

un nouveau souffle pour nos mobilités

NOTE D'HYPOTHESE DE DIMENSIONNEMENT HYDRAULIQUE SUR LE SITE RENOUX/ BALLAINVILLIERS/JOFFRE/ VERCINGETORIX

AVP

LES ALLEES DU CARDO 22/08/2022

Émetteur: ALTO STEP

ALTO STEP 5 rue Sala 69002 LYON

N° d'identification

BC BAL AVP AEP 418 X MRBJV 001 F
réf. pièce du projet Ligne Zone Phase Discipline Type Statut Émetteur Nº d'ordre indice

REVISION DE CE DOCUMENT

Indice	Date	Pages	Objet de la révision
Α	16/03/2022	Toutes	Édition du document
В	11/04/2022	Toutes	Ajout de précisions sur l'existant et le projeté
С	25/05/2022	Toutes	Ajout de précisions sur l'existant et le projeté
D	27/07/2022	Toutes	Mise-à-jour en fonction des évolutions du projet
E	22/08/222	13	Mise à jour suite retour DDT
F	30/09/2022	Toutes	Intégration des perméabilités et mises-à-jour
G			

Validation du document

Émetteur : ALTO STEP

Rédaction	Vérification	Validation		
Nom	Nom	Nom		
J. Rémy-Fourrier	A-S. VICAIRE	CAIRE A-S. VICAIRE		
Date	Date	Date		
30/09/2022	30/09/2022	30/09/2022		
Visa	Visa	Visa		

SOMMAIRE

I. RAPPEL DU PROJET ET CADRE DE CETTE NOTE D'HYPOTHESE	5
II. FONCTIONNEMENT HYDRAULIQUE ACTUEL DU SITE	7
II.1. Secteur Renoux, Joffre, Carnot	
II.2. Secteur Ballainvilliers	
II.3. Secteur Vercingétorix	
III. HYPOTHESES DE DIMENSIONNEMENT HYDRAULIQUE	10
III.1. Gestion alternative des eaux pluviales	10
III.2. Période de retour	10
III.3. Hypothèses de calcul du dimensionnement hydraulique	11
III.4. Perméabilités	11
III.5. Analyse des risques	12
III.5.1. Risque de pollution	12
III.5.1.1. Les masses polluantes	
III.5.1.2. Abattement des MES:	
III.5.1.3. Abattement des autres paramètres caractéristiques de la pollution chronique III.5.1.4. Impact qualitatif	
III.5.1.4.1. En phase chantier	
III.5.1.4.2. En phase exploitation	
III.5.2. Risque inondation	20
IV. FONCTIONNEMENT HYDRAULIQUE PROJETÉ	21
IV.1. Principe du système de Stockholm	21
IV.2. Gestion dans les noues et fosses d'arbres	22
IV.3. Bassin versant n°1 : Secteurs Joffre-Carnot	23
IV.4. Bassin-versant n°2 : Renoux-Ballainvilliers	25
IV.5. Bassin-versant n°3 : Secteur Vercingétorix-Mitterrand	28
V. ANNEXES	30
V.1. Annexe 1 : Calcul des volumes de rétention par la méthode des pluies du B\n°2	/ 30
V.2. Annexe 2 : Calcul des volumes de rétention par la méthode des pluies du B\n°2	/ 30
V.3. Annexe 3 : Dimensionnement des noues du BV n°2	30
V.4. Annexe 4 : Dimensionnement des noues du BV n°3	30

The state of the s	11 11
in the first title	
the state of the s	
V.5. Annexe 5 : Calcul des pluies courantes du BV n°2	30
V.6. Annexe 6 : Calcul des pluies courantes du BV n°3	30

I. RAPPEL DU PROJET ET CADRE DE CETTE NOTE D'HYPOTHESE

Cette note présente les hypothèses de dimensionnement hydraulique sur le secteur Renoux/Ballainvilliers/Joffre/Vercingétorix dans le cadre du projet Inspire.

Secteur concerné

Le projet, situé sur la commune de Clermont-Ferrand, s'intègre dans le cadre du projet InspiRe de restructuration du réseau de transport public métropolitain.

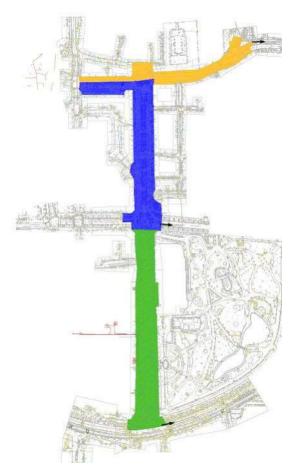
Les objectifs de la gestion des eaux pluviales sont multiples :

- -Améliorer la qualité de l'eau;
- -Protéger les personnes et les biens ;
- -Mais aussi:
 - Maintenir la biodiversité
 - S'adapter au changement climatique
 - Réduire la chaleur en ville
 - Préserver la santé publique
 - Améliorer le cadre de vie
 - Réintroduire l'eau dans la ville

Les aspects réglementaires concernant la gestion des eaux pluviales sont notamment définis dans le PLU de Clermont-Ferrand. L'infiltration des eaux et/ou leur réutilisation, et/ou leur rétention, sont fortement recommandées, sauf impossibilité technique démontrée. Les eaux pluviales peuvent être rejetées au réseau avec un débit de fuite limité à 3l/s/ha et leur stockage calculé pour une période de retour décennale. Le volume de rétention réglementaire est de 45l/m².

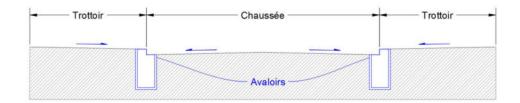
Nous avons bien pris en compte les réseaux existants et la volonté de la DCE de ne pas dévoyer ses réseaux.

Néanmoins, pour pouvoir répondre aux objectifs ambitieux du projet en matière de plantations et de réduction des ilots de chaleur, ainsi que d'implantation des colonnes enterrées des ordures ménagères, nous avons prévu le dévoiement d'un linéaire de réseaux existants.


Nous continuerons à échanger avec la DCE pendant le PRO pour aboutir à un projet optimisé.

II. FONCTIONNEMENT HYDRAULIQUE ACTUEL DU SITE

Sur l'ensemble du secteur, les eaux pluviales sont collectées dans le réseau unitaire.


Le site compte 3 exutoires principaux :

- BV1: un réseau Ø700 avenue Carnot (diamètres à confirmer: un ovoïde 0.6 x 1.20 > Ø700 > Ø500 > Ø630 > Ø800) qui récupère les secteurs suivants
 - Partie nord de la place Renoux
 - Placette Ballainvilliers
 - Rue du Maréchal Joffre et avenue Carnot
- BV2: Un ovoïde 0.9 x 2.0 Boulevard Lafayette qui récupère les secteurs suivants
 - Partie sud de la place Renoux
 - Rue Ballainvilliers
 - Place Desaix
- BV3: Un ovoïde 0.9 x 2.0 Boulevard François Mitterrand qui récupère les secteurs suivants
 - Avenue Vercingétorix

Découpage des bassins versants existants selon les principaux exutoires

De manière générale, le site présente un fonctionnement classique. Les eaux pluviales des trottoirs ruissellent vers la chaussée. Les profils de voirie sont en V avec des avaloirs de chaque côté de la chaussée.

Profil type d'une voirie en V

II.1. Secteur Renoux, Joffre, Carnot

La pente longitudinale des voiries descend vers l'est (en direction de l'avenue Carnot).

La placette Ballainvilliers est pentée vers la voirie, il n'y a pas d'avaloir existant sur la place.

Débit de pointe estimé pour une pluie décennale : 270 L/s.

Points de vigilance éventuels :

- Incohérence dans les diamètres de réseau sur les plans d'assainissement de Clermont Auvergne Métropole: un ovoïde 0.6 x 1.20 > Ø700 > Ø500 > Ø630 > Ø800
- Présence de nombreuses grilles d'aération sur les trottoirs

II.2. Secteur Ballainvilliers

La rue présente une pente longitudinale à 3 % vers le sud.

L'assainissement de la zone est assurée par 2 réseaux unitaires Ø300 de part et d'autre de la chaussée sur la partie nord.

Un unitaire Ø500 arrive au niveau de la rue Morel.

Un ovoïde 0.6 x 1.20 récupère les réseaux du trottoir ouest et les réseaux unitaires du boulevard Malfreyt ainsi qu'une partie des réseaux de l'avenue Vercingétorix (nord-ouest). Ce réseau se rejette ensuite vers un ovoïde 2.0 x 0.9 qui passe boulevard Lafayette.

Débit de pointe estimé pour une pluie décennale : 382 L/s.

Points de vigilance éventuels :

Passage du réseau Ø500 sous des arbres existants, selon recollement IC et DICT

II.3. Secteur Vercingétorix

La rue présente une pente longitudinale à 5.4 % vers le sud.

L'assainissement de la zone est assurée par 1 réseau unitaire Ø300 côté ouest de la voirie qui récupère des branchements depuis les rues adjacentes.

Le réseau se connecte sur un Ø800 en bas de l'avenue, qui se connecte lui-même sur un ovoïde 0.9 x 2.0 sur le boulevard Mitterrand.

Débit de pointe estimé pour une pluie décennale : 397 L/s.

Points de vigilance éventuels :

- Les raccordements des grilles EP n'apparaissent sur aucun plan. Il y a sans doute au moins une traversée de chaussée qui n'a pas été détectée dans les IC.
- Raccord d'un réseau Ø400 sur un Ø300 au niveau de la rue Rocard
- Il y a peut-être une modification de réseau prévue sur la portion sud de l'unitaire du fait de l'opération Hôtel Dieu (création de logements Ø300 suffisant ?)

III. HYPOTHESES DE DIMENSIONNEMENT HYDRAULIQUE

III.1. Gestion alternative des eaux pluviales

Les eaux pluviales sont gérées aujourd'hui dans un réseau de type unitaire sur le secteur d'études.

L'imperméabilisation du site sera améliorée par le projet paysager.

La gestion des eaux via des noues et les ouvrages paysagers sera privilégiée afin de gérer les eaux pluviales à la source.

L'objectif sera ainsi d'infiltrer les pluies courantes (hors secteur Michel de l'Hospital, Desaix et Mitterrand) et de s'orienter vers un objectif de zéro rejet, afin de décharger le réseau d'assainissement unitaire existant.

En l'absence de données sur les perméabilités du site, nous prenons pour hypothèse l'infiltration des 15 premiers mm de pluie à minima.

Sur les secteurs où le rejet vers les espaces paysagers ne sera pas possible, ou pour la mise en œuvre éventuelle de rejets vers exutoires suivant la perméabilité du site, les réseaux d'assainissement EP du projet seront conformes au Fascicule 70.

III.2. Période de retour

Les objectifs de gestion des eaux pluviales ont été hiérarchisé par niveau de service dans le mémento technique de l'ASTEE selon le tableau ci-dessous.

Déversements Protection des Aucun acceptés et Objectifs de gestion Débordements Aucun personnes déversement maîtrisés localisés acceptés du système déversement Organisation de d'eaux usées non d'assainissement non autorisé et maîtrisés la gestion de Pas de traitées débordement Niveau de Niveau de Niveau de Niveau de Niveau de service N1 service N2 service N3 service N4 service NO Niveau de service et conditions pluviométriques Pluies Pluies faibles Pluies fortes Pluies Temps sec correspondantes exceptionmovennes nelles Exemples de périodes de retour de pluie correspondant 0,5 à 6 mois 2 à 20 ans 10 à De l'ordre aux seuils entre de 100 ans 50 ans niveaux de service Terminologie DERU Conditions climatiques normales Plujes fortes à exceptionnellement fortes Vérification du Prise en compte des débordements Conception et fonctionnement Hydraulique des ouvrages du système dans l'espace urbain et vérification hydraulique des niveaux et dimensionnement pour les eaux d'assainissement usées écoulement

Tableau 1 : Niveaux de services, adapté de « La Ville et son Assainissement » (CERTU, 2003)

Les objectifs principaux sont de maîtriser le ruissellement des eaux pluviales et de limiter les inondations.

L'objectif ici est donc de gérer les pluies moyennes selon le niveau de service N2.

Selon ces indications, et en accord avec le PLU de Clermont-Ferrand, la période de retour de pluie choisie est donc d'occurrence décennale.

Buch

III.3. Hypothèses de calcul du dimensionnement hydraulique

Le dimensionnement hydraulique sera calculé en utilisant les coefficients de Montana de la station météorologique de Clermont-Ferrand.

Période statistique 1960 - 2014.

Pluies de durée :

-6mn − 1h

Durée de retour	а	b
5 ans	4.064	0.523
10 ans	4.649	0.512
20 ans	5.195	0.5
30 ans	5.449	0.49
50 ans	5.8	0.479
100 ans	6.263	0.465

-1h - 24h

Durée de retour	а	b
5 ans	9.978	0.757
10 ans	12.174	0.766
20 ans	14.512	0.774
30 ans	15.944	0.778
50 ans	17.829	0.783
100 ans	20.459	0.79

Le calcul de la surface active sera effectué avec pour hypothèse les coefficients de ruissellement cidessous :

-Voiries imperméables: 100%

Noues

surfaces stabilisé : 80%surfaces espaces verts : 30%.

III.4. Perméabilités

Au vu des premiers retour sur la perméabilité des sols, 'hypothèse de l'infiltration des 15 premiers mm de pluie a minima est retenue.

À ce stade de l'étude, deux essais de perméabilité ont été réalisés sur le périmètre du projet.

■SC1BC : $K = 9.8 \times 10^{-5} \text{ m/s}$ ■SC3BC : $K = 2.1 \times 10^{-5} \text{ m/s}$

De manière sécuritaire, nous avons retenu le plus contraignant des deux à savoir : $K = 2,1 \times 10^{-5}$ m/s, pour l'ensemble des ouvrages d'infiltration.

III.5. Analyse des risques

III.5.1. Risque de pollution

Les risques de pollution des eaux de ruissellement sont liés aux contaminants pouvant être lessivés ou dissous et entraînés par ces eaux.

Si la concentration des contaminants devenant polluants dépend de nombreux facteurs tels que l'intensité de la pluie, le revêtement de surface, les activités à proximité, etc. Il est aussi extrêmement lié à la distance parcourue par les eaux de ruissellement.

Afin de pouvoir préciser les seuils à atteindre pour les polluants d'origine routière compatibles avec des objectifs de bon état de la masse d'eau superficielle, nous avons retenus les paramètres et seuils présentés dans le tableau ci-dessous.

Paramètre	Seuil maximal de la classe « bon état » retenu	Référence		
MES (mg/l)	< 30 mg/l	DDT du Puy-de-Dôme (doctrine)		
DCO (mg/l)	< 30 mg/l	SEQ-EAU V2		
Cu (µg/l)	< 1,0 µg/l	Objectif BE - Arrêté du 27.01.2010 modifié par arrêté du 27.07.2015		
Zn (µg/l)	< 7,8 µg/l	Objectif BE - Arrêté du 27.01.2010 modifié par arrêté du 27.07.2015		
Cd (µg/I)	NQE-MA < 0,15 µg/l et NQE-CMA < 0,9 µg/l	Objectif BE - Arrêté du 27.01.2010 modifié par arrêté du 27.07.2015		
H totaux (eau) (µg/l)	< 5 mg/l	DDT du Puy-de-Dôme (doctrine)		
HAP (eau) (µg/l)	so	Objectif BE - Arrêté du 27.01.2010 modifié par arrêté du 27.07.2015		

III.5.1.1. Les masses polluantes

Les masses polluantes annuellement rejetées à l'aval des collecteurs pluviaux sont très variables. Le tableau suivant fournit des ordres de grandeur des concentrations moyennes des principaux paramètres représentatifs de la pollution urbaine des eaux pluviales. Ces données sont reprises de « La ville et son assainissement » (CERTU, 2003 - § 8.3.8.2)

Type d'aménagement	Quartiers résidentiels (habitat individuel)	Quartiers résidentiels (habitat collectif)	Habitations denses : zones industrielles et commerciales	Quartiers très denses : centres- villes, parkings
Coefficient de ruissellement	0,2 à 0,4	0,4 à 0,6	0,6 à 0,8	0,8 à 1
MES*	100-200 mg/l	200-300 mg/l	300-400 mg/l	400-500 mg/l
DCO*	100-150 mg/l	150-200 mg/l	200-250 mg/l	250-300 mg/l
DBO5*	40-50 mg/l	50-60 mg/l	60-70 mg/l	70-80 mg/l

^{*} D'après les données de "La ville et son assainissement" (CERTU, 2003)

Fourchette de concentration (mg/l) pendant une pluie selon la densité du tissu urbain

Les contaminants, concentrés dans les canalisations deviennent des polluants. Ces polluants sont rejetés dans les rivières à l'exutoire des réseaux d'assainissement.

Ainsi, la collecte des eaux pluviales dans les noues, au plus proche de l'endroit où elles tombent, limite le ruissellement et permet de réduire les risques de concentration des contaminants.

La gestion des eaux pluviales par filtration et décantation dans les noues permet également de réduire les polluants présents dans les eaux.

Étant donné la pente longitudinale sur les rues Ballainvilliers et Vercingétorix, des noues à redans seront prévues afin de ralentir le parcours des eaux et de favoriser la décantation.

