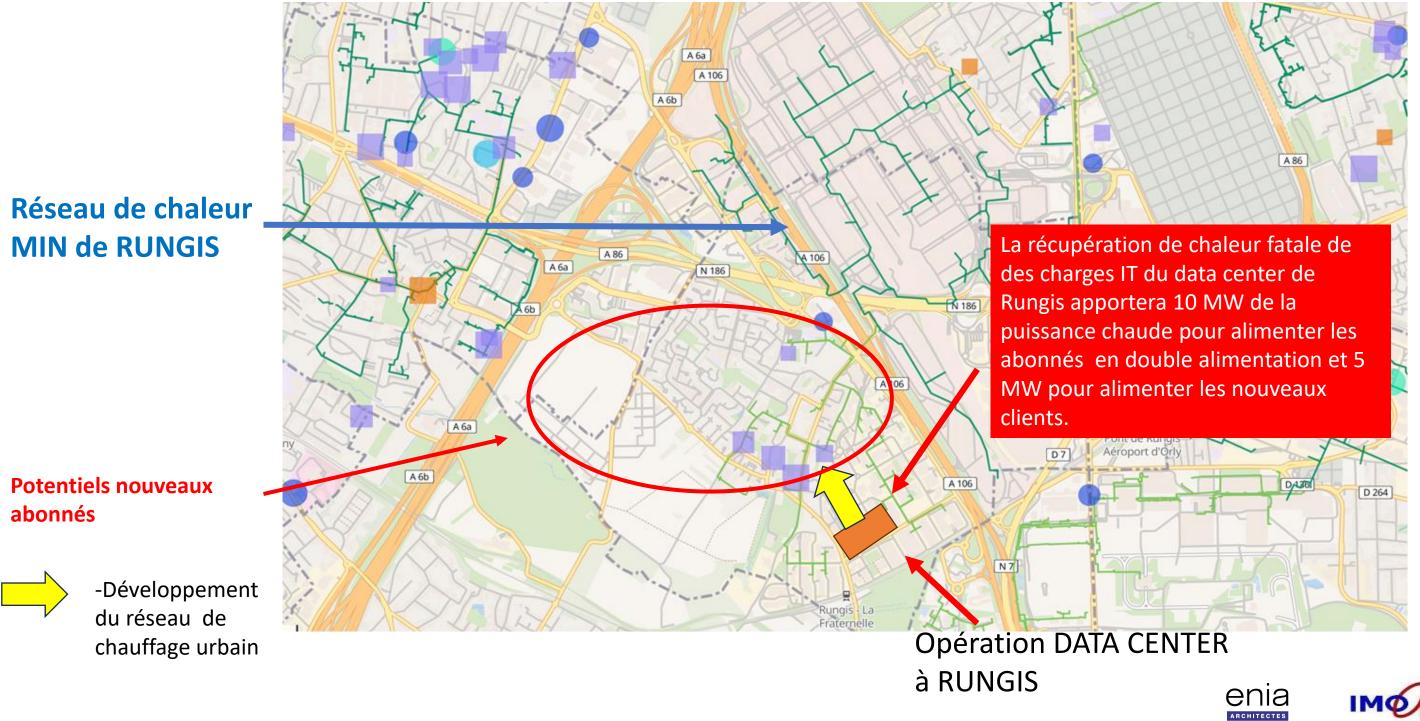
Historique du développement du réseau de chaleur :

- Une des plus importantes usines d'incinération d'Ile-de-France est située sur le marché de RUNGIS.
- Pour réduire son empreinte carbone, l'exploitant du MIN a créé un réseau de récupération de chaleur permettant de couvrir les besoins du MIN.
- Plus récemment, la Ville de Rungis a réalisé un réseau en interface avec le réseau du MIN, afin de capter une partie de la chaleur disponible et d'en faire bénéficier l'ensemble de la ville pour le chauffage.
- De nombreux bâtiments et notamment la zone ICADE ont ainsi été raccordés à cette extension.
- La Ville de RUNGIS a confié à DALKIA, via sa filiale ad hoc ENE RUNGIS, une délégation du service publique, l'exploitation de ce réseau pour une période déterminée.
- Selon DALKIA, la puissance calorifique fournie par le MIN correspond à 17MW, elle est équivalente à 33 GWh de chaleur, par -7°C à l'extérieur.
- Il est envisageable de remplacer une partie de la fourniture de chaleur à hauteur de 8MW à 10MW, par la chaleur fatale issue du data center construit à RUNGIS