III.5.1.2. Abattement des MES:

La mise en œuvre de noues contribue largement à la dépollution grâce à l'abattements des MES qui sont filtrés et décantés par les noues.

Type de dispositif	Efficacité sur la décantation des MES	Exemples
Bassin de décantation conçu pour des vitesses de chute comprises entre 0,5 et 5 m/h	60 - 90 % (cf. fiche méthodologique n°6)	
Noue, fossé enherbé présentant les caractéristiques suivantes : - pente de fond nulle, - longueur minimale 100 m, - section hydraulique (m²) ≥ à 5 fois le débit à traiter (m³/s), - surface au miroir (m²) ≥ à 250 fois le débit à traiter (m³/s), - dispositif de stockage des boues de décantation, - peut être équipé en complément d'un ouvrage de sortie muni d'une cloison siphoïde.	65 %	Bassin de rétention
Filtre planté de roseaux	75 00.8/	Noue enherbée
Filtre à sable	75 - 90 %	

Taux d'abattement des MES des ouvrages de traitement

III.5.1.3. Abattement des autres paramètres caractéristiques de la pollution chronique :

Les autres paramètres caractéristiques de la pollution chronique des eaux pluviales urbaines dépendent directement du rendement sur les MES, et on applique un simple coefficient pondérateur pour tenir compte de leur spécificité :

Paramètre de pollution	MES	DCO	DBO5
Coefficient de pondération moyen (« Eléments pour le dimensionnement des ouvrages de pollution des rejets urbains par temps de pluie » - SAGET A., CHEBBO G., BACHOC A., 1993.)	1	0,875	0,925

Coefficients pondérateurs des polluants liés au MES

D'après « La ville et son assainissement » (CERTU, 2006 – § 2.1.2)

III.5.1.4. Impact qualitatif

III.5.1.4.1. En phase chantier

Les risques vis-à-vis de la qualité des eaux superficielles sont essentiellement liés aux opérations de remblaiements et de terrassements, l'absence de travaux proches de cours d'eau limite ces risques. Dans le cas présent, la zone d'aménagement se trouve en centre-ville. A l'écart des cours d'eau.

La pollution en phase travaux est essentiellement liée au lessivage par les eaux de pluies de zones exploitées par les engins de chantier et à une pollution accidentelle.

Les risques potentiels de déversement de substances chimiques polluantes (hydrocarbures, huiles...) sont inhérents à tout chantier.

Le lessivage par les eaux de pluie des sols en chantier entraınera des particules fines ainsi que des huiles et des carburants vers le réseau d'assainissement pluvial susceptible de véhiculer la pollution jusqu'aux cours d'eaux exutoires des eaux de la ville.

Il y a alors un risque d'augmentation de la turbidité de l'eau recueillie par le réseau d'assainissement pluvial, suite à la réception de matières en suspension (MES) depuis la zone de chantier.

L'augmentation de la turbidité de l'eau est l'un des principaux impacts en phase de chantier. Elle est due aux matières en suspension (MES) résultant du lessivage de la zone de chantier au cours des épisodes pluvieux ou si un arrosage est réalisé.

Les effets nuisibles des MES sont notables :

- La turbidité réduit la pénétration de la lumière, donc la photosynthèse, et freine l'autoépuration en entraînant un déficit en oxygène dissous ;
- L'augmentation des MES dans les eaux peuvent affecter la faune aquatique (notamment la faune piscicole) de manière directe (affection au niveau des branchies pour la faune piscicole : irritation, colmatage) ou indirecte (colmatage des habitats (zones de frai) lors du dépôt de ces particules fines).

Afin de limiter les départs de matières en suspension en phase chantier, le phasage de réalisation des travaux sera pensé de manière à réaliser préférentiellement, après terrassement, le revêtement des voies principales de circulations et les systèmes de traitement favorisant ainsi la décantation des matières en suspension.

Lors d'une éventuelle collision entre deux engins, d'un déversement accidentel ou du ravitaillement des engins, le rejet possible de carburants et de lubrifiants constitue une source de pollution chimique. Le déversement accidentel de polluants à proximité des zones de végétation peut entrainer a à plus ou moins long terme la mort des espèces les plus fragiles.

Il est donc important de veiller à ce les aménagements prévus ne présentent pas un risque de dégradation de ces espaces.

Bien que l'absence d'intervention directe dans le milieu aquatique limite le risque de pollution dans le cas du projet d'aménagement, des mesures simples couramment appliquées en phase chantier (kit antipollution, épandage de sable sur le sol souillé, raclage des terres contaminées et évacuations des matériaux vers un site agrée pour les recevoir, mise en place d'un plan de circulation sur le chantier) permettent de réduire significativement le risque de pollution des eaux superficielles.

Des mesures générales d'accompagnements en phase chantier seront prévues par les entreprises. Le dossier de consultation des entreprises spécifiera les précautions à prendre pour éviter toute pollution due aux travaux.

Enfin, l'implantation des zones de chantier (aires de stationnement, d'entretien et de ravitaillement des engins) se fera de préférence loin des exutoires (grilles EP).

Tout déversement d'huile de vidange, de carburant ou de produits de nettoyage sera interdit.

Au vu des mesures de précaution qui seront prises en phase de travaux l'impact du projet sur la qualité des eaux superficielles peut être qualifié de modéré.

III.5.1.4.2. En phase exploitation

La pollution contenue dans les eaux pluviales provient de diverses origines :

- l'atmosphère

L'atmosphère contient souvent des particules d'origine naturelle (érosion des surfaces...), et industrielle (pollution sous forme de fumée transportée par l'atmosphère). Les eaux pluviales, avant d'atteindre le sol ou les toitures peuvent être chargées de cette pollution qui peut représenter jusqu'à 15 % de la pollution des eaux de ruissellement.

- la circulation automobile

C'est l'une des sources principales d'un grand nombre de polluants. Les caractéristiques de la pollution chronique des eaux de ruissellement de chaussée sont :

- o les matières en suspension provenant surtout de l'usure de la chaussée et des pertes de chargement,
- o la demande chimique en oxygène (DCO) qui correspond à une estimation des matières oxydables présentes dans l'eau,

o le zinc dont l'origine provient de la corrosion des équipements de la route et de l'usure des pneumatiques.

Les hydrocarbures de toutes natures (hydrocarbures totaux et hydrocarbures aromatiques polycycliques) ont régressé, tout en restant à des niveaux significatifs : moindre consommation, meilleurs rendements des moteurs, effet très net des limitations de vitesse. Cette tendance favorable devrait se prolonger à l'avenir, au fur et à mesure que les dispositions des directives européennes (teneurs en CO2 et en particules) produiront leur plein effet.

Enfin, il subsiste des éléments traces métalliques (cuivre, chrome, cadmium).

Aujourd'hui, le plomb a presque totalement disparu des rejets : les valeurs mesurées sont, dans la plupart des cas, inférieures aux concentrations du décret eaux potables. Il n'est pas pris en compte dans la suite des calculs.

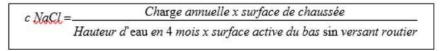
La DBO5 (demande biochimique en oxygène sur 5 jours) n'est pas non plus prise en compte car elle n'est pas caractéristique de ce type de pollution très peu biodégradable (à titre indicatif le rapport DCO/DBO5 est de l'ordre de 6 dans les eaux pluviales routières).

Au niveau du projet, les risques principaux de pollution sont dus aux effluents issus du lessivage des surfaces (pollution chronique). Les effluents pouvant atteindre le milieu naturel ayant pour origine un déversement accidentel (pollution accidentelle) sont exceptionnels en milieu urbain et proviennent essentiellement du risque incendie.

L'utilisation de produits anti-verglas pour l'entretien hivernal ainsi que l'utilisation ponctuelle d'herbicides et autres produits sanitaires pour l'entretien des noues peuvent également être sources de pollution (pollution saisonnière).

Compte tenu du fait que l'utilisation de produits phytosanitaires ne sera pas autorisée sur le site, les paragraphes suivants se concentrent sur l'apport en sels de déverglaçage.

Evaluation de l'impact des sels de déverglaçage


Située à faible altitude, la zone d'étude est peu enneigée avec en moyenne 20 jours de neige par an, préférentiellement entre le mois de novembre et le mois de mars.

Les apports en chlorure de sodium sur les routes sont très variables selon les régions et les climats. Ils varient entre 0,5 à 30 T/an/km.

Le projet du secteur Renoux-Ballainvilliers-Joffre-Vercingétorix étant situé en centre ville et fortement circulé par les transports en commun, on retiendra le ratio de 3 T/km de voie/an d'autant que seulement 20 jours de salages sont à considérer.

Les apports en chlorure de sodium sont mis en œuvre pendant les périodes de gel, mais leur élimination est progressive sur une durée estimée à 4 mois. On peut également estimer seulement que 70 % du sel déposé sur les voies sera repris par les eaux de ruissellement, soit 2.1 kg/m de voie par an (charge annuelle dans la formule ci-dessous).

La charge est égale à :

Avec:

- Surface chaussée de 20 900 m²;
- Surface active du bassin versant « routier » d'environ 26 627m² (coefficient de ruissellement retenu égal à 0.94);
- Une pluviométrie sur 4 mois de 0,211 m (sur 4 mois à partir du mois de mars pluviométrie la plus défavorable).

La concentration moyenne en NaCl est alors estimée à 2,14 g/l/j (valeur très pessimiste compte tenu du nombre effectif de jours d'enneigement). En traitement curatif, la quantité de sels utilisée peut aller de 10 à 30 g/m² sur les routes principales. Considérant un ratio de 20g/m², l'apport (concentration de pointe) serait de 0,4 T/j pour une surface de chaussée de 20 990 m². Ces deux valeurs restent inférieures au

niveau de référence R1 du tableau 1 de l'arrêté du 9 aout 2006 (1T/j vers le milieu récepteur). Le projet du secteur Renoux-Ballainvilliers-Joffre-Vercingétorix n'est pas concerné par la rubrique 2.2.3.0 de la nomenclature Eau.

Pour contrer les risques de pollution chronique, les eaux pluviales issues des surfaces seront récupérées dans les ouvrages de gestion alternative des eaux pluviales. Ces ouvrages permettront un abattement de la pollution particulaire chronique.

Le trop-plein des noues du secteur Renoux-Ballainvilliers-Joffre-Vercingétorix se faisant dans le réseau unitaire existant, la pollution accidentelle restera gérée par les ouvrages existants.

Evaluation des charges annuelles véhiculées par les eaux de ruissellement

Les charges polluantes produites annuellement par les surfaces du projet des Allées du Cardo peuvent être évaluées sur la base des moyennes des données fournies par le SETRA4 (Calcul des charges de pollution chronique des eaux de ruissellement issues des plates-formes routières – SETRA, juillet 2006).

Le nombre de véhicules circulant sur le site est estimé à 745 véhicules par jour (475 véhicules et 135 bus par sens).

La surface imperméabilisée correspondante au bassin versant général du projet est estimée à 2.09 hectares.

Le projet est considéré en « site restreint » c'est-à-dire un site correspondant à une infrastructure dont les abords s'opposent pas à la dispersion de la charge polluante par la voie aérienne.

En site restreint, les charges polluantes annuelles (Cu) unitaires par ha imperméabilisé fournies par le SETRA sont les suivantes :

Charges unitaires annuelles Cu à l'ha imperméabilisé pour 1 000 v/j	Mes kg	Dco kg	Zn kg	Cu kg	Cd g	Hc Totaux	H <i>ap</i> g
Site ouvert	40	40	0,4	0,02	2	600	0,08
Site restreint	60	60	0,2	0,02	1	900	0,15

Tableau 1 : charges unitaires annuelles par ha imperméabilisé pour 1 000 v/j

Note: comme précisé plus haut, la DBO5 demande biochimique en oxygène sur 5 jours n'est pas prise en compte car elle n'est pas caractéristique de ce type de pollution très peu biodégradable (à titre indicatif le rapport Dco/Dbo est de l'ordre de 6 dans les eaux pluviales routières).

Mes: matières en suspension (norme NF EN 872)

Dco(1): demande chimique en oxygène (norme T 90-101)

Zn: zinc (norme T 90-112) Cu: cuivre (norme T 90-112)

Cd: cadmium (norme NF EN ISO 5961)

Hc: hydrocarbures totaux (norme NF EN ISO 9377-2)

Hap: hydrocarbures aromatiques polycycliques (les six HAP de la norme XT 90-115).

Pour des trafics globaux inférieurs à 10 000 véhicules jours.

La charge annuelle se calcule proportionnellement au trafic global et à la surface imperméabilisée. Elle est calculée par la formule suivante :

$$Ca = Cu \times \frac{T}{1000} \times S$$

Avec:

Ca: charge annuelle en kg de 0 à 10 000 v/j (selon tableau ci-dessus)

Cu: charge unitaire annuelle en kg/ha pour 1000 V/j;

T : trafic global en v/j (soit 745 véhicules/j) S surfaces imperméabilisées en hectare.

Trafic (véhicules/j)	745
Surface imperméabilisée (ha)	2.09

Paramètre	Charges unitaires annuelles (Cu)	Charges annuelles (Ca) pour le
	pour 1000 véh/jr	projet
	kg/ha/an	kg/an
MES	60	93
DCO	60	93
Zn	0.2	0.3
Cu	0.02	0.03
Cd	1	1.5
Нс	900	1401
HAP	0.15	0.23

<u>Évaluation des concentrations polluantes émises en situation projet</u>

- Impact maximal des rejets d'eaux pluviales

L'expérience a montré que les impacts maximaux sont générés par une pluie d'été en période d'étiage. Les charges polluantes hivernales ne sont donc pas prises en compte. Les mesures issues des sites expérimentaux montrent que l'événement de pointe est proportionnel à la charge annuelle et est directement lié à la hauteur de pluie générée par cet événement de pointe. La relation s'établit de la manière suivante :

$$Fr = 2.3 * hp$$

Avec:

Fr: fraction maximale de la charge annuelle mobilisable

hp: hauteur d'eau de l'événement de pointe (limitée à 0,15m)

- Concentrations émises par un événement pluvieux de pointe (Ce) La concentration émise (Ce) vers le milieu récepteur par le projet est établie à partir de la formule suivante :

$$C_e = \frac{F_r * C_a * (1-t)}{10 * S * h}$$

Avec:

Ce : concentration émise par le projet (mg/l) t : taux d'abattement dans les ouvrages

Les ouvrages de protection de la ressource en eau, ont, d'après les études effectuées depuis 1992 [9], les taux d'abattement suivants :

Performances intrinsèques

	MES	Dco	Cu, Cd, Zn	Hc et HAP
Fossé enherbé	65	50	65	50
Bief de confinement	65	50	65	50
Posse Supnorizontal	65	50	65	50
Bassin Sanitaire	85	70	85	90
Filtre à Sable	90	75	90	95
Bassin avec volume mort Vs en m/h				
1	85	75	80	65
3	70	65	70	45
5	60	55	60	40

Le projet du secteur Renoux-Ballainvilliers-Joffre-Vercingétorix prévoit des noues d'infiltration pour la gestion des eaux pluviales au plus près de là où elles tombent.

Ainsi, nous considérons les valeurs encadrés ci-dessus pour calculer les concentrations maximales émises vers le milieu récepteur.

Paramètre	Concentrations maximales
	émises
	vers le milieu récepteur (Ce)
	mg/I
MES	3,60
DCO	5,14
Zn	0,012
Cu	0,0012
Cd	0,0001
Нс	0,08
HAP	0,000013

Calcul des valeurs maximales projetées

Concentration moyenne annuelle des rejets d'eaux pluviales

La pollution véhiculée par la pluie est caractérisée par des phénomènes chroniques et par des phénomènes aigus constituant un événement de pointe, qui se produit une fois par an (notion d'impact maximal définie au paragraphe précédent).

Cette concentration moyenne annuelle nommée Cm est calculée de la façon suivante :

$$C_m = \frac{C_a * (1-t)}{9 * S * H_m}$$

Avec:

Cm: concentration movenne annuelle (mg/l);

Ca: charge annuelle polluante (kg);

t: taux d'abattement dans les ouvrages;

S: surface imperméabilisée du projet (ha);

Hm: hauteur de pluie moyenne annuelle (soit 578,9 mm pour la station de Clermont-Ferrand).

La concentration moyenne émise en situation future est la suivante :

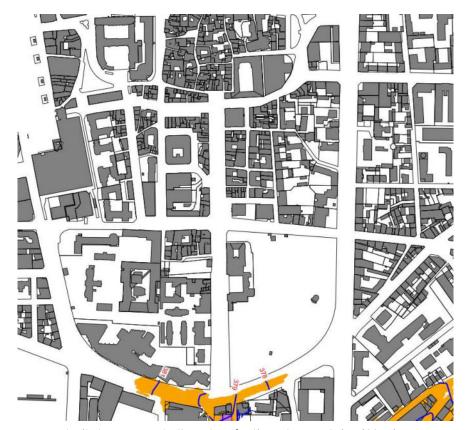
Concentrations moyennes
annuelles émises
vers le milieu récepteur (Cm)
mg/I
3,00
4,29
0,010
0,0010
0,0001
0,06
0,000011

Calcul des valeurs moyennes projetées

Évaluation de l'impact des rejets sur le milieu récepteur

Paramètre	Charges unitaires annuelles (Cu) pour 1000 véh/jr Milieu restreint	Unités	Charges annuelles (Ca) pour le projet kg/an	Taux d'abattement fossé subhorizontal enherbé %	Concentrations maximales émises vers le milieu récepteur (Ce) mg/l	Concentrations moyennes annuelles émises vers le milieu récepteur (Cm) mg/I	Seuil maximal de la classe "bon état" retenu	Référence
MES	60	kg/ha/an	93	65%	3,60	3,00	<30 mg/l	DDT du Puy-de-Dôme (doctrine)
DCO	60	kg/ha/an	93	50%	5,14	4,29	<30 mg/l	SEQ-EAU V2
Zn	0,2	kg/ha/an	0,3	65%	0,012	0,010	<1,0 µg/l	Objectif BE - Arrêté du 27.01.2010 modifié par arrêté du 27.07.2015
Cu	0,02	kg/ha/an	0,03	65%	0,0012	0,0010	<7,8 µg/l	Objectif BE - Arrêté du 27.01.2010 modifié par arrêté du 27.07.2015
Cd	1	g/ha/an	0,0016	65%	0,0001	0,0001	NQE-MA < 0,15 μg/l et NQE-CMA < 0,9 μg/l	Objectif BE - Arrêté du 27.01.2010 modifié par arrêté du 27.07.2015
Hc	900	g/ha/an	1,4013	50%	0,08	0,06	< 5 mg/l	DDT du Puy-de-Dôme (doctrine)
HAP	0,15	g/ha/an	0,0002	50%	0,000013	0,000011	SO	Objectif BE - Arrêté du 27.01.2010 modifié par arrêté du 27.07.2015

Le calcul des valeurs des rejets avec la mise en place de fossés subhorizontaux enherbés entraîne des valeurs inférieures au seuil retenu pour les MES, DCO, Cu mais supérieure au seuil retenu pour le Zinc. Néanmoins, un dispositif supplémentaire de filtre à sable pourra être mis en place au niveau des surverses vers les réseaux existants afin d'augmenter l'abattement du Zinc.


Ceci permettra d'obtenir les valeurs suivantes :

Paramètre	Charges unitaires annuelles (Cu) pour 1000 véh/jr Milieu restreint	Unités	Charges annuelles (Ca) pour le projet kg/an		Concentrations maximales émises vers le milieu récepteur (Ce) mg/l	Concentrations moyennes annuelles émises vers le milieu récepteur (Cm) mg/l	Seuil maximal de la classe "bon état" retenu	Référence
MES	60	kg/ha/an	93	97%	0,36	0,30	<30 mg/l	DDT du Puy-de-Dôme (doctrine)
DCO	60	kg/ha/an	93	88%	1,29	1,07	<30 mg/l	SEQ-EAU V2
Zn	0,2	kg/ha/an	0,3	97%	0,0012	0,0010	<1,0 µg/l	Objectif BE - Arrêté du 27.01.2010 modifié par arrêté du 27.07.2015
Cu	0,02	kg/ha/an	0,03	97%	0,0001	0,0001	<7,8 μg/l	Objectif BE - Arrêté du 27.01.2010 modifié par arrêté du 27.07.2015
Cd	1	g/ha/an	0,0016	97%	0,00001	0,00001	NQE-MA < 0,15 μg/l et NQE-CMA < 0,9 μg/l	Objectif BE - Arrêté du 27.01.2010 modifié par arrêté du 27.07.2015
Hc	900	g/ha/an	1,4013	98%	0,0039	0,0032	< 5 mg/l	DDT du Puy-de-Dôme (doctrine)
HAP	0,15	g/ha/an	0,0002	98%	0,000001	0,000001	so	Objectif BE - Arrêté du 27.01.2010 modifié par arrêté du 27.07.2015

Le projet permet alors de se conformer aux valeurs retenues.

III.5.2. Risque inondation

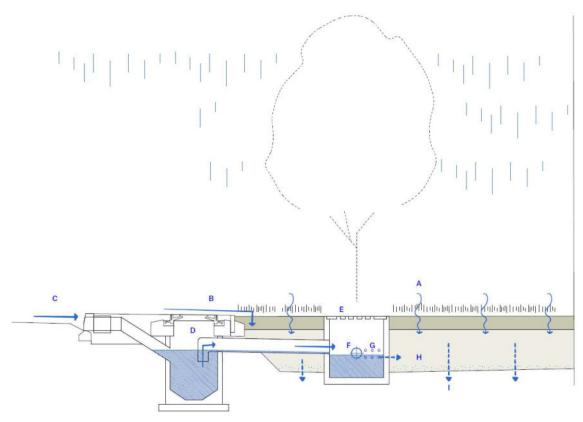
Seul l'extrême sud du site est concerné par le risque inondation (cf. extrait de plan ci-dessous). Il se trouve en zone de risques modérés.

Extrait du PPRNPI de l'agglomération clermontoise (2016)

Le principe de gestion des eaux pluviales sur le site présente une amélioration par rapport à l'existant. En effet, le système de gestion des eaux pluviales à ciel ouvert et l'infiltration des pluies courantes limitent la quantité d'eaux pluviales envoyée directement au réseau unitaire et réduisent ainsi le risque inondation.

En cas de pluie d'occurrence centennale, le volume d'apport sur une heure est estimé à 610 m³ sur le bassin versant n°3 (par la méthode des pluies). En l'état actuel, l'ensemble de ce volume est envoyé directement au réseau.

L'ajout de noues et de tranchées drainantes permet de réduire le volume rejeté au réseau en stockant 430 m³, soit 70 % du volume d'apport sur une heure (cf Annexe 6 – Volumes surversés pour le BV n°3). Ce volume est ensuite géré par infiltration, puis surverse vers le réseau.

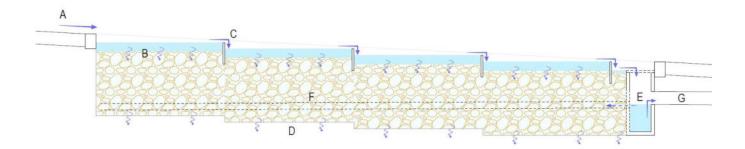

Le projet ne prévoit pas de remblaiement en zone inondable.

IV. FONCTIONNEMENT HYDRAULIQUE PROJETÉ

IV.1. Principe du système de Stockholm

Lorsque cela est possible, il sera mis en place une gestion des pluies courantes par le système de Stockholm. Ce dispositif permet de favoriser les échanges gazeux entre le sol et la surface, bénéfique pour les arbres, ainsi que l'infiltration de l'eau. Les eaux de pluies d'une surface imperméable sont récupérées et diffusées à l'aide d'un drain dans la fosse, à proximité immédiate des plantations.

Ce système sera mis en place localement pour gérer les eaux de ruissellement des espaces imperméables qui ne peuvent pas être dirigées directement vers les fosses de plantation.



Principe du fonctionnement de la fosse lors d'une précipitation

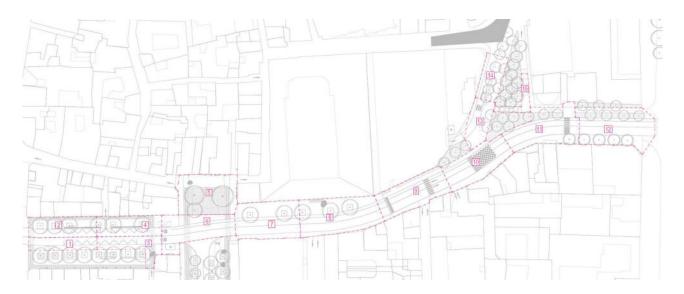
Les eaux météoriques tombant sur la surface enherbée (A) et le trottoir (B) sont directement infiltrées dans le sol via la terre végétale. Les eaux de la chaussée (C) sont collectées dans le sac gouffre déportée (D) et par le système de vase communiquant, sont acheminées vers le regard de diffusion (E). Le drain (F) et les perforations du sac (G) diffusent l'eau dans la fosse.

IV.2. Gestion dans les noues et fosses d'arbres

En parallèle des systèmes de Stockholm, une partie des eaux de ruissellement sera collectée au niveau des noues et des fosses d'arbre. Afin de favoriser le stockage et l'infiltration dans les premières couches du sol, les fosses d'arbres seront en terre-pierre.

Principe de fonctionnement des noues d'infiltration

Les eaux de ruissellement des trottoirs et voiries (A) sont dirigées vers des noues à redans. Les eaux arrivant dans le premier compartiment de la noue seront gérées par infiltration directe dans la fosse d'arbre (B) et par surverse dans le compartiment suivant (C). Les eaux des fosses d'arbres s'infiltrent ensuite dans le sous-sol suivant sa capacité d'infiltration (à ce stade, l'hypothèse prise étant $K = 2.1 \times 10^{-5}$ m/s, vitesse la plus défavorable mesurée sur le site).


Au point bas, les eaux pluviales surversées sont collectées par une grille (E) équipée d'un drain favorisant la diffusion des eaux dans la fosse (F).

En cas de forte pluies, les eaux collectées au niveau de la grille surversent vers le réseau d'assainissement (G).

IV.3. Bassin versant n°1: Secteurs Joffre-Carnot

Sur les secteurs Joffre et Carnot, les espaces piétons sont plus restreints, la mise en place de noues n'est pas possible. Cependant le projet paysager permet d'augmenter la part d'espaces plantés et de réduire le coefficient de ruissellement du bassin versants.

Par conséquent, la gestion des eaux pluviales se fera de manière plus classique, avec une collecte des eaux de la plateforme BHNS de part et d'autre de la chaussée et un rejet direct au réseau unitaire.

Plan de repérage des sous-bassins versants sur le secteur n°1 Joffre-Carnot

Coefficients de ruissellement :

Revêtements imperméables 1
Noues d'infiltration 1
Espaces verts 0,3

Sc	ous bassins	versants d	es espaces	publics pro	jetés	
SBV	S totale (m²)	S revêtem ents (m²)	S noues / bassins (m²)	S espaces verts (m²)	Surface d'apport (m²)	Cr
1	264	264	0	0	264	1
2	411	402	0	9	405	0,99
3	318	318	0	0	318	1
4	401	392	0	9	395	0,99
5	708	699	0	9	702	0,99
6	620	620	0	0	620	1
7	713	707	0	6	709	0,99
8	840	831	0	9	834	0,99
9	618	585	0	33	595	0,96
10	710	660	0	50	675	0,99
11	945	653	0	292	741	0,78
12	852	737	.0	115	772	0,91
13	301	292	0	9	295	0,98
14	300	265	- 0	35	276	0,92
15	352	136	- 0	216	201	0,57
TOTAL PROJET	8 353	7 561	0	792	7 799	0.93

	Sous bassi	ns versants o	les espaces	publics exist	ants	
SBV	S totale (m²)	S revêtemen ts (m²)	S noues / bassins (m²)	S espaces verts (m²)	Surface d'apport (m²)	Cr
1	264	264	0	0	264	1
2	411	411	0	0	411	1
3	318	318	0	0	318	1
4	401	401	0	0	401	1
5	708	700	0	8	702	0,99
6	620	620	0	.0	620	1
7	713	713	0	.0	713	1
8	840	840	0	0	840	1
9	618	618	0	0	618	1
10	710	672	0	38	683	0,96
11	945	926	0	19	932	0,99
12	852	852	0	0	852	1
13	301	301	0	0	301	1
14	300	300	0	0	300	1
15	352	136	0	216	201	0,57
TOTAL EXISTANT	8 353	8 072	0	281	8 156	0,98

Comparaison de l'imperméabilisation du secteur n°1 Joffre-Carnot existant/projet

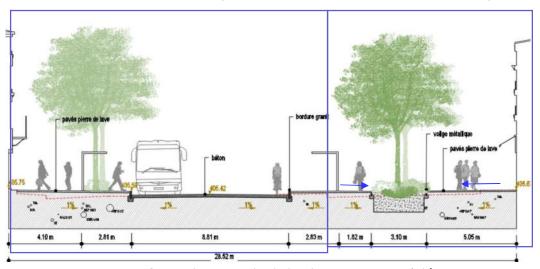
Les débits de fuite des sous-bassins versants de ce secteurs ont été estimés suivant la méthode de Caquot.

Bassin versant n°	Surfaces imperméables non régulées raccordées au réseau (en m²)	Autres surfaces (en m²)	Plus long cheminement hydraulique L (en m)	Pente moyenne I (en mm/m)	Superficie totale A (en ha)	Surface active Sa (en ha)	Coefficient d'apport global C	Débit de pointe décennal Qp (en m³/s)	Temps de concentration Tc (en mn)
BV1	264	0	37	15	0,026	0,024	0,90	0,01	2
BV2	419	0	37	15	0,042	0,038	0,90	0,02	2
BV3	420	0	45	20	0,042	0,038	0,90	0,02	2
BV4	401	0	35	20	0,040	0,036	0,90	0,02	1
BV5	708	0	30	44	0,071	0,064	0,90	0,051	1
BV6	618	0	40	21	0,062	0,056	0,90	0,03	2
BV7	713	0	35	50	0,071	0,064	0,90	0,05	1
BV8	840	0	38	50	0,084	0,076	0,90	0,06	1
BV9	618	0	42	50	0,062	0,056	0,90	0,04	1
BV10	592	0	44	50	0,059	0,053	0,90	0,04	1
BV11	718	0	43	50	0,072	0,065	0,90	0,05	1
BV12	852	0	50	50	0,085	0,077	0,90	0,05	1
BV13	301	0	17	50	0,030	0,027	0,90	0,03	1
BV14	300	0	24	10	0,030	0,027	0,90	0,02	2
BV15	135	0	19	50	0,014	0,012	0,90	0,01	1

Estimation des débits de fuite des sous-bassins versants sur le secteur n°1 Joffre-Carnot

IV.4. Bassin-versant n°2: Renoux-Ballainvilliers

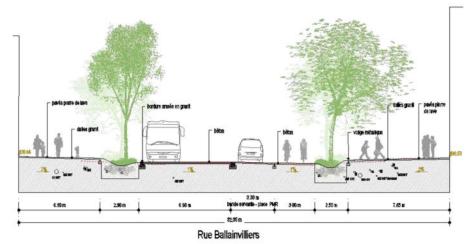
Profil type Place Renoux:


Sur la partie nord de la place, le principe de ruissellement des eaux reste similaire à l'existant : profil de chaussée en toit, grille de collecte de part et d'autre, etc.

Les eaux sont collectées vers le bassin versant n°1.

Sur la partie sud de la place, les eaux pluviales du quai bus et du trottoir ruissellent vers les noues plantées.

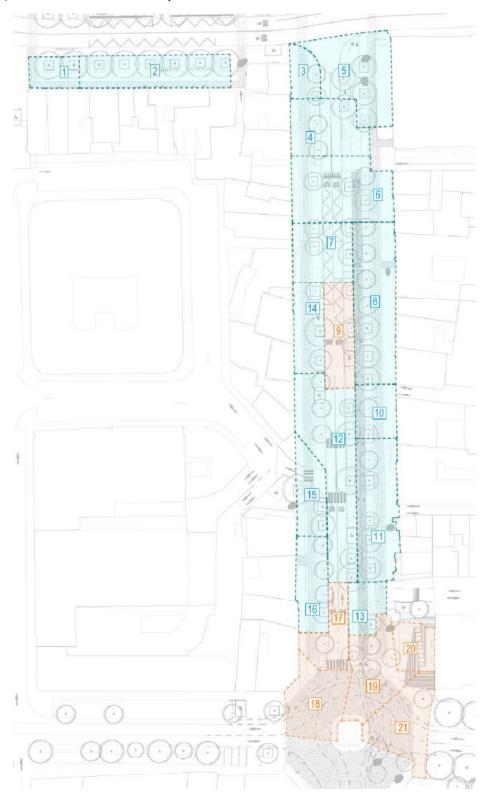
Partie nord de la place


Partie sud de la place

Coupe transversale de la place Renoux projetée

Sur le secteur Ballainvilliers le profil type est composé du chaussée bus encadrée par deux noues plantées, d'une piste cyclable et de trottoirs de part et d'autre. Les eaux de ces différents espaces ruissellent vers les noues où elles sont collectées et acheminées au point bas vers l'exutoire.

Profil type Place Ballainvilliers:



Coupe transversale de la rue Ballainvilliers

Sur ce secteur, une surface de **6 140 m²** est gérée par des systèmes alternatifs (noue et fosses de Stockholm). Elle est répartie en 14 sous-bassins versants (en bleu sur l'extrait de plan ci-dessous). La surface restante de **2 430 m²** est gérée comme à l'existant, elle est découpée en 9 sous-bassins versants (en orange sur l'extrait de plan ci-dessous).

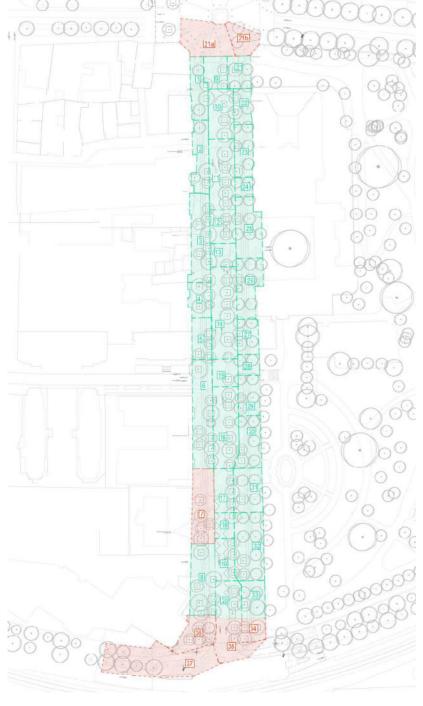
<u>Place Desaix:</u>

Au niveau de la place, il ne sera pas possible de diriger les eaux vers les noues. La gestion se fera de manière classique via des avaloirs et un rejet direct vers le réseau unitaire.