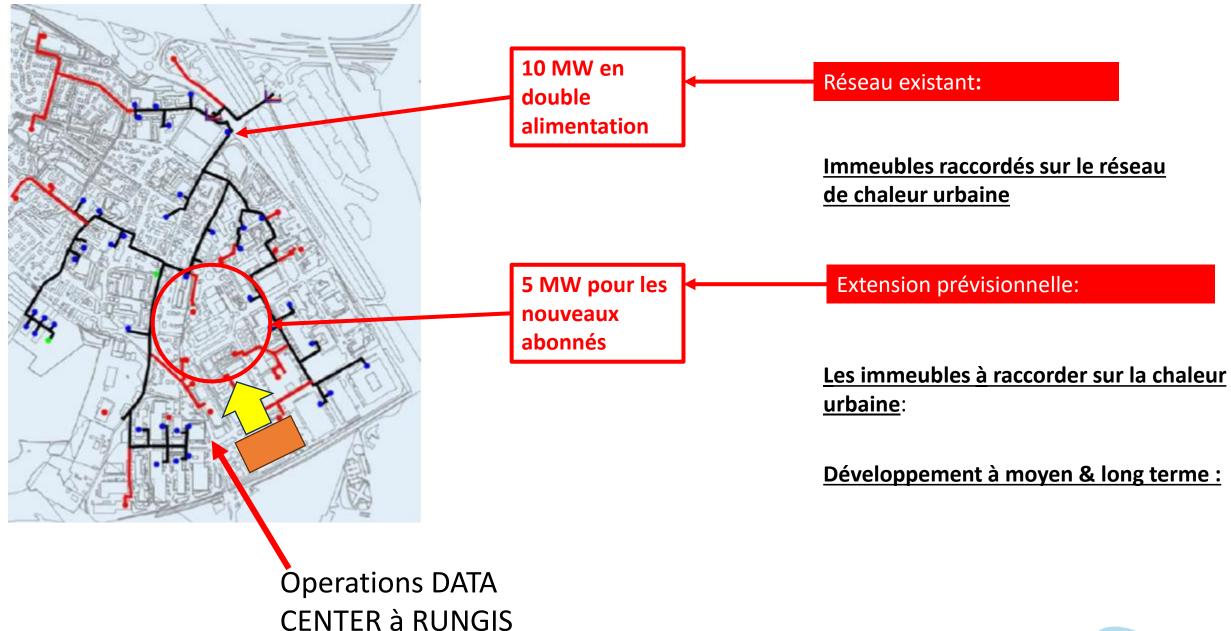
Opportunité

Opportunité créée par le projet ICADE data center :

- La Ville de Rungis aura l'opportunité de consommer les calories issues du projet de data center de la même manière que les calories issues de l'usine d'incinération.
- Le principe consistera à utiliser, via des pompes à chaleur, l'eau chaude produite par le data center pour arriver aux paramètres du réseau de la Ville de Rungis.
- DALKIA propose de doubler l'alimentation de SEMMARIS par le réseau de chaleur fatale venant du data center de RUNGIS dans le but d'améliorer la performance environnementale du réseau de chaleur
- A la mise en service de la première tranche du data center, les infrastructures d'échange réalisées dans le cadre du projet permettront de subvenir aux besoins de 10 MW identifiés par DALKIA.
- Lors de la réalisation des tranches futures du projet de data center, une attente complémentaire permettant de distribuer 5 MW sera laissée en réserve pour desservir le développement du réseau à plus long terme.
- Nous prévoyons d'étudier avec DALKIA l'éventuel impact positif sur le mix énergétique de la fourniture de chaleur fatale par le data center, via une moindre utilisation du gaz.



Contexte


Un accroissement de la puissance consommée de 5MW est programmée

Contexte

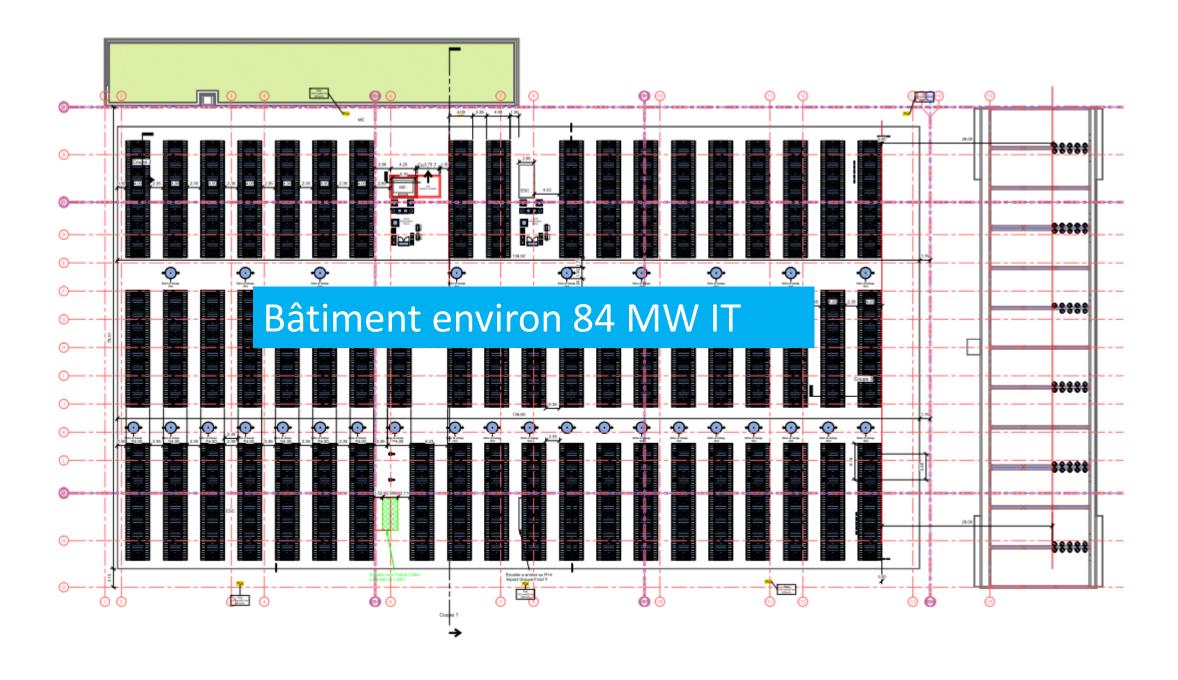
Réseau de chaleur de la Ville de RUNGIS: Réseau existant et Extension prévisionnelle Un accroissement de la puissance consommée de 5MW est programmée par le raccordement de l'immobilier d'ICADE

Réseau de chaleur Ville de RUNGIS:

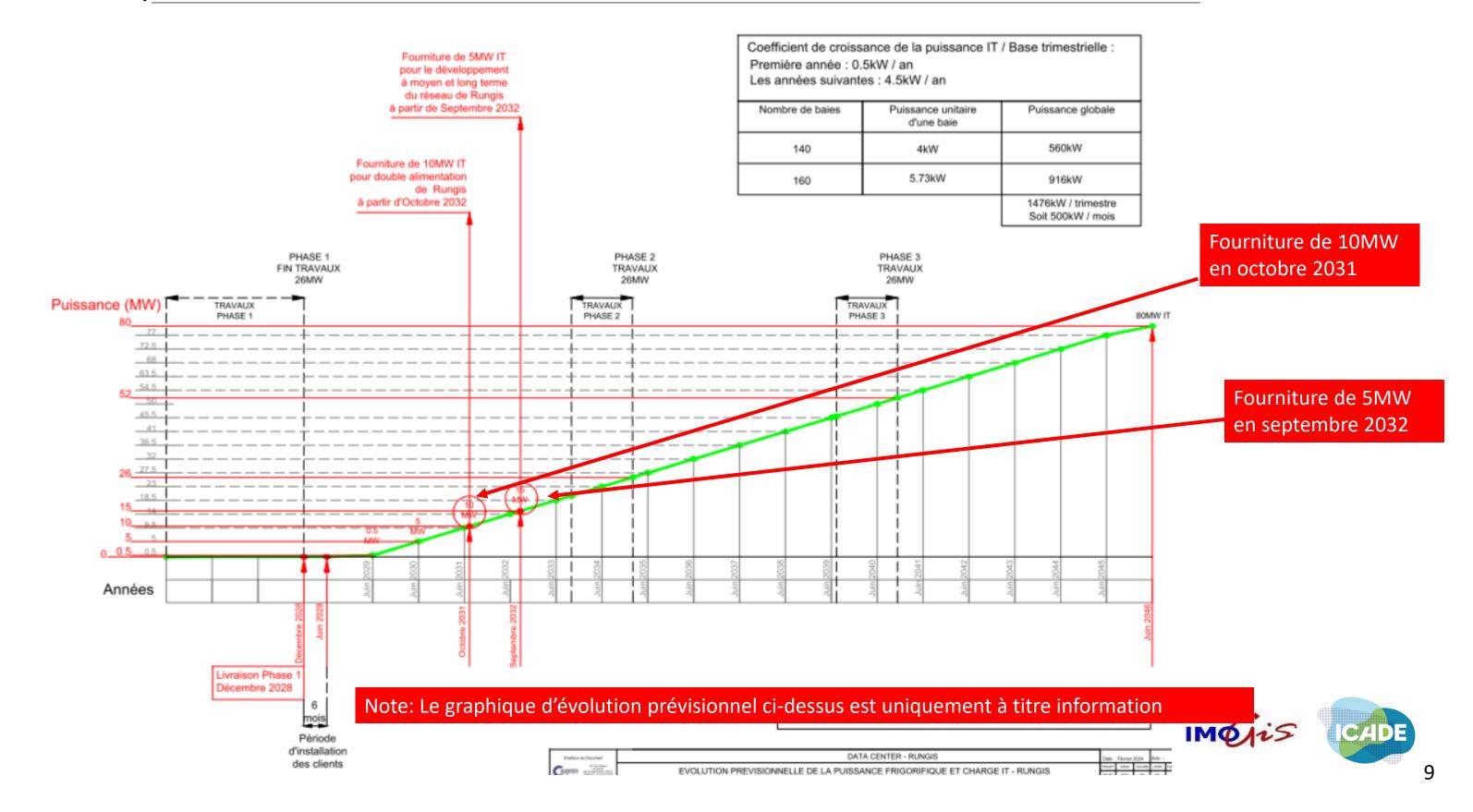
Développement du réseau de chaleur urbaine:

Réseau existant

Extension prévisionnelle

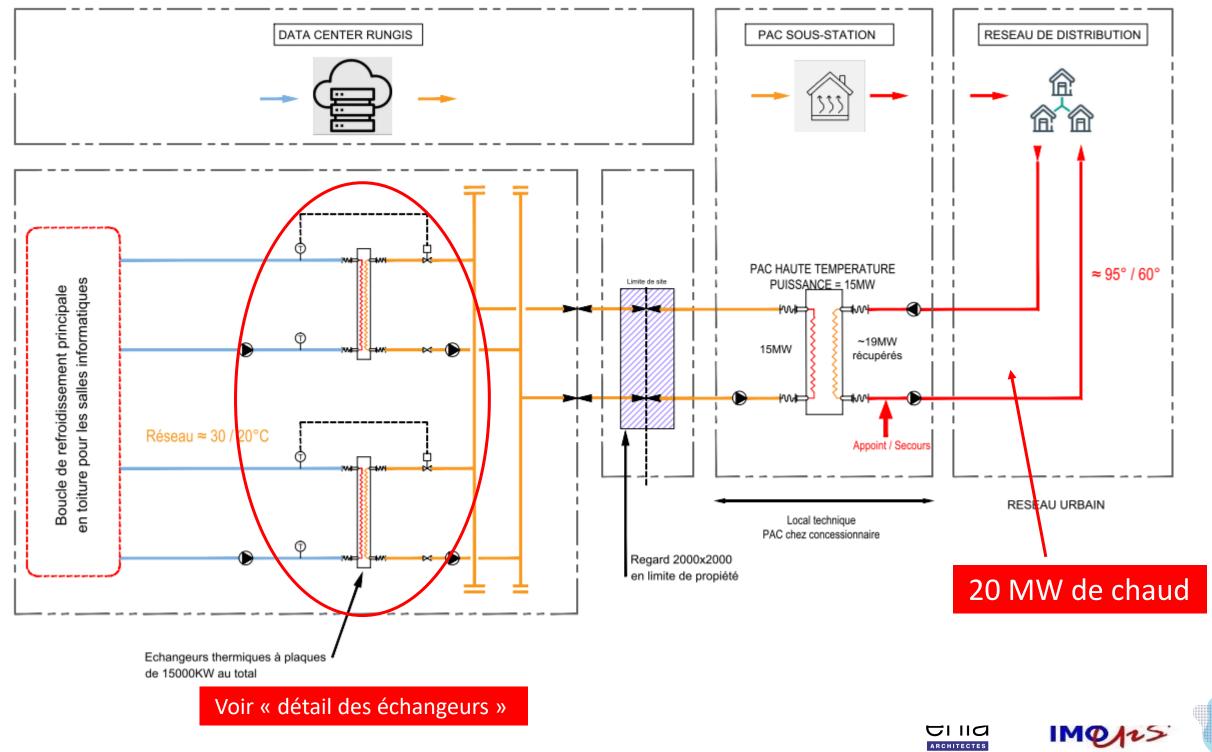

Développement du réseau de chauffage urbain

Plan de principe du DATA CENTER


*IT = Information Technology: la puissance IT correspond à la puissance électrique disponible pour le matériel informatique.