Découpage du BV n°2 en sous-bassins versants

Bilan des surfaces du secteur Renoux Ballainvilliers :

SBV	S totale (m²)	S revêtem ents (m²)	S noues / bassins (m²)	S espaces verts (m²)	Surface d'apport (m²)	Cr	Volume d'apport (m³)
1	157	117	40	0	157	1	3
2	494	422	46	26	476	0,96	19
3	146	125	21	0	146	1	4
4	414	383	0	31	392	0,95	
5	594	594	0	0	594	1	17
6	648	600	38	10	641	0,99	40
7	361	361	0	0	361	1	33
8	686	572	49	65	641	0,93	31
9 (Rejet direct)	318	318	0	0	318	1	44
10	222	205	17	0	222	1	11
11	581	512	69	0	581	1	19
12	822	682	95	45	791	0,96	25
13	182	159	23	0	182	1	6
14	277	227	50	0	277	1	6
15	256	221	35	0	256	1	8
16	302	268	34	0	302	1	11
17 (Rejet direct)	271	246	0	25	254	0,94	35
18 (Rejet direct)	405	405	0	0	405	1	55
19 (Rejet direct)	430	412	0	18	417	0,97	57
20 (Rejet direct)	191	191	0	0	191	1	26
21 (Rejet direct)	428	428	0	0	428	1	59
TOTAL	8 185	7 448	517	220	8 031	0,98	517
TOTAL EXISTANT	8 185	8 045	0	140	8 087	0,99	


Calcul du débit de pointe des sous-bassins versants renvoyés directement au réseau :

Bassin versant n°	Surfaces imperméables non régulées <u>raccordées au réseau</u> (en m²)	Autres surfaces (en m²)	Plus long cheminement hydraulique L (en m)	Pente moyenne I (en mm/m)	Surface active Sa (en ha)	Coefficient d'apport global C	Débit de pointe décennal Qp (en m³/s)	Temps de concentration Tc (en mn)
BV9	318	0	33	30	0,029	0,90	0,019	1
BV17	246	0	25	35	0,022	0,90	0,017	1
BV18	405	0	40	20	0,036	0,900	0,021	1
BV19	430	0	17	25	0,039	0,90	0,032	1
BV20	191	0	20	35	0,017	0,90	0,014	1
BV21	428	0	30	20	0,039	0,90	0,025	1

IV.5. Bassin-versant n°3: Secteur Vercingétorix-Mitterrand

Le profil type de la voirie sur l'avenue Vercingétorix est similaire à celui de la rue Ballainvilliers. Les eaux sont également collectées dans 3 noues parallèles, qui pente vers le sud avec un exutoire vers le réseau d'assainissement au point bas.

Sur l'avenue Vercingétorix, la majorité des surfaces sont collectées via les noues d'infiltration et des fosses de Stockholm, soit une surface de **9 650 m²**. La zone est découpées en 33 sous-bassins versants. La surface restante de **2 180 m²** est gérée comme à l'existant, elle est découpée en 8 sous-bassins versants (en orange sur l'extrait de plan ci-dessous).

<u>Découpage du BV n°3 en sous-bassins versants</u>

Bilan des surfaces du secteur Vercingétorix :

SBV	S totale (m²)	S revêtements (m²)	S noues / bassins (m²)	5 espaces verts (m²)	Surface d'apport (m²)	Cr	Volume d'apport (m³)
1	278	237	41	0	278	1	8
2	290	198	34	58	249	0,86	7
3	443	224	74	145	342	0,77	7
4	196	64	34	98	127	0,65	2
5	210	148	33	29	190	0,9	0.5
6	568	354	85	129	478	0,84	11
7 (Rejet direct)	421	343	- 0	78	366	0,87	
8	448	248	42	158	337	0,75	11
9	166	126	40	0	166	1	3
10	253	185	68	0	253	1	4
11	410	310	100	0	410	1	7
12	222	206	16	0	222	1	12
13	156	140	16	0	156	1	6
14	611	496	109	6	607	0.99	13
15	184	151	33	0	184	1	4
16	482	366	116	0	482	1	8
17	226	197	29	0	226	1	7
18	132	132	0	0	132	1	8
19	216	216	0	0	216	1	13
20	247	247	0	0	247	1	14
21 a (Rejet direct)	423	423	0	0	423	1	14
21 b (Rejet direct)	193	193	Đ	0	193	1	
21 D (Rejet direct)	197	164	27	6	193	0,98	6
22	215	145	39	31	193	0,98	4
23	331	187	36	108	255	0,9	7
	-		15.701.5				
24	87	57	14	16	76	0,87	2
25	382	353	0	29	362	0,95	7
26	349	306	33	10	342	0,98	14
27	189	80	36	73	138	0,73	3
28	113	67	13	33	90	0,8	3
29	250	178	30	42	221	0,88	7
30	336	173	55	108	260	0,77	5
31	329	228	37	64	284	0,86	9
			-			8274272	
32	506	252	43	211	358	0,71	22
			7,500				
33	230	113	28	89	168	0,73	10
34 (Rejet direct)	141	141	0	.0	141	1	
35 (Rejet direct)	350	350	0	0	350	1	
36 (Rejet direct)	297	260	0	37	271	0,91	
37 (Rejet direct)	812	811	0	0	811	1	
TOTAL	11 889	9 069	1 261	1 558	10 797	0,91	249

Débit de pointe pour pluie décennale des sous-bassins-versants renvoyés directement au réseau :

Bassin versant n°	Surfaces imperméables non régulées <u>raccordées au réseau</u> (en m²)	Autres surfaces (en m²)	Plus long cheminement hydraulique L (en m)	Pente moyenne I (en mm/m)	Surface active Sa (en ha)	Coefficient d'apport global C	Débit de pointe décennal Qp (en m³/s)	Temps de concentration Tc (en mn)
BV7	343	78	35	50	0,031	0,73	0,023	1
BV21a	390	0	26	20	0,035	0,90	0,024	1
BV21b	195	0	17	20	0,018	0,90	0,013	1
BV34	141	0	14	50	0,013	0,90	0,013	1
BV35	350	0	45	50	0,032	0,90	0,022	1
BV36	260	37	27	50	0,023	0,79	0,019	1
BV37	812	0	35	20	0,073	0,90	0,046	2

V. ANNEXES

- V.1. Annexe 1 : Calcul des volumes de rétention par la méthode des pluies du BV n°2
- V.2. Annexe 2 : Calcul des volumes de rétention par la méthode des pluies du BV n°2
- V.3. Annexe 3: Dimensionnement des noues du BV n°2
- V.4. Annexe 4: Dimensionnement des noues du BV n°3
- V.5. Annexe 5 : Calcul des pluies courantes du BV n°2
- V.6. Annexe 6: Calcul des pluies courantes du BV n°3

Bilan des surfaces et gestion des eaux pluviales

Secteur n°2 Renoux-Ballainvilliers

Date :30/09/22Méthode de dimensionnement retenue :Méthode des pluies

Débit de fuite réglementaire : 3 l/s/ha

Occurrence : décennale

Coefficients de ruissellement :

TOTAL EXISTANT

8 185

8 045

Revêtements imperméables 1
Noues d'infiltration 1
Espaces verts 0,3

ans 5,8 0,479		
	10 ans 4,649 0,512	10 ans
0 ans 6,263 0,465	50 ans 5,8 0,479	50 ans
	100 ans 6,263 0,465	100 ans

Durée de retour

Hypothèses d'infiltration :

À ce stade de l'étude, deux essais de perméabilité ont été réalisés sur le périmètre du projet.

SC1BC : $K = 9.8 \times 10^{-5}$ SC3BC : $K = 2.1 \times 10^{-5}$

Coefficients de Montana de Clermont-Ferrand :

De manière sécuritaire, nous avons retenu le plus contraignant des deux, à savoir : K = 2,1 x 10⁻⁵

Rétentions

	So	us bassins v	ersants de	s espaces p	ublics		
SBV	S totale (m²)	S revêteme nts (m²)	S noues / bassins (m²)	S espaces verts (m²)	Surface d'apport (m²)	Cr	Volume d'apport (m³)
1	157	117	40	0	157	1	3
2	494	422	46	26	476	0,96	19
3	146	125	21	0	146	1	4
4	414	383	0	31	392	0,95	8
5	594	594	0	0	594	1	17
6	648	600	38	10	641	0,99	40
7	361	361	0	0	361	1	33
8	686	572	49	65	641	0,93	31
9 (Rejet direct)	318	318	0	0	318	1	
10	222	205	17	0	222	1	11
11	581	512	69	0	581	1	19
12	822	682	95	45	791	0,96	25
13	182	159	23	0	182	1	(
14	277	227	50	0	277	1	(
15	256	221	35	0	256	1	8
16	302	268	34	0	302	1	11
17 (Rejet direct)	271	246	0	25	254	0,94	
18 (Rejet direct)	405	405	0	0	405	1	
19 (Rejet direct)	430	412	0	18	417	0,97	
20 (Rejet direct)	191	191	0	0	191	1	
21 (Rejet direct)	428	428	0	0	428	1	
TOTAL	8 185	7 448	517	220	8 031	0,98	241

8 087

140

0,99

				Occurrence décennale		
Noue / Bassin			volume d'apport	taux de remplissage	volume surversé	
A (exutoire SBV 1)	18	SBV1		3	17%	0
В	11	SBV2		19	100%	8
C (exutoire SBV 2)	11	SBV2		8	73%	0
D (exutoire SBV 3)	9	SBV3		4	44%	0
St1 (exutoire SBV 4 & 5)	29	SBV4	SBV5	25	85%	0
St2	32	SBV6		40	100%	9
E (exutoire SBV6)	9	SBV6		9	94%	0
St3 (exutoire SBV7)	34	SBV7		33	98%	0
F	13	SBV8		31	100%	18
G (exutoire SBV 8)	20	SBV8		18	90%	0
Non régulé						
H (exutoire SBV 10)	12	SBV10		11	92%	0
I	9	SBV11		19	100%	10
J	11	SBV11		10	91%	0
K (exutoire SBV 11)	8	SBV11		0	0%	0
L	14	SBV12		25	100%	11
M	10	SBV12		11	100%	1
N (exutoire SBV 12)	13	SBV12		1	8%	0
O (exutoire SBV 13)	10	SBV13		6	60%	0
P (exutoire SBV 14)	18	SBV14		6	33%	0
Q (exutoire SBV 15)	14	SBV15		8	57%	0
R (exutoire SBV 16)	13	SBV16		11	85%	0
Non régulé						
Non régulé						
Non régulé						
Non régulé						
Non régulé				_	_	
TOTAL	318				Ī	0

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	р
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 1

Terre végétale pleine terre = 0 m² Noues = 40 m² Voirie, allée et parking = 117 m²

Surface totale du terrain 157 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m^2 Noues = 1 40 m^2 Voirie, allée et parking = 1 117 m^2

Surface totale pondérée 157 m²

Coefficient d'apport (Ca) 1,00
Surface active (m²) 157

Prise en compte infiltration

Coefficient K	2,10E-05	Débit de fuite infiltration	0,8 L/s
Surface effective d'infiltration (m2)	40 m2	Débit de fuite TOTAL	0,8 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	1,7 m3	0,3 m3	1,4 m3	
15 min	17,430 mm	2,7 m3	0,8 m3	2,0 m3	
30 min	24,445 mm	3,8 m3	1,5 m3	2,3 m3	
60 min	34,284 mm	5,4 m3	3,0 m3	2,4 m3	
120 min	48,084 mm	7,5 m3	6,0 m3	1,5 m3	
180 min	58,605 mm	9,2 m3	9,1 m3	0,1 m3	
240 min	67,438 mm	10,6 m3	12,1 m3	0,0 m3	
360 min	82,193 mm	12,9 m3	18,1 m3	0,0 m3	
720 min	115,276 mm	18,1 m3	36,3 m3	0,0 m3	
1440 min	161,674 mm	25,4 m3	72,6 m3	0,0 m3	
Volume de stockag	Volume de stockage (m3)				

Volume Max	3	m ³
Apport en 24 h :	25	m ³
Temps de vidange :	8,4	h

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 2

Terre végétale pleine terre = 26 $\,\mathrm{m}^2$ Noues = 46 $\,\mathrm{m}^2$ Voirie, allée et parking = 422 $\,\mathrm{m}^2$

Surface totale du terrain 494 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 8 m^2 Noues = 1 46 m^2 Voirie, allée et parking = 1 422 m^2

Surface totale pondérée 476 m²

Coefficient d'apport (Ca) 0,96 Surface active (m²) 476

Prise en compte infiltration

Coefficient K	2,10E-05	Débit de fuite infiltration	1,0 L/s
Surface effective d'infiltration (m2)	46 m2	Débit de fuite TOTAL	1,0 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	5,3 m3	0,3 m3	5,0 m3	
15 min	17,430 mm	8,3 m3	0,9 m3	7,4 m3	
30 min	24,445 mm	11,6 m3	1,7 m3	9,9 m3	
60 min	34,284 mm	16,3 m3	3,5 m3	12,8 m3	
120 min	48,084 mm	22,9 m3	7,0 m3	15,9 m3	
180 min	58,605 mm	27,9 m3	10,4 m3	17,5 m3	
240 min	67,438 mm	32,1 m3	13,9 m3	18,2 m3	
360 min	82,193 mm	39,1 m3	20,9 m3	18,2 m3	
720 min	115,276 mm	54,8 m3	41,7 m3	13,1 m3	
1440 min	161,674 mm	76,9 m3	83,5 m3	0,0 m3	
Volume de stockag	/olume de stockage (m3) 19 m3				

Volume Max	19	m ³
Apport en 24 h :	77	m ³
Temps de vidange :	22,1	h

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 3

Terre végétale pleine terre = 0 m² Noues = 21 m² Voirie, allée et parking = 125 m²

Surface totale du terrain 146 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m^2 Noues = 1 21 m^2 Voirie, allée et parking = 1 125 m^2

Surface totale pondérée 146 m²

Coefficient d'apport (Ca) 1,00 Surface active (m²) 146

Prise en compte infiltration

Coefficient K	2,10E-05	Débit de fuite infiltration	0,4 L/s
Surface effective d'infiltration (m2)	21 m2	Débit de fuite TOTAL	0,4 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	1,6 m3	0,2 m3	1,5 m3
15 min	17,430 mm	2,5 m3	0,4 m3	2,1 m3
30 min	24,445 mm	3,6 m3	0,8 m3	2,8 m3
60 min	34,284 mm	5,0 m3	1,6 m3	3,4 m3
120 min	48,084 mm	7,0 m3	3,2 m3	3,8 m3
180 min	58,605 mm	8,6 m3	4,8 m3	3,8 m3
240 min	67,438 mm	9,8 m3	6,4 m3	3,5 m3
360 min	82,193 mm	12,0 m3	9,5 m3	2,5 m3
720 min	115,276 mm	16,8 m3	19,1 m3	0,0 m3
1440 min	161,674 mm	23,6 m3	38,1 m3	0,0 m3
Volume de stockage	e (m3)			4 m3

Volume Max	4	m ³
Apport en 24 h :	24	m ³
Temps de vidange :	14,9	h

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	р
Clermont-Ferrand	T=10 ans	4.649	0.512

Caractéristiques géométriques du sous bassin versant hydraulique 4

Terre végétale pleine terre = 31 m^2 Noues = 0 m^2 Voirie, allée et parking = 383 m^2

Surface totale du terrain 414 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 9 m^2 Noues = 1 0 m^2 Voirie, allée et parking = 1 383 m^2

Surface totale pondérée 392 m²

Coefficient d'apport (Ca) 0,95 Surface active (m²) 392

Prise en compte infiltration

Coefficient K	2,10E-05	Débit de fuite infiltration	1,7 L/s	
Surface effective d'infiltration (m2)	80 m2	Débit de fuite TOTAL	1,7 L/s	

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	4,4 m3	0,6 m3	3,8 m3
15 min	17,430 mm	6,8 m3	1,5 m3	5,3 m3
30 min	24,445 mm	9,6 m3	3,0 m3	6,6 m3
60 min	34,284 mm	13,4 m3	6,0 m3	7,4 m3
120 min	48,084 mm	18,9 m3	12,1 m3	6,8 m3
180 min	58,605 mm	23,0 m3	18,1 m3	4,8 m3
240 min	67,438 mm	26,5 m3	24,2 m3	2,3 m3
360 min	82,193 mm	32,2 m3	36,3 m3	0,0 m3
720 min	115,276 mm	45,2 m3	72,6 m3	0,0 m3
1440 min	161,674 mm	63,4 m3	145,2 m3	0,0 m3
Volume de stockag	e (m3)			8 m3

Volume Max	8	m ³
		3
Apport en 24 h :	63	m'
Temps de vidange :	10,5	h

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 5

Terre végétale pleine terre = 0 m^2 Noues = 0 m^2 Voirie, allée et parking = $594 m^2$

Surface totale du terrain 594 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m^2 Noues = 1 0 m^2 Voirie, allée et parking = 1 594 m^2

Surface totale pondérée 594 m²

Coefficient d'apport (Ca) 1,00 Surface active (m²) 594

Prise en compte infiltration

Coefficient K	2,10E-05	Débit de fuite infiltration	1,7 L/s	
Surface effective d'infiltration (m2)	80 m2	Débit de fuite TOTAL	1,7 L/s	

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	6,6 m3	0,6 m3	6,0 m3	
15 min	17,430 mm	10,4 m3	1,5 m3	8,8 m3	
30 min	24,445 mm	14,5 m3	3,0 m3	11,5 m3	
60 min	34,284 mm	20,4 m3	6,0 m3	14,3 m3	
120 min	48,084 mm	28,6 m3	12,1 m3	16,5 m3	
180 min	58,605 mm	34,8 m3	18,1 m3	16,7 m3	
240 min	67,438 mm	40,1 m3	24,2 m3	15,9 m3	
360 min	82,193 mm	48,8 m3	36,3 m3	12,5 m3	
720 min	115,276 mm	68,5 m3	72,6 m3	0,0 m3	
1440 min	161,674 mm	96,0 m3	145,2 m3	0,0 m3	
Volume de stockag	Volume de stockage (m3) 17 m3				

Volume Max	17	m ³
Apport en 24 h :	96	m ³
Temps de vidange :	15,9	h

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 6

Terre végétale pleine terre = 10 m^2 Noues = 38 m^2 Voirie, allée et parking = 600 m^2

Surface totale du terrain 648 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 3
 m²

 Noues
 =
 1
 38
 m²

 Voirie, allée et parking
 =
 1
 600
 m²

Surface totale pondérée 641 m²

Coefficient d'apport (Ca) 0,99
Surface active (m²) 641

Prise en compte infiltration

Coefficient K	2,10E-05	Débit de fuite infiltration	0,8 L/s	
Surface effective d'infiltration (m2)	38 m2	Débit de fuite TOTAL	0,8 L/s	

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	7,1 m3	0,3 m3	6,9 m3	
15 min	17,430 mm	11,2 m3	0,7 m3	10,5 m3	
30 min	24,445 mm	15,7 m3	1,4 m3	14,2 m3	
60 min	34,284 mm	22,0 m3	2,9 m3	19,1 m3	
120 min	48,084 mm	30,8 m3	5,7 m3	25,1 m3	
180 min	58,605 mm	37,6 m3	8,6 m3	28,9 m3	
240 min	67,438 mm	43,2 m3	11,5 m3	31,7 m3	
360 min	82,193 mm	52,7 m3	17,2 m3	35,4 m3	
720 min	115,276 mm	73,9 m3	34,5 m3	39,4 m3	
1440 min	161,674 mm	103,6 m3	68,9 m3	34,7 m3	
Volume de stockag	Volume de stockage (m3) 40 m3				

Volume Max	40	m ³
Apport en 24 h :	104	m ³
Temps de vidange :	36,1	h

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 7

Terre végétale pleine terre = $0 m^2$ Noues = $0 m^2$ Voirie, allée et parking = $361 m^2$

Surface totale du terrain 361 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m^2 Noues = 1 0 m^2 Voirie, allée et parking = 1 361 m^2

Surface totale pondérée 361 m²

Coefficient d'apport (Ca) 1,00 Surface active (m²) 361

Prise en compte infiltration

Coefficient K	2,10E-05	Débit de fuite infiltration	0,3 L/s
Surface effective d'infiltration (m2)	14 m2	Débit de fuite TOTAL	0,3 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	4,0 m3	0,1 m3	3,9 m3	
15 min	17,430 mm	6,3 m3	0,3 m3	6,0 m3	
30 min	24,445 mm	8,8 m3	0,5 m3	8,3 m3	
60 min	34,284 mm	12,4 m3	1,1 m3	11,3 m3	
120 min	48,084 mm	17,4 m3	2,1 m3	15,2 m3	
180 min	58,605 mm	21,2 m3	3,2 m3	18,0 m3	
240 min	67,438 mm	24,3 m3	4,2 m3	20,1 m3	
360 min	82,193 mm	29,7 m3	6,4 m3	23,3 m3	
720 min	115,276 mm	41,6 m3	12,7 m3	28,9 m3	
1440 min	161,674 mm	58,4 m3	25,4 m3	33,0 m3	
Volume de stockag	Volume de stockage (m3) 33 m3				

Volume Max	33	m ³
Apport en 24 h :	58	m³
Temps de vidange :	55,1	h

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 8

Terre végétale pleine terre = 65 m²
Noues = 49 m²
Voirie, allée et parking = 572 m²

Surface totale du terrain 686 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 20 m^2 Noues = 1 49 m^2 Voirie, allée et parking = 1 572 m^2

Surface totale pondérée 641 m²

Coefficient d'apport (Ca) 0,93 Surface active (m²) 641

Prise en compte infiltration

militation				Г
Coefficient K	2,10E-05	Débit de fuite infiltration	1,0 L/s	İ
(on m/o)				ĺ
Surface effective	49 m2	Débit de fuite TOTAL	1.0 L/s	ĺ
d'infiltration (m2)	43 IIIZ	Debit de fulle TOTAL	1,0 L/S	

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	7,1 m3	0,4 m3	6,8 m3	
15 min	17,430 mm	11,2 m3	0,9 m3	10,2 m3	
30 min	24,445 mm	15,7 m3	1,9 m3	13,8 m3	
60 min	34,284 mm	22,0 m3	3,7 m3	18,3 m3	
120 min	48,084 mm	30,8 m3	7,4 m3	23,4 m3	
180 min	58,605 mm	37,5 m3	11,1 m3	26,4 m3	
240 min	67,438 mm	43,2 m3	14,8 m3	28,4 m3	
360 min	82,193 mm	52,6 m3	22,2 m3	30,4 m3	
720 min	115,276 mm	73,8 m3	44,5 m3	29,4 m3	
1440 min	161,674 mm	103,6 m3	88,9 m3	14,6 m3	
Volume de stockag	Volume de stockage (m3) 31 m3				

Volume Max	31	m ³
Apport en 24 h :	104	m^3
Temps de vidange :		

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 9

Terre végétale pleine terre = 0 m^2 Noues = 0 m^2 Voirie, allée et parking = 318 m^2

Surface totale du terrain 318 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m^2 Noues = 1 0 m^2 Voirie, allée et parking = 1 318 m^2

Surface totale pondérée 318 m²

Coefficient d'apport (Ca) 1,00 Surface active (m²) 318

Débit de fuite réglementaire

IIIIIIIIIalioii				_
Coefficient K	2,10E-05	Débit de fuite infiltration	0,0 L/s	
Surface effective d'infiltration (m2)	0 m2	Débit de fuite TOTAL	0,1 L/s	

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	3,5 m3	0,0 m3	3,5 m3	
15 min	17,430 mm	5,5 m3	0,1 m3	5,5 m3	
30 min	24,445 mm	7,8 m3	0,2 m3	7,6 m3	
60 min	34,284 mm	10,9 m3	0,3 m3	10,6 m3	
120 min	48,084 mm	15,3 m3	0,7 m3	14,6 m3	
180 min	58,605 mm	18,6 m3	1,0 m3	17,6 m3	
240 min	67,438 mm	21,4 m3	1,4 m3	20,1 m3	
360 min	82,193 mm	26,1 m3	2,1 m3	24,1 m3	
720 min	115,276 mm	36,7 m3	4,1 m3	32,5 m3	
1440 min	161,674 mm	51,4 m3	8,2 m3	43,2 m3	
Volume de stockag	Volume de stockage (m3) 44 m3				

Volume Max	44	m ³
Apport en 24 h :	51	m ³
Temps de vidange :	149,7	h

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 10

Terre végétale pleine terre = 0 m² Noues = 17 m² Voirie, allée et parking = 205 m²

Surface totale du terrain 222 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m² Noues = 1 17 m² Voirie, allée et parking = 1 205 m²

Surface totale pondérée 222 m²

Coefficient d'apport (Ca) 1,00 Surface active (m²) 222

Prise en compte infiltration

militation				Г
Coefficient K	2,10E-05	Débit de fuite infiltration	0,4 L/s	İ
(on m/o)				ĺ
Surface effective	17 m2	Débit de fuite TOTAL	0.4 L/s	ĺ
d'infiltration (m2)	17 1112	Debit de fulle TOTAL	0,4 L/S	

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	2,5 m3	0,1 m3	2,3 m3	
15 min	17,430 mm	3,9 m3	0,3 m3	3,5 m3	
30 min	24,445 mm	5,4 m3	0,6 m3	4,8 m3	
60 min	34,284 mm	7,6 m3	1,3 m3	6,3 m3	
120 min	48,084 mm	10,7 m3	2,6 m3	8,1 m3	
180 min	58,605 mm	13,0 m3	3,9 m3	9,2 m3	
240 min	67,438 mm	15,0 m3	5,1 m3	9,8 m3	
360 min	82,193 mm	18,2 m3	7,7 m3	10,5 m3	
720 min	115,276 mm	25,6 m3	15,4 m3	10,2 m3	
1440 min	161,674 mm	35,9 m3	30,8 m3	5,0 m3	
Volume de stockag	Volume de stockage (m3) 11 m3				

Volume Max	11	m ³
		3
Apport en 24 h :	36	m ³
Temps de vidange :	27,9	h

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 11

Terre végétale pleine terre = 0 m² Noues = 69 m² Voirie, allée et parking = 512 m²

Surface totale du terrain 581 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m^2 Noues = 1 69 m^2 Voirie, allée et parking = 1 512 m^2

Surface totale pondérée 581 m²

Coefficient d'apport (Ca) 1,00
Surface active (m²) 581

Prise en compte infiltration

Coefficient K	2,10E-05	Débit de fuite infiltration	1,4 L/s	
Surface effective d'infiltration (m2)	69 m2	Débit de fuite TOTAL	1,4 L/s	

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	6,5 m3	0,5 m3	6,0 m3	
15 min	17,430 mm	10,1 m3	1,3 m3	8,8 m3	
30 min	24,445 mm	14,2 m3	2,6 m3	11,6 m3	
60 min	34,284 mm	19,9 m3	5,2 m3	14,7 m3	
120 min	48,084 mm	27,9 m3	10,4 m3	17,5 m3	
180 min	58,605 mm	34,0 m3	15,6 m3	18,4 m3	
240 min	67,438 mm	39,2 m3	20,9 m3	18,3 m3	
360 min	82,193 mm	47,8 m3	31,3 m3	16,5 m3	
720 min	115,276 mm	67,0 m3	62,6 m3	4,4 m3	
1440 min	161,674 mm	93,9 m3	125,2 m3	0,0 m3	
Volume de stockag	Volume de stockage (m3) 19 m3				

Volume Max	19	m ³
Apport en 24 h :	94	m ³
Temps de vidange :	18,0	h

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 12

Terre végétale pleine terre = 45 m² Noues = 95 m² Voirie, allée et parking = 682 m²

Surface totale du terrain 822 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 14 m^2 Noues = 1 95 m^2 Voirie, allée et parking = 1 682 m^2

Surface totale pondérée 791 m²

 $\begin{array}{ll} \text{Coefficient d'apport (Ca)} & \textbf{0,96} \\ \text{Surface active } (m^2) & \textbf{791} \end{array}$

Prise en compte infiltration

Coefficient K	2,10E-05	Débit de fuite infiltration	2,0 L/s	
Surface effective d'infiltration (m2)	95 m2	Débit de fuite TOTAL	2,0 L/s	

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	8,8 m3	0,7 m3	8,1 m3	
15 min	17,430 mm	13,8 m3	1,8 m3	12,0 m3	
30 min	24,445 mm	19,3 m3	3,6 m3	15,7 m3	
60 min	34,284 mm	27,1 m3	7,2 m3	19,9 m3	
120 min	48,084 mm	38,0 m3	14,4 m3	23,6 m3	
180 min	58,605 mm	46,3 m3	21,5 m3	24,8 m3	
240 min	67,438 mm	53,3 m3	28,7 m3	24,6 m3	
360 min	82,193 mm	65,0 m3	43,1 m3	21,9 m3	
720 min	115,276 mm	91,1 m3	86,2 m3	4,9 m3	
1440 min	161,674 mm	127,8 m3	172,4 m3	0,0 m3	
Volume de stockag	Volume de stockage (m3) 25 m3				

Volume Max	25	m ³
Apport en 24 h :	128	m ³
Temps de vidange :		h

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 13

Terre végétale pleine terre = 0 m² Noues = 23 m² Voirie, allée et parking = 159 m²

Surface totale du terrain 182 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m^2 Noues = 1 23 m^2 Voirie, allée et parking = 1 159 m^2

Surface totale pondérée 182 m²

Coefficient d'apport (Ca) 1,00
Surface active (m²) 182

Prise en compte infiltration

Coefficient K	2,10E-05	Débit de fuite infiltration	0,5 L/s	
Surface effective d'infiltration (m2)	23 m2	Débit de fuite TOTAL	0,5 L/s	

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	2,0 m3	0,2 m3	1,9 m3	
15 min	17,430 mm	3,2 m3	0,4 m3	2,7 m3	
30 min	24,445 mm	4,4 m3	0,9 m3	3,6 m3	
60 min	34,284 mm	6,2 m3	1,7 m3	4,5 m3	
120 min	48,084 mm	8,8 m3	3,5 m3	5,3 m3	
180 min	58,605 mm	10,7 m3	5,2 m3	5,4 m3	
240 min	67,438 mm	12,3 m3	7,0 m3	5,3 m3	
360 min	82,193 mm	15,0 m3	10,4 m3	4,5 m3	
720 min	115,276 mm	21,0 m3	20,9 m3	0,1 m3	
1440 min	161,674 mm	29,4 m3	41,7 m3	0,0 m3	
Volume de stockag	Volume de stockage (m3) 6 m3				

Volume Max	6	m ³
A	00	m ³
Apport en 24 h :	29	m
Temps de vidange :	16,9	h

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 14

Terre végétale pleine terre = 0 m² Noues = 50 m² Voirie, allée et parking = 227 m^2

Surface totale du terrain 277 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m^2 Noues = 1 50 m^2 Voirie, allée et parking = 1 227 m^2

Surface totale pondérée 277 m²

Coefficient d'apport (Ca) 1,00 Surface active (m²) 277

Prise en compte infiltration

minitation				Г
Coefficient K	2,10E-05	Débit de fuite infiltration	1,1 L/s	
(on m/o)				1
Surface effective	50 m2	Débit de fuite TOTAL	1.1 L/s	
d'infiltration (m2)	JU IIIZ	Debit de faite FOTAL	1,1 L/S	

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	3,1 m3	0,4 m3	2,7 m3	
15 min	17,430 mm	4,8 m3	0,9 m3	3,9 m3	
30 min	24,445 mm	6,8 m3	1,9 m3	4,9 m3	
60 min	34,284 mm	9,5 m3	3,8 m3	5,7 m3	
120 min	48,084 mm	13,3 m3	7,6 m3	5,8 m3	
180 min	58,605 mm	16,2 m3	11,3 m3	4,9 m3	
240 min	67,438 mm	18,7 m3	15,1 m3	3,6 m3	
360 min	82,193 mm	22,8 m3	22,7 m3	0,1 m3	
720 min	115,276 mm	31,9 m3	45,4 m3	0,0 m3	
1440 min	161,674 mm	44,8 m3	90,7 m3	0,0 m3	
Volume de stockag	Volume de stockage (m3) 6 m3				

Volume Max	6 m ³		
Apport en 24 h :	45	m ³	
Temps de vidange :	11,8	h	

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 15

Terre végétale pleine terre = 0 m² Noues = 35 m² Voirie, allée et parking = 221 m²

Surface totale du terrain 256 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m^2 Noues = 1 35 m^2 Voirie, allée et parking = 1 221 m^2

Surface totale pondérée 256 m²

Coefficient d'apport (Ca) 1,00 Surface active (m²) 256

Prise en compte infiltration

Coefficient K	2,10E-05	Débit de fuite infiltration	0,7 L/s	
Surface effective d'infiltration (m2)	35 m2	Débit de fuite TOTAL	0,7 L/s	

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	2,9 m3	0,3 m3	2,6 m3	
15 min	17,430 mm	4,5 m3	0,7 m3	3,8 m3	
30 min	24,445 mm	6,3 m3	1,3 m3	4,9 m3	
60 min	34,284 mm	8,8 m3	2,6 m3	6,1 m3	
120 min	48,084 mm	12,3 m3	5,3 m3	7,0 m3	
180 min	58,605 mm	15,0 m3	7,9 m3	7,1 m3	
240 min	67,438 mm	17,3 m3	10,6 m3	6,7 m3	
360 min	82,193 mm	21,0 m3	15,9 m3	5,2 m3	
720 min	115,276 mm	29,5 m3	31,8 m3	0,0 m3	
1440 min	161,674 mm	41,4 m3	63,5 m3	0,0 m3	
Volume de stockag	Volume de stockage (m3) 8 m3				