Calendrier prévisionnel de fourniture de chaleur fatale issue du DATA CENTER RUNGIS

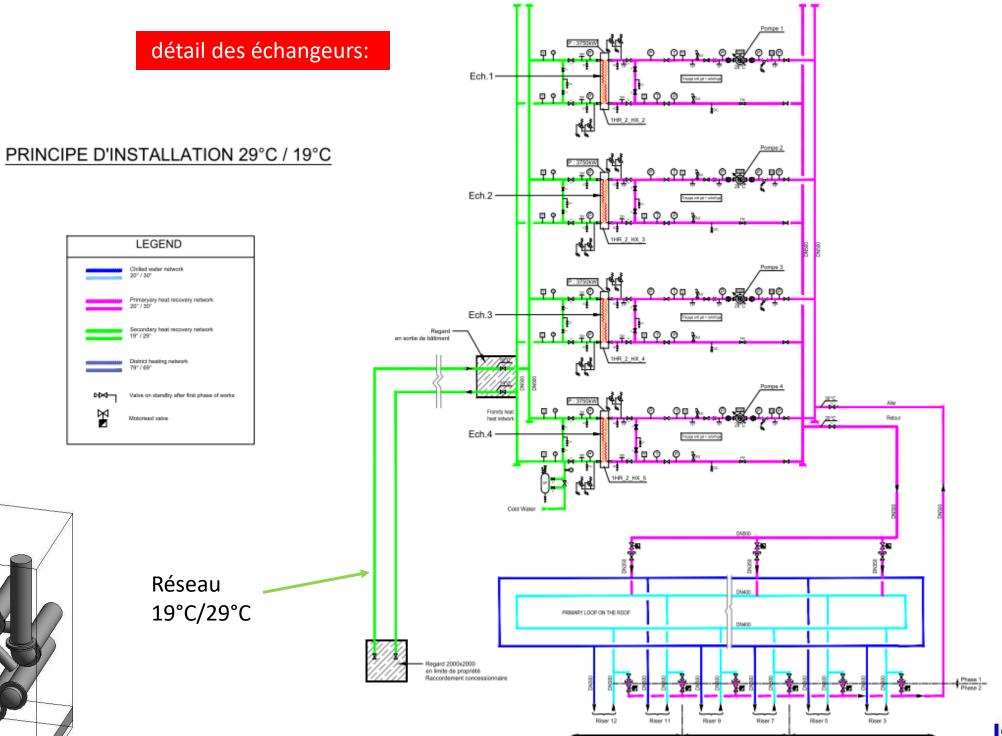
DATA CENTER RUNGIS – Solution envisageable


Plusieurs solutions de récupération de chaleur sont envisageables dans le cadre d'une collaboration entre le propriétaire du centre informatique et les services publics. Le principe retenu:

 Importation de froid à partir d'un réseau de refroidissement urbain pour refroidir partiellement les charges thermiques informatiques via un échangeur de chaleur soit l'exportation de chaleur fatale à basse température.
 Ce principe sera identifié dans les prochaines diapositives comme:

« Concept général / Export de chaleur fatale à ≈28°C/29°C »

Ce concept permettra de fournir une puissance chaude de 20MW vers le réseau de chauffage urbain.



Locaux techniques comportant les échangeurs de chaleurs-Principe général:

Locaux techniques comportant les échangeurs de chaleurs :

Son principe général repose sur la mise en œuvre des échangeurs afin d'assurer la récupération de chaleur et d'isoler les réseaux du Data Center des réseaux du concessionnaire.

Démarches pour garantir la puissance fournie et éviter les pertes de chaleur sur le

réseau de récupération de chaleur:

Des classes d'isolation sont données dans le <u>Tableau 1.</u>

Tous les réseaux de récupération de chaleur seront isolés thermiquement avec 30mm d'isolant type « Isover » ayant une conductivité thermique de 0.037 W/m*K équivalent à la classe 1 selon la norme NF EN 12828

		Réseaux dans le	
Données d'entrée	Réseaux à l'extérieur	bâtiment	Réseaux enterrés
coefficient de perte	1.17 W/m² K	1.17 W/m ² K	1.17 W/m ² K
surface d'1ml de tube de diamètre 500mm	0.20m²	0.20m²	0.20m²
Température extérieure considérée	-11 °C	27 °C	10 °C
Longueur des tubes	200 ml	80 ml	120 ml
Température de fluide considérée	30 °C	30 °C	30 °C
Perte de chaleur des tubes calculée	1919W	56W	562W
Total de perte de chaleur du circuit de			
récupération de chaleur (sur la parcelle d'ICAD)			2537W
			0.017%
Ce qui représente par rapport à 15	des pertes		

CONCLUSION : <u>LES PERTES THERMIQUES DU</u>
RESEAU DE RECUPERATION DE CHALEUR SONT
NEGLIGEABLES

	Coefficient de transmission thermique maximal			
Classe d'isolation	Tuyauteries de diamètre extérieur d ₁ ≤ 0,4 m	Tuyauteries de diamètre extérieur d ₁ ≥ 0,4 m ou surfaces planes ^{a)}		
	W/(mK)	W/(mK)		
0	_			
1	3,3 d ₁ + 0,22	1,17		
2	2,6 d ₁ + 0,20	0,88		
3	2,0 d ₁ + 0,18	0,66		
4	1,5 a ₁ + 0,16	0,49		
5	1,1 a ₁ + 0,14	0,35		
6	0,8 o ₁ + 0,12	0,22		

Classe 1 d1 U_L λ (W/mK) mm 0,03 0,04 0,05 0,06 W/(mK) 10 0,25 3 6 20 0,29 11 16 30 0,32 17 23 12 40 0,35 10 14 20 28 0,42 26 60 12 18 37 0,48 14 31 80 22 0,55 32 100 44 15 23 200 0,88 19 26 46 29 50 300 1,21 21 45 (1,17)Plan 22 30

Coefficient de transmission thermique

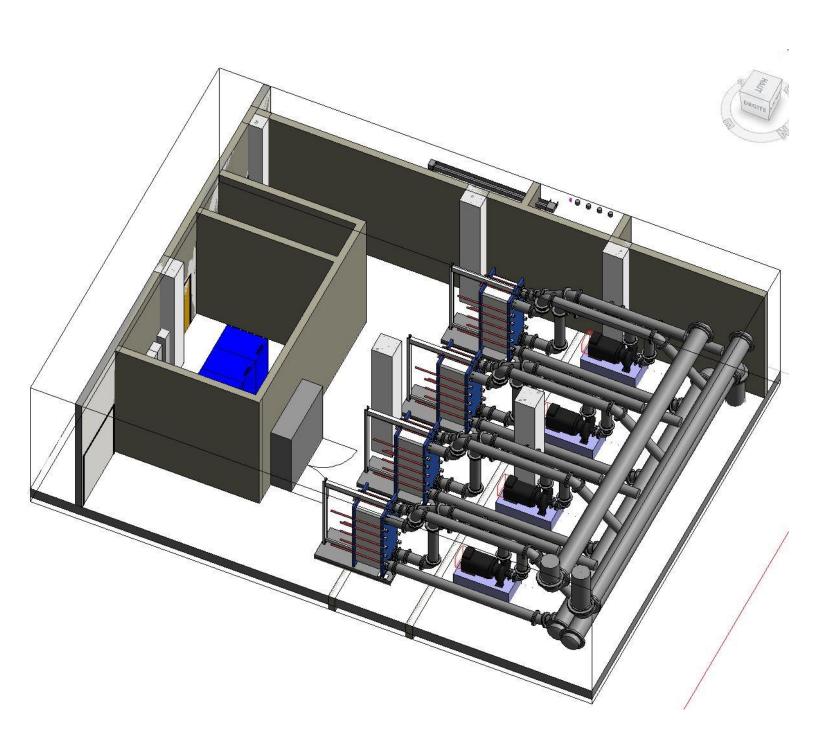
Epaisseur d'isolant

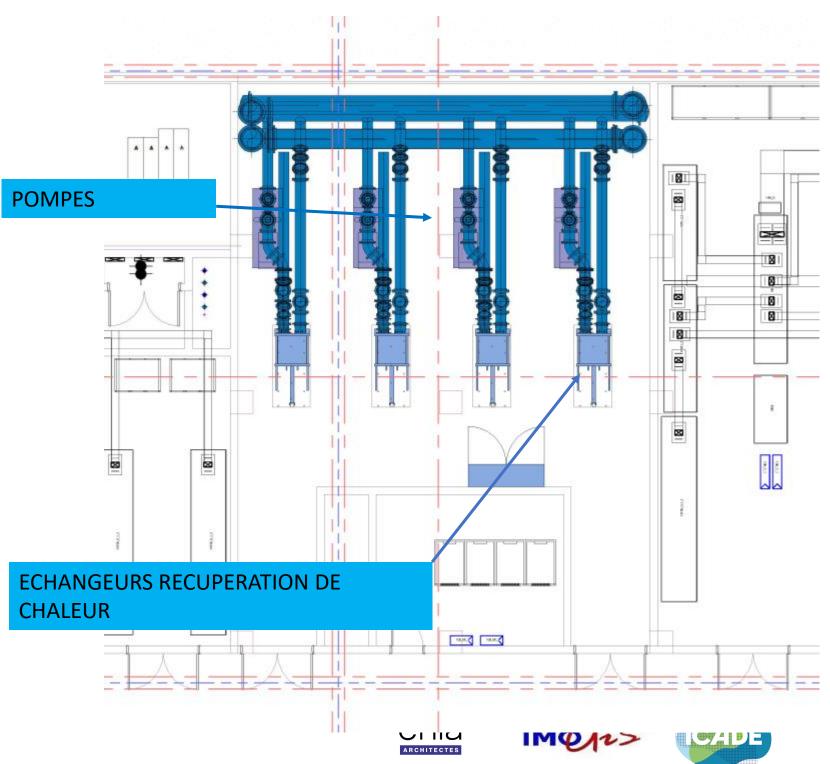
Implantation du local d'échangeurs

REGARD DE RACCORDEMENT DU CONCESSIONAIRE

RESEAUX DE RECUPERATION DE CHALEUR / 2 X DN 500

LOCAL TECHNIQUE ECHANGEURS
RECUPERATION DE CHALEUR AU NIV RDC


PLAN MASSE

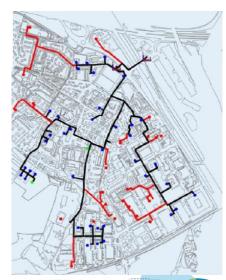


Local technique comportant les échangeurs de chaleur

Développement possible du réseau urbain-redistribution

Développement à court terme:

Bâtiments déjà raccordé sur le réseau de chaleur urbain:
Bâtiments de bureaux
Hôtels
Projets résidentiels



Développements à moyen & long terme:

Nouveaux abonés:

- Bureaux
- Logements collectifs
- Résidence / hôtel

MERCI DE VOTRE ATTENTION

Data Center – llots Sydney et Adelaïde – Parc d'affaires Paris-Orly-Rungis (94) Description des mesures prises pour limiter la consommation d'énergie de l'installatio	Version mise à jour en mars 2025
Annexe 2	
Note de calcul détaillant l'estimation de production des par	nneaux photovoltaïques