Volume Max	8	m ³
A	<i>A</i> 1	m ³
Apport en 24 h :	41	m
Temps de vidange :	15,6	h

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	р
Clermont-Ferrand	T=10 ans	4.649	0.512

Caractéristiques géométriques du sous bassin versant hydraulique 16

Terre végétale pleine terre = 0 m^2 Noues = 34 m^2 Voirie, allée et parking = 268 m^2

Surface totale du terrain 302 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m^2 Noues = 1 34 m^2 Voirie, allée et parking = 1 268 m^2

Surface totale pondérée 302 m²

Coefficient d'apport (Ca) 1,00 Surface active (m²) 302

Prise en compte infiltration

Coefficient K	2,10E-05	Débit de fuite infiltration	0,7 L/s	
Surface effective d'infiltration (m2)	34 m2	Débit de fuite TOTAL	0,7 L/s	

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	3,4 m3	0,3 m3	3,1 m3
15 min	17,430 mm	5,3 m3	0,6 m3	4,6 m3
30 min	24,445 mm	7,4 m3	1,3 m3	6,1 m3
60 min	34,284 mm	10,4 m3	2,6 m3	7,8 m3
120 min	48,084 mm	14,5 m3	5,1 m3	9,4 m3
180 min	58,605 mm	17,7 m3	7,7 m3	10,0 m3
240 min	67,438 mm	20,4 m3	10,3 m3	10,1 m3
360 min	82,193 mm	24,8 m3	15,4 m3	9,4 m3
720 min	115,276 mm	34,8 m3	30,8 m3	4,0 m3
1440 min	161,674 mm	48,8 m3	61,7 m3	0,0 m3
Volume de stockag	Volume de stockage (m3) 11 m3			

Volume Max	11	m ³
Apport en 24 h :	10	m ³
Temps de vidange :	19,0	h

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 17

Terre végétale pleine terre = 25 m² Noues = 0 m² Voirie, allée et parking = 246 m²

Surface totale du terrain 271 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 8 m^2 Noues = 1 0 m^2 Voirie, allée et parking = 1 246 m^2

Surface totale pondérée 254 m²

Coefficient d'apport (Ca) 0,94
Surface active (m²) 254

Débit de fuite réglementaire

Coefficient K	2,10E-05	Débit de fuite infiltration	0,0 L/s	
Surface effective d'infiltration (m2)	0 m2	Débit de fuite TOTAL	0,1 L/s	

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	2,8 m3	0,0 m3	2,8 m3	
15 min	17,430 mm	4,4 m3	0,1 m3	4,4 m3	
30 min	24,445 mm	6,2 m3	0,1 m3	6,1 m3	
60 min	34,284 mm	8,7 m3	0,3 m3	8,4 m3	
120 min	48,084 mm	12,2 m3	0,5 m3	11,6 m3	
180 min	58,605 mm	14,9 m3	0,8 m3	14,0 m3	
240 min	67,438 mm	17,1 m3	1,1 m3	16,0 m3	
360 min	82,193 mm	20,8 m3	1,6 m3	19,2 m3	
720 min	115,276 mm	29,2 m3	3,3 m3	25,9 m3	
1440 min	161,674 mm	41,0 m3	6,6 m3	34,4 m3	
Volume de stockag	Volume de stockage (m3) 35 m3				

Volume Max	35	m ³
		2
Apport en 24 h :	41	m³
Temps de vidange :	149,7	h

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 18

Terre végétale pleine terre = 0 m² Noues = 0 m² Voirie, allée et parking = 405 m² m^2

Surface totale du terrain 405 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m^2 Noues = 1 0 m^2 Voirie, allée et parking = 1 405 m^2

Surface totale pondérée 405 m²

Coefficient d'apport (Ca) 1,00 Surface active (m²) 405

Débit de fuite réglementaire

IIIIIIIIIalioii				_
Coefficient K	2,10E-05	Débit de fuite infiltration	0,0 L/s	
Surface effective d'infiltration (m2)	0 m2	Débit de fuite TOTAL	0,1 L/s	

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	4,5 m3	0,0 m3	4,5 m3	
15 min	17,430 mm	7,1 m3	0,1 m3	6,9 m3	
30 min	24,445 mm	9,9 m3	0,2 m3	9,7 m3	
60 min	34,284 mm	13,9 m3	0,4 m3	13,4 m3	
120 min	48,084 mm	19,5 m3	0,9 m3	18,6 m3	
180 min	58,605 mm	23,7 m3	1,3 m3	22,4 m3	
240 min	67,438 mm	27,3 m3	1,7 m3	25,6 m3	
360 min	82,193 mm	33,3 m3	2,6 m3	30,7 m3	
720 min	115,276 mm	46,7 m3	5,2 m3	41,4 m3	
1440 min	161,674 mm	65,5 m3	10,5 m3	55,0 m3	
Volume de stockag	Volume de stockage (m3) 55 m3				

Volume Max	55	m ³
Apport en 24 h :	65	m ³
Temps de vidange :		h

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 19

Terre végétale pleine terre = 18 m^2 Noues = 0 m^2 Voirie, allée et parking = 412 m^2

Surface totale du terrain 430 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 5 m^2 Noues = 1 0 m^2 Voirie, allée et parking = 1 412 m^2

Surface totale pondérée 417 m²

Coefficient d'apport (Ca) 0,97 Surface active (m²) 417

Débit de fuite réglementaire

minitation				Г
Coefficient K	2,10E-05	Débit de fuite infiltration	0,0 L/s	ĺ
(on m/o)				ĺ
Surface effective	0 m2	Débit de fuite TOTAL	0.1 L/s	ĺ
d'infiltration (m2)	U IIIZ	Debit de fuite TOTAL	U, I L/S	ĺ

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	4,7 m3	0,0 m3	4,6 m3	
15 min	17,430 mm	7,3 m3	0,1 m3	7,2 m3	
30 min	24,445 mm	10,2 m3	0,2 m3	10,0 m3	
60 min	34,284 mm	14,3 m3	0,5 m3	13,9 m3	
120 min	48,084 mm	20,1 m3	0,9 m3	19,2 m3	
180 min	58,605 mm	24,5 m3	1,4 m3	23,1 m3	
240 min	67,438 mm	28,1 m3	1,8 m3	26,3 m3	
360 min	82,193 mm	34,3 m3	2,7 m3	31,6 m3	
720 min	115,276 mm	48,1 m3	5,4 m3	42,7 m3	
1440 min	161,674 mm	67,5 m3	10,8 m3	56,7 m3	
Volume de stockag	/olume de stockage (m3) 57 m3				

Volume Max	57	m ³
Apport en 24 h :	67	m ³
	01	1
Temps de vidange :	149,7	n

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 20

Terre végétale pleine terre = 0 m² Noues = 0 m² Voirie, allée et parking = 191 m²

Surface totale du terrain 191 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m^2 Noues = 1 0 m^2 Voirie, allée et parking = 1 191 m^2

Surface totale pondérée 191 m²

Coefficient d'apport (Ca) 1,00
Surface active (m²) 191

Débit de fuite réglementaire

IIIIIIIIIalioii				_
Coefficient K	2,10E-05	Débit de fuite infiltration	0,0 L/s	
Surface effective d'infiltration (m2)	0 m2	Débit de fuite TOTAL	0,1 L/s	

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké			
6 min	11,145 mm	2,1 m3	2,1 m3 0,0 m3				
15 min	17,430 mm	3,3 m3	0,1 m3	3,3 m3			
30 min	24,445 mm	4,7 m3	0,1 m3	4,6 m3			
60 min	34,284 mm	6,5 m3	0,2 m3	6,3 m3			
120 min	0 min 48,084 mm 9,2 m3		0,4 m3	8,8 m3			
180 min	58,605 mm	11,2 m3	0,6 m3	10,6 m3			
240 min	67,438 mm	12,9 m3	0,8 m3	12,1 m3			
360 min	82,193 mm	15,7 m3	1,2 m3	14,5 m3			
720 min	720 min		2,5 m3	19,5 m3			
1440 min	161,674 mm	30,9 m3	5,0 m3	25,9 m3			
Volume de stockag	Volume de stockage (m3) 26 m3						

Volume Max	26	m ³
		3
Apport en 24 h :	31	m°
Temps de vidange :	149,7	h

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 21

Terre végétale pleine terre = 0 m^2 Noues = 0 m^2 Voirie, allée et parking = 428 m^2

Surface totale du terrain 428 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m^2 Noues = 1 0 m^2 Voirie, allée et parking = 1 428 m^2

Surface totale pondérée 428 m²

Coefficient d'apport (Ca) 1,00 Surface active (m²) 428

Débit de fuite réglementaire

Coefficient K	2,10E-05	Débit de fuite infiltration	0,0 L/s	
Surface effective d'infiltration (m2)	0 m2	Débit de fuite TOTAL	0,13 L/s	

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké				
6 min	11,145 mm	4,8 m3	0,0 m3	4,7 m3				
15 min	17,430 mm	7,5 m3	0,1 m3	7,3 m3				
30 min	24,445 mm	10,5 m3	0,2 m3	10,2 m3				
60 min	34,284 mm	14,7 m3	0,5 m3	14,2 m3				
120 min	48,084 mm	20,6 m3	0,9 m3	19,7 m3				
180 min	58,605 mm	25,1 m3	1,4 m3	23,7 m3				
240 min	67,438 mm	28,9 m3	1,8 m3	27,0 m3				
360 min	82,193 mm	35,2 m3	2,8 m3	32,4 m3				
720 min	720 min 115,276 mm		49,3 m3 5,5 m3					
1440 min	161,674 mm	69,2 m3	11,1 m3	58,1 m3				
Volume de stockag	Volume de stockage (m3) 59 m3							

Volume Max	59	m ³
Apport en 24 h :	60	m ³
Temps de vidange :	149,7	h

Bilan des surfaces et gestion des eaux pluviales

Secteur Vercingétorix

Date: 30/09/22

Débit de fuite réglementaire : 3 l/s/ha

Occurrence : décennale

Coefficients de ruissellement :

TOTAL EXISTANT

11 889

11 494

Revêtements imperméables 1
Noues d'infiltration 1
Espaces verts 0,3

		Sous bassins ve	rsants des e	spaces pub	lics		
SBV	S totale (m²)	S revêtements (m²)	S noues / bassins (m²)	S espaces verts (m²)	Surface d'apport (m²)	Cr	Volume d'apport (m³)
1	278	237	41	0	278	1	8
2	290	198	34	58	249	0,86	7
3	443	224	74	145	342	0,77	7
4	196	64	34	98	127	0,65	2
5	210	148	33	29	190	0,9	5
6	568	354	85	129	478	0,84	11
7 (Rejet direct)	421	343	0	78	366	0,87	
8	448	248	42	158	337	0,75	11
9	166	126	40	0	166	1	3
10	253	185	68	0	253	1	4
11	410	310	100	0	410	1	7
12	222	206	16	0	222	1	12
13	156	140	16	0	156	1	6
14	611	496	109	6	607	0,99	13
15	184	151	33	0	184	1	4
16	482	366	116	0	482	1	8
17	226	197	29	0	226	1	7
18	132	132	0	0	132	1	8
19	216	216	0	0	216	1	13
20	247	247	0	0	247	1	14
21 a (Rejet direct)	423	423	0	0	423	1	
21 b (Rejet direct)	193	193	0	0	193	1	
21	197	164	27	6	193	0,98	6
22	215	145	39	31	193	0,9	4
23	331	187	36	108	255	0,77	7
24	87	57	14	16	76	0,87	2
25	382	353	0	29	362	0,95	7
26	349	306	33	10	342	0,98	14
27	189	80	36	73	138	0,73	3
28	113	67	13	33	90	0,8	3
29	250	178	30	42	221	0,88	7
30	336	173	55	108	260	0,77	5
31	329	228	37	64	284	0,86	9
32	506	252	43	211	358	0,71	22
33	230	113	28	89	168	0,73	10
34 (Rejet direct)	141	141	0	0	141	1	
35 (Rejet direct)	350	350	0	0	350	1	
36 (Rejet direct)	297	260	0	37	271	0,91	
37 (Rejet direct)	812	811	0	0	811	1	
TOTAL	11 889	9 069	1 261	1 558	10 797	0,91	249

11 613

0,98

Méthode de dimensionnement retenue :

Méthode des pluies

Coefficients de Montana de Clermont-Ferrand :

Durée de retour	a	b
10 ans	4,649	0,512
50 ans	5,8	0,479
100 ans	6,263	0,465

Hypothèses d'infiltration :

À ce stade de l'étude, deux essais de perméabilité ont été réalisés sur le périmètre du projet.

SC1BC : $K = 9.8 \times 10^{-5}$ SC3BC : $K = 2.1 \times 10^{-5}$

De manière sécuritaire, nous retenu le plus contraignant des deux, à savoir : $K = 2.1 \times 10^{-5}$

Rétentions								
					Occ	urrence décenr	nale	
Noue / Bassin	Capacité (m³)	SBV repris		is	volume d'apport	taux de remplissage	volume surversé	
A1 (exutoire SBV1)	14	SBV1			8	57%	(
B1 (exutoire SBV2)	11	SBV2			7	64%	(
C1 (exutoire SBV3)	23	SBV3			7	30%	(
D1 (exutoire SBV4)	10	SBV4			2	20%	(
E1 (exutoire SBV5)	10	SBV5			5	50%	(
F1 (exutoire SBV6)	28	SBV6			11	39%	(
Non régulé							(
G1 (exutoire SBV7)	15	SBV7			11	73%	(
A2 (exutoire SBV 8)	19	SBV8			3	16%	(
B2 (exutoire SBV 9)	32	SBV9			4	13%	(
C2 (exutoire SBV 10)	47	SBV10			7	15%	(
D2 (exutoire SBV 11)	8	SBV11			12	100%	4	
E2 (exutoire SBV 12)	8	SBV12			6	75%	(
F2 (exutoire SBV 13)		SBV13			13	25%	(
G2 (exutoire SBV 14)	13	SBV14			4	31%	(
H2 (exutoire SBV 15)	53	SBV15			8	15%		
I2 (exutoire SBV 16)	14	SBV16			7	50%	(
Géré par la noue V3								
Géré par la noue W3								
Géré par la noue W3								
Non régulé							(
Non régulé								
J3 (exutoire SBV 20)	13	SBV20			6	46%		
K3 (exutoire SBV 21)	19	SBV21			4	21%	(
L3 (exutoire SBV 22)	17	SBV22			7	41%	(
M3 (exutoire SBV 23)	7	SBV23			2	29%	(
St1 (exutoire SBV 24)	23	SBV24			7	31%	(
St2 (exutoire SBV 25)	16	SBV25			14	88%	(
N3 (exutoire SBV 26)	11	SBV26			3	27%	(
O3 (exutoire SBV 27)	5	SBV27			3	60%	(
P3 (exutoire SBV 28)	10	SBV28			7	70%	(
Q3 (exutoire SBV 29)	18	SBV29			5	28%	(
R3 (exutoire SBV 30)	11	SBV30			9	82%	(
St3			SBV17		43		20	
S3 (exutoire SBV 17, 18 & 31)	26	SBV31	SBV17	SBV18	20	77%	(
St4	_	SBV31		SBV18	24		9	
T3 (exutoire SBV 19 & 32)	16	SBV32	SBV19		9	56%		
Non régulé							(
Non régulé								
Non régulé								
Non régulé							(

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 1

Terre végétale pleine terre = 0 m^2 Noues = 41 m^2 Voirie, allée et parking = 237 m^2

Surface totale du terrain 278 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m^2 Noues = 1 41 m^2 Voirie, allée et parking = 1 237 m^2

Surface totale pondérée 278 m²

Coefficient d'apport (Ca) 1,00 Surface active en hectare (m²) 278

Prise en compte infiltration

Coefficient K	2,10E-05	Débit de fuite infiltration	0,9 L/s	
Surface effective d'infiltration (en m2)	41 m2	Débit de fuite TOTAL	0,9 L/s	

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	3,1 m3	0,3 m3	2,8 m3
15 min	17,430 mm	4,8 m3	0,8 m3	4,1 m3
30 min	24,445 mm	6,8 m3	1,5 m3	5,2 m3
60 min	34,284 mm	9,5 m3	3,1 m3	6,4 m3
120 min	48,084 mm	13,4 m3	6,2 m3	7,2 m3
180 min	58,605 mm	16,3 m3	9,3 m3	7,0 m3
240 min	67,438 mm	18,7 m3	12,4 m3	6,3 m3
360 min	82,193 mm	22,8 m3	18,6 m3	4,3 m3
720 min	115,276 mm	32,0 m3	37,2 m3	0,0 m3
1440 min	161,674 mm	44,9 m3	74,4 m3	0,0 m3
Volume de stockag	e (m3)			8 m3

Volume Max	8	m ³
Apport en 24 h :	45	m ³
Temps de vidange :	14,5	h

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 2

Terre végétale pleine terre = $58 m^2$ Noues = $34 m^2$ Voirie, allée et parking = $198 m^2$

Surface totale du terrain 290 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 17 m^2 Noues = 1 34 m^2 Voirie, allée et parking = 1 198 m^2

Surface totale pondérée 249 m²

 $\begin{array}{ll} \text{Coefficient d'apport (Ca)} & \textbf{0,86} \\ \text{Surface active en hectare (m²)} & \textbf{249} \end{array}$

Prise en compte infiltration

Coefficient K	2,10E-05	Débit de fuite infiltration	0,7 L/s	
Surface effective d'infiltration (en m2)	34 m2	Débit de fuite TOTAL	0,7 L/s	

Evaluation du volume de stockage

Volume de stockag	e (m3)			7 m3
1440 min	161,674 mm	40,3 m3	61,7 m3	0,0 m3
720 min	115,276 mm	28,7 m3	30,8 m3	0,0 m3
360 min	82,193 mm	20,5 m3	15,4 m3	5,1 m3
240 min	67,438 mm	16,8 m3	10,3 m3	6,5 m3
180 min	58,605 mm	14,6 m3	7,7 m3	6,9 m3
120 min	48,084 mm	12,0 m3	5,1 m3	6,9 m3
60 min	34,284 mm	8,6 m3	2,6 m3	6,0 m3
30 min	24,445 mm	6,1 m3	1,3 m3	4,8 m3
15 min	17,430 mm	4,3 m3	0,6 m3	3,7 m3
6 min	11,145 mm	2,8 m3	0,3 m3	2,5 m3
Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké

Volume Max	7	m ³
Apport en 24 h :	40	m ³
Temps de vidange :	15,7	h

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 3

Terre végétale pleine terre = 145 m^2 Noues = 74 m^2 Voirie, allée et parking = 224 m^2

Surface totale du terrain 443 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0.3 44 m^2 Noues = 1 74 m^2 Voirie, allée et parking = 1 224 m^2

Surface totale pondérée 342 m²

 $\begin{array}{ll} \text{Coefficient d'apport (Ca)} & \textbf{0,77} \\ \text{Surface active en hectare (m²)} & \textbf{342} \end{array}$

Prise en compte infiltration

Coefficient K	2,10E-05	Débit de fuite infiltration	1,6 L/s	
Surface effective d'infiltration (en m2)	74 m2	Débit de fuite TOTAL	1,6 L/s	

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	3,8 m3	0,6 m3	3,2 m3
15 min	17,430 mm	6,0 m3	1,4 m3	4,6 m3
30 min	24,445 mm	8,3 m3	2,8 m3	5,6 m3
60 min	34,284 mm	11,7 m3	5,6 m3	6,1 m3
120 min	48,084 mm	16,4 m3	11,2 m3	5,2 m3
180 min	58,605 mm	20,0 m3	16,8 m3	3,2 m3
240 min	67,438 mm	23,0 m3	22,4 m3	0,7 m3
360 min	82,193 mm	28,1 m3	33,6 m3	0,0 m3
720 min	115,276 mm	39,4 m3	67,1 m3	0,0 m3
1440 min	161,674 mm	55,2 m3	134,3 m3	0,0 m3
Volume de stockag	e (m3)			7 m3

Volume Max	7	m ³
Apport en 24 h :	55	m ³
Temps de vidange :	9,9	h

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4.649	0.512

Caractéristiques géométriques du sous bassin versant hydraulique 4

Terre végétale pleine terre = 98 m² Noues = 34 m² Voirie, allée et parking = 64 m²

Surface totale du terrain 196 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 29
 m²

 Noues
 =
 1
 34
 m²

 Voirie, allée et parking
 =
 1
 64
 m²

Surface totale pondérée 127 m²

 $\begin{array}{ll} \text{Coefficient d'apport (Ca)} & \textbf{0,65} \\ \text{Surface active en hectare } (\text{m}^{\text{2}}) & \textbf{127} \end{array}$

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,7 L/s
Surface effective d'infiltration (en m2)	34 m2	Débit de fuite TOTAL	0,7 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	1,4 m3	0,3 m3	1,2 m3
15 min	17,430 mm	2,2 m3	0,6 m3	1,6 m3
30 min	24,445 mm	3,1 m3	1,3 m3	1,8 m3
60 min	34,284 mm	4,4 m3	2,6 m3	1,8 m3
120 min	48,084 mm	6,1 m3	5,1 m3	1,0 m3
180 min	58,605 mm	7,5 m3	7,7 m3	0,0 m3
240 min	67,438 mm	8,6 m3	10,3 m3	0,0 m3
360 min	82,193 mm	10,5 m3	15,4 m3	0,0 m3
720 min	115,276 mm	14,7 m3	30,8 m3	0,0 m3
1440 min	161,674 mm	20,6 m3	61,7 m3	0,0 m3
Volume de stockage (m3) 2 m3				

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 5

Terre végétale pleine terre = 29 m² Noues = 33 m² Voirie, allée et parking = 148 m²

Surface totale du terrain 210 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 9
 m²

 Noues
 =
 1
 33
 m²

 Voirie, allée et parking
 =
 1
 148
 m²

Surface totale pondérée 190 m²

 $\begin{array}{ll} \text{Coefficient d'apport (Ca)} & \textbf{0,90} \\ \text{Surface active en hectare } (\text{m}^{\text{2}}) & \textbf{190} \end{array}$

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,7 L/s
Surface effective d'infiltration (en m2)	33 m2	Débit de fuite TOTAL	0,7 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	2,1 m3	0,2 m3	1,9 m3
15 min	17,430 mm	3,3 m3	0,6 m3	2,7 m3
30 min	24,445 mm	4,6 m3	1,2 m3	3,4 m3
60 min	34,284 mm	6,5 m3	2,5 m3	4,0 m3
120 min	48,084 mm	9,1 m3	5,0 m3	4,1 m3
180 min	58,605 mm	11,1 m3	7,5 m3	3,6 m3
240 min	67,438 mm	12,8 m3	10,0 m3	2,8 m3
360 min	82,193 mm	15,6 m3	15,0 m3	0,6 m3
720 min	115,276 mm	21,9 m3	29,9 m3	0,0 m3
1440 min	161,674 mm	30,7 m3	59,9 m3	0,0 m3
Volume de stockage (m3) 5 m3				

5	m ³
31	m ³
12,3	h
	31 12,3

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 6

Terre végétale pleine terre = 129 m² Noues = 85 m² Voirie, allée et parking = 354 m²

Surface totale du terrain 568 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 39
 m²

 Noues
 =
 1
 85
 m²

 Voirie, allée et parking
 =
 1
 354
 m²

Surface totale pondérée 478 m²

 $\begin{array}{ll} \text{Coefficient d'apport (Ca)} & \textbf{0,84} \\ \text{Surface active en hectare } (\text{m}^{\text{2}}) & \textbf{478} \end{array}$

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	1,8 L/s
Surface effective d'infiltration (en m2)	85 m2	Débit de fuite TOTAL	1,8 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	5,3 m3	0,6 m3	4,7 m3
15 min	17,430 mm	8,3 m3	1,6 m3	6,7 m3
30 min	24,445 mm	11,7 m3	3,2 m3	8,5 m3
60 min	34,284 mm	16,4 m3	6,4 m3	10,0 m3
120 min	48,084 mm	23,0 m3	12,9 m3	10,1 m3
180 min	58,605 mm	28,0 m3	19,3 m3	8,7 m3
240 min	67,438 mm	32,2 m3	25,7 m3	6,5 m3
360 min	82,193 mm	39,3 m3	38,6 m3	0,7 m3
720 min	115,276 mm	55,1 m3	77,1 m3	0,0 m3
1440 min	161,674 mm	77,2 m3	154,2 m3	0,0 m3
Volume de stockage (m3) 11 m3				

Volume Max	11	m ³
Apport en 24 h :	77	m ³
Temps de vidange :	12,0	h
Temps de vidange :		h

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 7

Terre végétale pleine terre = 200 $\,\mathrm{m}^2$ Noues = 42 $\,\mathrm{m}^2$ Voirie, allée et parking = 620 $\,\mathrm{m}^2$

Surface totale du terrain 862 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 60
 m²

 Noues
 =
 1
 42
 m²

 Voirie, allée et parking
 =
 1
 620
 m²

Surface totale pondérée 722 m²

Coefficient d'apport (Ca) 0,84 Surface active en hectare (m²) 722

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,9 L/s
Surface effective d'infiltration (en m2)	42 m2	Débit de fuite TOTAL	0,9 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	8,0 m3	0,3 m3	7,7 m3	
15 min	17,430 mm	12,6 m3	0,8 m3	11,8 m3	
30 min	24,445 mm	17,6 m3	1,6 m3	16,1 m3	
60 min	34,284 mm	24,8 m3	3,2 m3	21,6 m3	
120 min	48,084 mm	34,7 m3	6,4 m3	28,4 m3	
180 min	58,605 mm	42,3 m3	9,5 m3	32,8 m3	
240 min	67,438 mm	48,7 m3	12,7 m3	36,0 m3	
360 min	82,193 mm	59,3 m3	19,1 m3	40,3 m3	
720 min	115,276 mm	83,2 m3	38,1 m3	45,1 m3	
1440 min	161,674 mm	116,7 m3	76,2 m3	40,5 m3	
Volume de stockage (m3) 46 m3					

Volume Max	46	m ³
Apport en 24 h :	117	m ³
Temps de vidange :	36,8	h
Temps de vidange :	36,8	h

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 8

Terre végétale pleine terre = 0 m^2 Noues = 40 m^2 Voirie, allée et parking = 126 m^2

Surface totale du terrain 166 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m^2 Noues = 1 40 m^2 Voirie, allée et parking = 1 126 m^2

Surface totale pondérée 166 m²

Coefficient d'apport (Ca) 1,00 Surface active en hectare (m²) 166

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,8 L/s
Surface effective d'infiltration (en m2)	40 m2	Débit de fuite TOTAL	0,8 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	1,9 m3	0,3 m3	1,5 m3
15 min	17,430 mm	2,9 m3	0,8 m3	2,1 m3
30 min	24,445 mm	4,1 m3	1,5 m3	2,5 m3
60 min	34,284 mm	5,7 m3	3,0 m3	2,7 m3
120 min	48,084 mm	8,0 m3	6,0 m3	1,9 m3
180 min	58,605 mm	9,7 m3	9,1 m3	0,7 m3
240 min	67,438 mm	11,2 m3	12,1 m3	0,0 m3
360 min	82,193 mm	13,6 m3	18,1 m3	0,0 m3
720 min	115,276 mm	19,1 m3	36,3 m3	0,0 m3
1440 min	161,674 mm	26,8 m3	72,6 m3	0,0 m3
Volume de stockage (m3) 3 m3				

3	m ³
27	m ³
8,9	h
	27 8,9

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 9

Terre végétale pleine terre = 0 m² Noues = 68 m² Voirie, allée et parking = 185 m²

Surface totale du terrain 253 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 0
 m²

 Noues
 =
 1
 68
 m²

 Voirie, allée et parking
 =
 1
 185
 m²

Surface totale pondérée 253 m²

Coefficient d'apport (Ca) 1,00 Surface active en hectare (m²) 253

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	1,4 L/s
Surface effective d'infiltration (en m2)	68 m2	Débit de fuite TOTAL	1,4 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	2,8 m3	0,5 m3	2,3 m3
15 min	17,430 mm	4,4 m3	1,3 m3	3,1 m3
30 min	24,445 mm	6,2 m3	2,6 m3	3,6 m3
60 min	34,284 mm	8,7 m3	5,1 m3	3,5 m3
120 min	48,084 mm	12,2 m3	10,3 m3	1,9 m3
180 min	58,605 mm	14,8 m3	15,4 m3	0,0 m3
240 min	67,438 mm	17,1 m3	20,6 m3	0,0 m3
360 min	82,193 mm	20,8 m3	30,8 m3	0,0 m3
720 min	115,276 mm	29,2 m3	61,7 m3	0,0 m3
1440 min	161,674 mm	40,9 m3	123,4 m3	0,0 m3
Volume de stockage (m3) 4 m3				

4	m ³
41	m ³
8,0	h
	41 8,0

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 10

Terre végétale pleine terre = 0 m^2 Noues = 100 m^2 Voirie, allée et parking = 310 m^2

Surface totale du terrain 410 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 0
 m²

 Noues
 =
 1
 100
 m²

 Voirie, allée et parking
 =
 1
 310
 m²

Surface totale pondérée 410 m²

 $\begin{tabular}{ll} Coefficient d'apport (Ca) & {\bf 1,00} \\ Surface active en hectare (m^2) & {\bf 410} \\ \end{tabular}$

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	2,1 L/s
Surface effective d'infiltration (en m2)	100 m2	Débit de fuite TOTAL	2,1 L/s

Evaluation du volume de stockage

Volume de stockage	7 m3			
1440 min	161,674 mm	66,3 m3	181,4 m3	0,0 m3
720 min	115,276 mm	47,3 m3	90,7 m3	0,0 m3
360 min	82,193 mm	33,7 m3	45,4 m3	0,0 m3
240 min	67,438 mm	27,6 m3	30,2 m3	0,0 m3
180 min	58,605 mm	24,0 m3	22,7 m3	1,3 m3
120 min	48,084 mm	19,7 m3	15,1 m3	4,6 m3
60 min	34,284 mm	14,1 m3	7,6 m3	6,5 m3
30 min	24,445 mm	10,0 m3	3,8 m3	6,2 m3
15 min	17,430 mm	7,1 m3	1,9 m3	5,3 m3
6 min	11,145 mm	4,6 m3	0,8 m3	3,8 m3
Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké

Volume Max	7	m^3
Apport en 24 h :	66	m³
Temps de vidange :	8,8	h
Temps de vidange :	8,8	h

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 11

Terre végétale pleine terre = 0 m^2 Noues = 16 m^2 Voirie, allée et parking = 206 m^2

Surface totale du terrain 222 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 0
 m²

 Noues
 =
 1
 16
 m²

 Voirie, allée et parking
 =
 1
 206
 m²

Surface totale pondérée 222 m²

Coefficient d'apport (Ca) 1,00 Surface active en hectare (m²) 222

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,3 L/s
Surface effective d'infiltration (en m2)	16 m2	Débit de fuite TOTAL	0,3 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	2,5 m3	0,1 m3	2,4 m3
15 min	17,430 mm	3,9 m3	0,3 m3	3,6 m3
30 min	24,445 mm	5,4 m3	0,6 m3	4,8 m3
60 min	34,284 mm	7,6 m3	1,2 m3	6,4 m3
120 min	48,084 mm	10,7 m3	2,4 m3	8,3 m3
180 min	58,605 mm	13,0 m3	3,6 m3	9,4 m3
240 min	67,438 mm	15,0 m3	4,8 m3	10,1 m3
360 min	82,193 mm	18,2 m3	7,3 m3	11,0 m3
720 min	115,276 mm	25,6 m3	14,5 m3	11,1 m3
1440 min	161,674 mm	35,9 m3	29,0 m3	6,9 m3
Volume de stockage (m3) 12 m3				

12	m°
36	m ³
29,7	h
	36 29,7

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 12

Terre végétale pleine terre = 0 m^2 Noues = 16 m^2 Voirie, allée et parking = 140 m^2

Surface totale du terrain 156 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 0
 m²

 Noues
 =
 1
 16
 m²

 Voirie, allée et parking
 =
 1
 140
 m²

Surface totale pondérée 156 m²

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,3 L/s		
Surface effective d'infiltration (en m2)	16 m2	Débit de fuite TOTAL	0,3 L/s		

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	1,7 m3	0,1 m3	1,6 m3	
15 min	17,430 mm	2,7 m3	0,3 m3	2,4 m3	
30 min	24,445 mm	3,8 m3	0,6 m3	3,2 m3	
60 min	34,284 mm	5,3 m3	1,2 m3	4,1 m3	
120 min	48,084 mm	7,5 m3	2,4 m3	5,1 m3	
180 min	58,605 mm	9,1 m3	3,6 m3	5,5 m3	
240 min	67,438 mm	10,5 m3	4,8 m3	5,7 m3	
360 min	82,193 mm	12,8 m3	7,3 m3	5,6 m3	
720 min	115,276 mm	18,0 m3	14,5 m3	3,5 m3	
1440 min	161,674 mm	25,2 m3	29,0 m3	0,0 m3	
Volume de stockage (m3) 6 m3					

6	m³
25	m ³
20,9	h
	25 20,9

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 13

Terre végétale pleine terre = $6 m^2$ Noues = $109 m^2$ Voirie, allée et parking = $496 m^2$

Surface totale du terrain 611 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 2
 m²

 Noues
 =
 1
 109
 m²

 Voirie, allée et parking
 =
 1
 496
 m²

Surface totale pondérée 607 m²

Coefficient d'apport (Ca) 0,99
Surface active en hectare (m²) 607

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	2,3 L/s		
Surface effective d'infiltration (en m2)	109 m2	Débit de fuite TOTAL	2,3 L/s		

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	6,8 m3	0,8 m3	5,9 m3
15 min	17,430 mm	10,6 m3	2,1 m3	8,5 m3
30 min	24,445 mm	14,8 m3	4,1 m3	10,7 m3
60 min	34,284 mm	20,8 m3	8,2 m3	12,6 m3
120 min	48,084 mm	29,2 m3	16,5 m3	12,7 m3
180 min	58,605 mm	35,6 m3	24,7 m3	10,8 m3
240 min	67,438 mm	40,9 m3	33,0 m3	8,0 m3
360 min	82,193 mm	49,9 m3	49,4 m3	0,4 m3
720 min	115,276 mm	69,9 m3	98,9 m3	0,0 m3
1440 min	161,674 mm	98,1 m3	197,8 m3	0,0 m3
Volume de stockage (m3) 13 m3				