ICADE

PROJET DATA CENTER - RUNGIS

Rue des Solets, 94150 Rungis

NOTE TECHNIQUE – PRODUCTION PHOTOVOLTAIQUE

Phase : Dossier d'Agrément

Lot ELECTRICITE

Rédigé par : Imogis - CCI Date initiale : 30/07/2024 Révision 2 : 04/02/2025

SOMMAIRE

1	CHAPITRE 1 – INTRODUCTION	3
	1.1 Contexte	3
	1.1 Objet	3
2	CHAPITRE 2 – DESCRIPTIF TECHNIQUE	4
	2.1 Panneaux solaires Photovoltaïques	4
	2.2 Implantation	5
	2.2.1 Sur-toiture du bâtiment Datacenter	5
	2.2.2 Ombrières photovoltaïques	5
	2.3 Principe de raccordement électrique	6
	2.3.1 Schéma de principe	6
	2.3.2 Synoptique de principe	7
	2.4 Mise en œuvre	7
3	CHAPITRE 3 - CALCULS	8
	3.1 Calculs préliminaires	8
	3.2 Production photovoltaïque	8
	3.2.1 Saisie des données	
	3.2.2 Résultats	
4	CHAPITRE 4 – CALCUL	10
	4.1 PV GIS - Calcul	10

1 CHAPITRE 1 – INTRODUCTION

1.1 CONTEXTE

Le projet porte sur la construction d'un datacenter dans le Parc d'Affaires Paris-Orly-Rungis sur la commune de RUNGIS (94150) au sein de la parcelle cadastrale AM20 d'une contenance de 107.806 m², situé en zone UAE1. Le bâtiment sera sur un R +4 + Toiture + Gantry accueillant des surfaces dédiées au stockage des données numériques.

Le bâtiment principal (centre de données) s'élève à +35.00m (hauteur de façade) à partir du niveau du sol existant, le second bâtiment abritant les sous-stations s'élève à +12.00m (hauteur de façade) à partir du niveau du sol existant et le troisième bâtiment abritant les groupes électrogènes s'élève à +32.00m (hauteur de façade) à partir du niveau du sol existant.

Les destinations du projet au sens du PLU de Rungis sont les suivantes :

- Entrepôt : pour les surfaces de stockage des données numériques, les locaux techniques associés, les locaux intégrant les groupes électrogènes ainsi que les sous-stations
- Bureaux : pour les surfaces de bureaux associées au centre de données.

Le projet s'articule autour des zones fonctionnelles suivantes réparties sur les trois bâtiments :

Le bâtiment dédié aux sous-stations

Deux sous-stations en R+1 permettent d'alimenter le site en électricité. Une voirie périphérique permet d'accéder aux équipements et d'assurer la maintenance.

Le bâtiment dédié aux groupes électrogènes

Zone abritant les groupes électrogènes : 59 groupes électrogènes sont répartis sur 5 niveaux de 6.40 m de dalle à dalle. Un monte-charge ainsi que des escaliers de secours permettent d'acheminer le matériel.

Le bâtiment dédié au centre de données

Zone IT : 30 salles IT sont réparties sur 5 niveaux de 5.70 m de dalle à dalle. Chaque plateau de salles IT est irrigué par des locaux techniques de part et d'autre des salles pour assurer la redondance et la sécabilité des surfaces.

Zone de bureaux associés au centre de données de surface utile 2500 m² répartie sur 4 niveaux. Le RDC, dédié à la logistique, intègre deux quais pour les poids-lourds ainsi que des monte-charges pour acheminer le matériel informatique vers les salles.

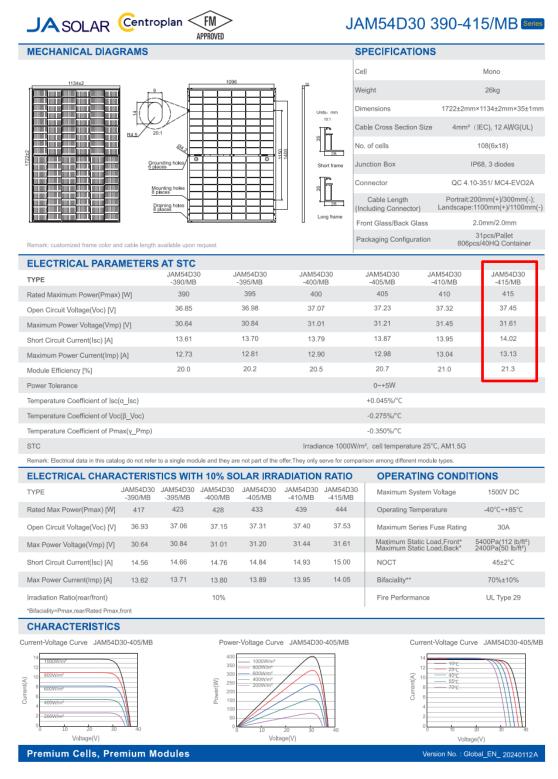
Le site est sécurisé par une clôture périphérique et un seul accès depuis la rue des Solets. Un poste de contrôle permet de contrôler le flux des véhicules. Les livraisons poids-lourds ainsi que le stationnement des véhicules légers s'effectuent côté nord, en retrait de la rue des Solets de plus de 30 mètres. Une voirie périphérique aux sous-stations et au centre de données permet d'assurer la maintenance des équipements et l'accessibilité des pompiers.

L'effectif total de l'opération sera inférieur à 100 personnes.

1.1 OBJET

La note technique ci-après a pour objectif de présenter le système de production photovoltaïque qui sera mis en œuvre sur le projet ICADE DATA CENTER Rungis. Ces panneaux seront installés en sur-toiture ainsi que sur des ombrières au droits du parc de stationnement du site.

V2 04/02/2025 3/11



La surface totale cumulée de l'installation sera supérieure à 3000m² ce qui correspond à 30% de la surface du bâtiment

2 CHAPITRE 2 – DESCRIPTIF TECHNIQUE

2.1 PANNEAUX SOLAIRES PHOTOVOLTAÏQUES

Nota : afin de répondre aux exigences et aux Standards appliqués dans les Data Centers, les panneaux photovoltaïques présentés ont été sélectionnés selon les Exigences de la FM Global

V2 04/02/2025 4/11

2.2 IMPLANTATION

2.2.1 Sur-toiture du bâtiment Datacenter

Afin de couvrir la plus grande surface tout en optimisant l'exposition aux rayonnements solaires, les panneaux photovoltaïques seront implantés

- En sur-toiture
- Légèrement inclinés (3°) afin d'assurer le ruissèlement des eaux de pluie

La surface présentée pourra être qualifié de 5^{ème} façade.

La hauteur d'installation répondra aux contraintes imposées par le PLU.

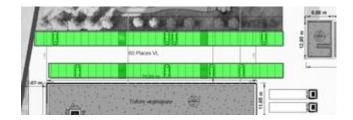
Groupe de refroidissement / chillers

Panneau Photovoltaïque – 415Wc

Nota : une zone d'accessibilité pour la maintenance à intervalle régulier a été préservée, garantissant un fonctionnement optimal des panneaux

La surface de l'installation en sur toiture est d'environ 2000m².

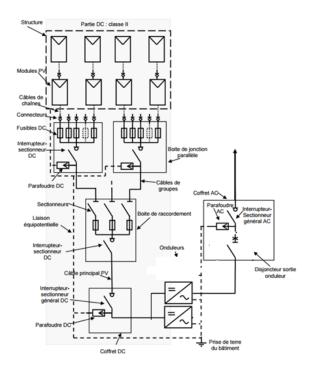
Cela représente donc un total d'environ 1026 panneaux photovoltaïques, pour une puissance cumulée d'environ 425 790 Wc.


2.2.2 Ombrières photovoltaïques

Deux ombrières photovoltaïques d'une surface unitaire d'environ 500m² seront installées sur les places de stationnement au nord du site :

V2 04/02/2025 5/11

Deux ombrières de surface individuelle d'environ 500m² seront installées sur les zone de stationnement.

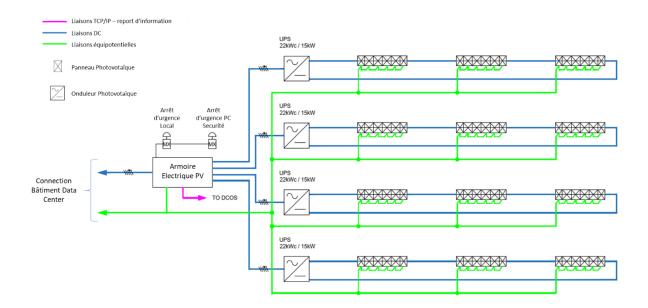

500m² de surface d'ombrière correspond a environ 256 panneaux soit une puissance totale d'environ 106 240Wc par ombrière.

Inclinaison d'environ 5° avec une orientation sud sud-est, environ -15°.

2.3 PRINCIPE DE RACCORDEMENT ELECTRIQUE

La totalité de la production Photovoltaïque sera auto-consommée et contribuera à la l'alimentation électrique des systèmes de production frigorifiques du bâtiment Data Center.

2.3.1 Schéma de principe



V2 04/02/2025 6/11

2.3.2 Synoptique de principe

2.4 MISE EN ŒUVRE

Le système sera conçu selon les normes DTU en vigueur applicables au système en question.

A ce stade, les modules PV seront installés sur le bâtiment Data center.

Les panneaux et les supports seront réalisés en matériau non gouttant (d0)

Les toitures accueillant les panneaux photovoltaïques seront réalisées en matériaux B Roof T3.

Sur le bâtiment du centre de données, les modules photovoltaïques seront installés au-dessus d'une structure en acier indépendante elle-même installée sur la Gantry.

L'ossature primaire sera fixée sur la tôle de couverture en acier installée sur la structure primaire en acier au-dessus du portique.

Le système de support sera du type PRIMA d'Adiwatt – Approuvé par FM Global

Le système de support sera composé de petites pièces d'ancrage telles que visibles sur la photo ainsi que de plus grandes barres d'acier ou d'aluminium sur lesquelles les panneaux seront fixés à l'aide de vis et de pièces adaptées.

sée

L'ossature secondaire de type Adiwatt complétera l'ossature primaire et sera composée de :

- Un système de rails de support des panneaux, réalisés sur mesure, permettant la pose et la dépose par le bas
- Des fixations

Le système d'intégration permettra la pose et la dépose des modules par le bas.

Le système d'intégration sera mis à la terre.

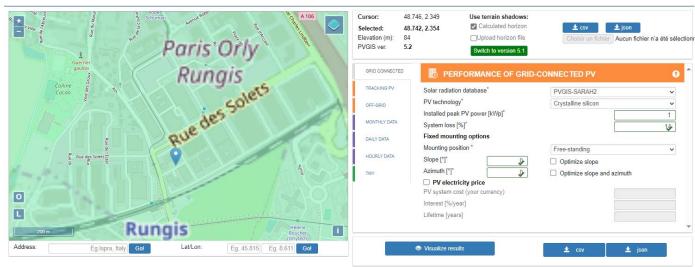
V2 04/02/2025 7/11

3 CHAPITRE 3 - CALCULS

3.1 CALCULS PRELIMINAIRES

PV - 5ème Facade Chiller		
Pc ⁽¹⁾ unitaire – PV	kWc	0,415
Surface unitaire – PV	m²	1.96
Qté ⁽²⁾		1026
Pc – TOTALE	kWc	425.8
Surface TOTALE	m²	~2000

PV – Ombrière parkig		
Pc ⁽¹⁾ unitaire – PV	kWc	0,415
Surface unitaire – PV	m²	1,96
Qté ⁽²⁾		2x256
Pc – TOTALE	kWc	2x106,2
Surface TOTALE	m²	2x500


- (1) Pc = Puissance Crète
- (2) A ce stade du projet

Surface Totale couvert par des panneaux photovoltaïques : ~3000m². Puissance totale installée : 532kWc.

3.2 PRODUCTION PHOTOVOLTAÏQUE

Le calcul de production photovoltaïque ci-après est réalisé grâce au logiciel en ligne PVGIS Ver5.2 (https://re.jrc.ec.europa.eu/pvg tools/fr/) mise à disposition par la Commission Européenne.

3.2.1 Saisie des données

Valeur pour 1 kWc installé, inclinaison 3°, orientation 0° (panneau a plat en toiture) pour la surtoiture, 1kWc installé inclinaison 5° et orientation -15° (ombrière)

V2 04/02/2025 8/11

3.2.2 Résultats

PVGIS-5 estimates of solar electricity generation:

Provided inputs: Simulation outputs

Latitude/Longitude: 48.742,2.353 Slope angle: 3 °
Horizon: Calculated Azimuth angle: 0 °

Database used: PVGIS-SARAH2 Yearly PV energy production: 987.17 kWh
PV technology: Crystalline silicon Yearly in-plane irradiation: 1252.3 kWh/m²
PV installed: 1 kWp Year-to-year variability: 42.84 kWh

System loss: 14 % Changes in output due to:

Angle of incidence: -4.17 %
Spectral effects: 1.48 %
Temperature and low irradiance: -5.75 %
Total loss: -21.17 %

Résultats sur la surtoiture pour 1 kWc : « Yearly PC energy production (kWh)" : ~987kWh/kWc.

PVGIS-5 estimates of solar electricity generation:

Provided inputs: Simulation outputs
Latitude/Longitude: 48.742,2.353 Slope angle:

Latitude/Longitude: 48.742,2.353 Slope angle: 5 °
Horizon: Calculated Azimuth angle: 10 °

Database used: PVGIS-SARAH2 Yearly PV energy production: 1002.97 kWh
PV technology: Crystalline silicon Yearly in-plane irradiation: 1270.37 kWh/m²
PV installed: 1 kWp Year-to-year variability: 43.57 kWh

System loss: 14 % Changes in output due to:

Angle of incidence: -4.05 %
Spectral effects: 1.5 %
Temperature and low irradiance: -5.73 %
Total loss: -21.05 %

Résultat sur les ombrières pour 1kWc : « Yearly PC energy production (kWh) » : 1000 kWh/kWc

Au regard des données d'entrée et de l'avancement du projet, à ce stade il est envisagé une production annuelle photovoltaïque de :

Toiture DC: 425.8kWc x 987 kWh/kWc = 420 265 kWh Ombrières: 2x 106 kWc x 1000kWh/kWc = 212 000 kWh

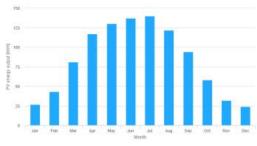
Total projet: 632 265kWh par an.

<u>Limites</u>: il est important de note que les données ci-dessus sont estimatives et ne prennent entre autres pas en compte l'ombrage du bâtiment sur les ombrières ou les effets thermiques qui dégradent les performance des panneaux photovoltaïques sur la sur-toiture.

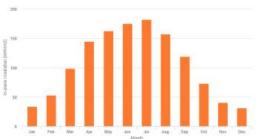
V2 04/02/2025 9/11

4 CHAPITRE 4 – CALCUL

4.1 PV GIS - CALCUL


PVGIS-5 estimates of solar electricity generation:

Provided inputs:
Latitude/Longitude: 48.742,2.353
Horizon: Calculated
Database used: PVGIS-SARAH2
PV technology: Crystalline silicon
PV installed: 1 kWp
System loss: 14 %


Simulation outputs
Slope angle:
Azimuth angle:
Yearly PV energy production:
Yearly in-plane irradiation:
Year-to-year variability:
Changes in output due to:
Angle of incidence:
Spectral effects:
Temperature and low irradiance:
Total loss:

Outline of horizon at chosen location:
5°
10°
1002.97 kWh
1270.37 kWh/m²
43.57 kWh
4.05 %
1.5 %
-5.73 %
-21.05 %

Monthly energy output from fix-angle PV system:

Monthly in-plane irradiation for fixed-angle:

Monthly PV energy and solar irradiation

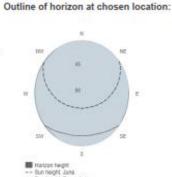
Month	E_m	H(i)_m	SD_r
January	26.5	33.7	3.1
February	43.1	52.9	8.4
March	80.8	98.5	11.0
April	116.6	144.7	14.9
May	130.0	162.9	18.3
June	136.9	175.1	16.5
July	139.7	181.7	14.2
August	121.7	156.9	8.9
September	93.9	119.1	6.3
October	57.9	72.8	5.6
November	31.9	40.7	4.1
December	23.9	31.4	4.0

E_m: Average monthly electricity production from the defined system [kWh].


 $H(i)_m: Average monthly sum of global irradiation per square meter received by the modules of the given system [kWh/m²]. \\$

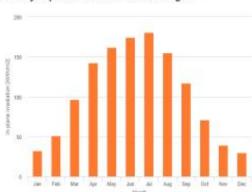
SD_m: Standard deviation of the monthly electricity production due to year-to-year variation [kWh].

V2 04/02/2025 10/11



PVGIS-5 estimates of solar electricity generation:

Provided inputs:


Latitude/Longitude: 48.742,2.353 Horizon: Calculated Database used: PVGIS-SARAH2 PV technology: Crystalline silicon PV installed: 1 kWp System loss: 14 %

Simulation outputs Slope angle: Azimuth angle: Yearly PV energy production: 987.17 kWh 1252.3 kWh/m² Yearly in-plane irradiation: Year-to-year variability: 42.84 kWh Changes in output due to: Angle of incidence: -4.17 % Spectral effects: 1.48 % Temperature and low irradiance: -5.75 % Total loss: -21.17 %

Monthly energy output from fix-angle PV system:

Monthly in-plane irradiation for fixed-angle:

Monthly PV energy and solar irradiation

Month	E_m	H(i)_m	SD_n
January	25.1	32.4	2.9
February	41.5	51.2	7.8
March	78.9	96.4	10.5
April	115.2	142.9	14.5
May	129.4	162.0	18.1
June	136.5	174.5	16.4
July	139.2	180.9	14.1
August	120.6	155.4	8.8
September	92.1	116.9	6.1
October	56.0	70.8	5.2
November	30.3	39.1	3.7
December	22.3	29.9	3.5

E_m: Average monthly electricity production from the defined system [kWh].

H(i)_m: Average monthly sum of global irradiation per square meter received by the modules of the given system [kWh/m²].

SD_m: Standard deviation of the monthly electricity production due to year-to-year variation [kWh].

V2 04/02/2025 11/11