13	m³
98	m ³
11,9	h
	98 11,9

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 14

Terre végétale pleine terre = 0 m^2 Noues = 33 m^2 Voirie, allée et parking = 151 m^2

Surface totale du terrain 184 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 0
 m²

 Noues
 =
 1
 33
 m²

 Voirie, allée et parking
 =
 1
 151
 m²

Surface totale pondérée 184 m²

Coefficient d'apport (Ca) 1,00 Surface active en hectare (m²) 184

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,7 L/s
Surface effective d'infiltration (en m2)	33 m2	Débit de fuite TOTAL	0,7 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	2,1 m3	0,2 m3	1,8 m3
15 min	17,430 mm	3,2 m3	0,6 m3	2,6 m3
30 min	24,445 mm	4,5 m3	1,2 m3	3,3 m3
60 min	34,284 mm	6,3 m3	2,5 m3	3,8 m3
120 min	48,084 mm	8,8 m3	5,0 m3	3,9 m3
180 min	58,605 mm	10,8 m3	7,5 m3	3,3 m3
240 min	67,438 mm	12,4 m3	10,0 m3	2,4 m3
360 min	82,193 mm	15,1 m3	15,0 m3	0,2 m3
720 min	115,276 mm	21,2 m3	29,9 m3	0,0 m3
1440 min	161,674 mm	29,7 m3	59,9 m3	0,0 m3
Volume de stockage (m3) 4 m3				

4	m ³
30	m ³
11,9	h
	30 11,9

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 15

Terre végétale pleine terre = 0 m^2 Noues = 116 m^2 Voirie, allée et parking = 366 m^2

Surface totale du terrain 482 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 0
 m²

 Noues
 =
 1
 116
 m²

 Voirie, allée et parking
 =
 1
 366
 m²

Surface totale pondérée 482 m²

Coefficient d'apport (Ca) 1,00 Surface active en hectare (m²) 482

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	2,4 L/s
Surface effective d'infiltration (en m2)	116 m2	Débit de fuite TOTAL	2,4 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	5,4 m3	0,9 m3	4,5 m3
15 min	17,430 mm	8,4 m3	2,2 m3	6,2 m3
30 min	24,445 mm	11,8 m3	4,4 m3	7,4 m3
60 min	34,284 mm	16,5 m3	8,8 m3	7,8 m3
120 min	48,084 mm	23,2 m3	17,5 m3	5,6 m3
180 min	58,605 mm	28,2 m3	26,3 m3	1,9 m3
240 min	67,438 mm	32,5 m3	35,1 m3	0,0 m3
360 min	82,193 mm	39,6 m3	52,6 m3	0,0 m3
720 min	115,276 mm	55,6 m3	105,2 m3	0,0 m3
1440 min	161,674 mm	77,9 m3	210,5 m3	0,0 m3
Volume de stockage (m3) 8 r				

8	m ³
78	m³
8,9	h
	78 8,9

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 16

Terre végétale pleine terre = 0 m² Noues = 29 m² Voirie, allée et parking = 197 m²

Surface totale du terrain 226 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 0
 m²

 Noues
 =
 1
 29
 m²

 Voirie, allée et parking
 =
 1
 197
 m²

Surface totale pondérée 226 m²

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,6 L/s		
Surface effective d'infiltration (en m2)	29 m2	Débit de fuite TOTAL	0,6 L/s		

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	2,5 m3	0,2 m3	2,3 m3
15 min	17,430 mm	3,9 m3	0,5 m3	3,4 m3
30 min	24,445 mm	5,5 m3	1,1 m3	4,4 m3
60 min	34,284 mm	7,7 m3	2,2 m3	5,6 m3
120 min	48,084 mm	10,9 m3	4,4 m3	6,5 m3
180 min	58,605 mm	13,2 m3	6,6 m3	6,7 m3
240 min	67,438 mm	15,2 m3	8,8 m3	6,5 m3
360 min	82,193 mm	18,6 m3	13,2 m3	5,4 m3
720 min	115,276 mm	26,1 m3	26,3 m3	0,0 m3
1440 min	161,674 mm	36,5 m3	52,6 m3	0,0 m3
Volume de stockage (m3) 7 m3				

37 m ³
16,7 h

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 20a

Terre végétale pleine terre = 0 m^2 Noues = 0 m^2 Voirie, allée et parking = 423 m^2

Surface totale du terrain 423 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 0
 m²

 Noues
 =
 1
 0
 m²

 Voirie, allée et parking
 =
 1
 423
 m²

Surface totale pondérée 423 m²

0

Coefficient d'apport (Ca) 1,00 Surface active en hectare (m²) 423

Débit de fuite réglementaire

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,0 L/s
Surface effective d'infiltration (en m2)	0 m2	Débit de fuite TOTAL	0,1 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	4,7 m3	0,0 m3	4,7 m3	
15 min	17,430 mm	7,4 m3	0,1 m3	7,3 m3	
30 min	24,445 mm	10,3 m3	0,2 m3	10,1 m3	
60 min	34,284 mm	14,5 m3	0,5 m3	14,0 m3	
120 min	48,084 mm	20,3 m3	0,9 m3	19,4 m3	
180 min	58,605 mm	24,8 m3	1,4 m3	23,4 m3	
240 min	67,438 mm	28,5 m3	1,8 m3	26,7 m3	
360 min	82,193 mm	34,8 m3	2,7 m3	32,0 m3	
720 min	115,276 mm	48,8 m3	5,5 m3	43,3 m3	
1440 min	161,674 mm	68,4 m3	11,0 m3	57,4 m3	
Volume de stockage	Volume de stockage (m3) 58 m3				

58	m³
68	m ³
149,7	h
	68

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 20b

Terre végétale pleine terre = 0 m² Noues = 0 m² Voirie, allée et parking = 193 m²

Surface totale du terrain 193 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m^2 Noues = 1 0 m^2 Voirie, allée et parking = 1 193 m^2

Surface totale pondérée 193 m²

0

Coefficient d'apport (Ca) 1,00 Surface active en hectare (m²) 193

Débit de fuite réglementaire

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,0 L/s
Surface effective d'infiltration (en m2)	0 m2	Débit de fuite TOTAL	0,1 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	2,2 m3	0,0 m3	2,1 m3
15 min	17,430 mm	3,4 m3	0,1 m3	3,3 m3
30 min	24,445 mm	4,7 m3	0,1 m3	4,6 m3
60 min	34,284 mm	6,6 m3	0,2 m3	6,4 m3
120 min	48,084 mm	9,3 m3	0,4 m3	8,9 m3
180 min	58,605 mm	11,3 m3	0,6 m3	10,7 m3
240 min	67,438 mm	13,0 m3	0,8 m3	12,2 m3
360 min	82,193 mm	15,9 m3	1,3 m3	14,6 m3
720 min	115,276 mm	22,2 m3	2,5 m3	19,7 m3
1440 min	161,674 mm	31,2 m3	5,0 m3	26,2 m3
Volume de stockage (m3) 27 m3				

Volume Max	27	m^3
Apport en 24 h:	31	m³
Temps de vidange :	149,7	h
Tompo de vidange .	140,1	"

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 20

Terre végétale pleine terre = $6 m^2$ Noues = $27 m^2$ Voirie, allée et parking = $164 m^2$

Surface totale du terrain 197 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 2
 m²

 Noues
 =
 1
 27
 m²

 Voirie, allée et parking
 =
 1
 164
 m²

Surface totale pondérée 193 m²

Coefficient d'apport (Ca) 0,98 Surface active en hectare (m²) 193

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,6 L/s
Surface effective d'infiltration (en m2)	27 m2	Débit de fuite TOTAL	0,6 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	2,1 m3	0,2 m3	1,9 m3	
15 min	17,430 mm	3,4 m3	0,5 m3	2,9 m3	
30 min	24,445 mm	4,7 m3	1,0 m3	3,7 m3	
60 min	34,284 mm	6,6 m3	2,0 m3	4,6 m3	
120 min	48,084 mm	9,3 m3	4,1 m3	5,2 m3	
180 min	58,605 mm	11,3 m3	6,1 m3	5,2 m3	
240 min	67,438 mm	13,0 m3	8,2 m3	4,8 m3	
360 min	82,193 mm	15,8 m3	12,2 m3	3,6 m3	
720 min	115,276 mm	22,2 m3	24,5 m3	0,0 m3	
1440 min	161,674 mm	31,2 m3	49,0 m3	0,0 m3	
Volume de stockage	Volume de stockage (m3) 6 m3				

Volume Max	6 m ³		
Apport en 24 h :	31	m ³	
Temps de vidange :	15,3	h	

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 21

Terre végétale pleine terre = 31 m^2 Noues = 39 m^2 Voirie, allée et parking = 145 m^2

Surface totale du terrain 215 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 9
 m²

 Noues
 =
 1
 39
 m²

 Voirie, allée et parking
 =
 1
 145
 m²

Surface totale pondérée 193 m²

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,8 L/s
Surface effective d'infiltration (en m2)	39 m2	Débit de fuite TOTAL	0,8 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	
6 min	11,145 mm	2,2 m3	0,3 m3	1,9 m3	
15 min	17,430 mm	3,4 m3	0,7 m3	2,6 m3	
30 min	24,445 mm	4,7 m3	1,5 m3	3,3 m3	
60 min	34,284 mm	6,6 m3	2,9 m3	3,7 m3	
120 min	48,084 mm	9,3 m3	5,9 m3	3,4 m3	
180 min	58,605 mm	11,3 m3	8,8 m3	2,5 m3	
240 min	67,438 mm	13,0 m3	11,8 m3	1,2 m3	
360 min	82,193 mm	15,9 m3	17,7 m3	0,0 m3	
720 min	115,276 mm	22,3 m3	35,4 m3	0,0 m3	
1440 min	161,674 mm	31,3 m3	70,8 m3	0,0 m3	
Volume de stockage	Volume de stockage (m3) 4 m3				

4	m ³
31	m³
10,6	h

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 22

Terre végétale pleine terre = 108 m² Noues = 36 m² Voirie, allée et parking = 187 m²

Surface totale du terrain 331 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 32
 m²

 Noues
 =
 1
 36
 m²

 Voirie, allée et parking
 =
 1
 187
 m²

Surface totale pondérée 255 m²

 $\begin{array}{ll} \text{Coefficient d'apport (Ca)} & \textbf{0,77} \\ \text{Surface active en hectare } (\text{m}^2) & \textbf{255} \end{array}$

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,8 L/s
Surface effective d'infiltration (en m2)	36 m2	Débit de fuite TOTAL	0,8 L/s

Evaluation du volume de stockage

Volume de stockage	7 m3			
1440 min	161,674 mm	41,3 m3	65,3 m3	0,0 m3
720 min	115,276 mm	29,4 m3	32,7 m3	0,0 m3
360 min	82,193 mm	21,0 m3	16,3 m3	4,7 m3
240 min	67,438 mm	17,2 m3	10,9 m3	6,3 m3
180 min	58,605 mm	15,0 m3	8,2 m3	6,8 m3
120 min	48,084 mm	12,3 m3	5,4 m3	6,8 m3
60 min	34,284 mm	8,8 m3	2,7 m3	6,0 m3
30 min	24,445 mm	6,2 m3	1,4 m3	4,9 m3
15 min	17,430 mm	4,5 m3	0,7 m3	3,8 m3
6 min	11,145 mm	2,8 m3	0,3 m3	2,6 m3
Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké

7	m³
41	m ³
15,2	h
	41 15,2

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 23

Terre végétale pleine terre = 16 m^2 Noues = 14 m^2 Voirie, allée et parking = 57 m^2

Surface totale du terrain 87 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 5
 m²

 Noues
 =
 1
 14
 m²

 Voirie, allée et parking
 =
 1
 57
 m²

Surface totale pondérée 76 m²

 $\begin{array}{ll} \text{Coefficient d'apport (Ca)} & \textbf{0,87} \\ \text{Surface active en hectare } (\text{m}^{\text{2}}) & \textbf{76} \end{array}$

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	2,10E-05 Débit de fuite infiltration	
Surface effective d'infiltration (en m2)	14 m2	Débit de fuite TOTAL	0,3 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	0,8 m3	0,1 m3	0,7 m3
15 min	17,430 mm	1,3 m3	0,3 m3	1,1 m3
30 min	24,445 mm	1,9 m3	0,5 m3	1,3 m3
60 min	34,284 mm	2,6 m3	1,1 m3	1,5 m3
120 min	48,084 mm	3,6 m3	2,1 m3	1,5 m3
180 min	58,605 mm	4,4 m3	3,2 m3	1,3 m3
240 min	67,438 mm	5,1 m3	4,2 m3	0,9 m3
360 min	82,193 mm	6,2 m3	6,4 m3	0,0 m3
720 min	115,276 mm	8,7 m3	12,7 m3	0,0 m3
1440 min	161,674 mm	12,3 m3	25,4 m3	0,0 m3
Volume de stockage	e (m3)			2 m3

2	m ³
12	m ³
11,6	h
	12 11,6

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 24

Terre végétale pleine terre = 29 m² Noues = 0 m² Voirie, allée et parking = 353 m²

Surface totale du terrain 382 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 9 m^2 Noues = 1 0 m^2 Voirie, allée et parking = 1 353 m^2

Surface totale pondérée 362 m²

 $\begin{array}{ll} \text{Coefficient d'apport (Ca)} & \textbf{0,95} \\ \text{Surface active en hectare } (\text{m}^{\text{2}}) & \textbf{362} \end{array}$

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	1,6 L/s
Surface effective d'infiltration (en m2)	75 m2	Débit de fuite TOTAL	1,6 L/s

Evaluation du volume de stockage

Volume de stockage (m3)				7 m3
1440 min	161,674 mm	58,5 m3	136,1 m3	0,0 m3
720 min	115,276 mm	41,7 m3	68,0 m3	0,0 m3
360 min	82,193 mm	29,7 m3	34,0 m3	0,0 m3
240 min	67,438 mm	24,4 m3	22,7 m3	1,7 m3
180 min	58,605 mm	21,2 m3	17,0 m3	4,2 m3
120 min	48,084 mm	17,4 m3	11,3 m3	6,1 m3
60 min	34,284 mm	12,4 m3	5,7 m3	6,7 m3
30 min	24,445 mm	8,8 m3	2,8 m3	6,0 m3
15 min	17,430 mm	6,3 m3	1,4 m3	4,9 m3
6 min	11,145 mm	4,0 m3	0,6 m3	3,5 m3
Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké

1	m
58	m ³
10,3	h
	58

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 25

Terre végétale pleine terre = 10 m² Noues = 33 m² Voirie, allée et parking = 306 m²

Surface totale du terrain 349 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 3
 m²

 Noues
 =
 1
 33
 m²

 Voirie, allée et parking
 =
 1
 306
 m²

Surface totale pondérée 342 m²

 $\begin{array}{ll} \text{Coefficient d'apport (Ca)} & \textbf{0,98} \\ \text{Surface active en hectare } (\text{m}^{\text{2}}) & \textbf{342} \end{array}$

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05 Débit de fuite infiltration		0,7 L/s
Surface effective d'infiltration (en m2)	33 m2	Débit de fuite TOTAL	0,7 L/s

Evaluation du volume de stockage

Volume de stockage (m3)				14 m3
1440 min	161,674 mm	55,3 m3	59,9 m3	0,0 m3
720 min	115,276 mm	39,4 m3	29,9 m3	9,5 m3
360 min	82,193 mm	28,1 m3	15,0 m3	13,1 m3
240 min	67,438 mm	23,1 m3	10,0 m3	13,1 m3
180 min	58,605 mm	20,0 m3	7,5 m3	12,6 m3
120 min	48,084 mm	16,4 m3	5,0 m3	11,5 m3
60 min	34,284 mm	11,7 m3	2,5 m3	9,2 m3
30 min	24,445 mm	8,4 m3	1,2 m3	7,1 m3
15 min	17,430 mm	6,0 m3	0,6 m3	5,3 m3
6 min	11,145 mm	3,8 m3	0,2 m3	3,6 m3
Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké

14	m ³
55	m ³
22,2	h
	55 22,2

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 26

Terre végétale pleine terre = 73 m^2 Noues = 36 m^2 Voirie, allée et parking = 80 m^2

Surface totale du terrain 189 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 22
 m²

 Noues
 =
 1
 36
 m²

 Voirie, allée et parking
 =
 1
 80
 m²

Surface totale pondérée 138 m²

Coefficient d'apport (Ca) 0,73 Surface active en hectare (m²) 138

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05 Débit de fuite infiltration		0,8 L/s
Surface effective d'infiltration (en m2)	36 m2	Débit de fuite TOTAL	0,8 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	1,5 m3	0,3 m3	1,3 m3
15 min	17,430 mm	2,4 m3	0,7 m3	1,7 m3
30 min	24,445 mm	3,4 m3	1,4 m3	2,0 m3
60 min	34,284 mm	4,7 m3	2,7 m3	2,0 m3
120 min	48,084 mm	6,6 m3	5,4 m3	1,2 m3
180 min	58,605 mm	8,1 m3	8,2 m3	0,0 m3
240 min	67,438 mm	9,3 m3	10,9 m3	0,0 m3
360 min	82,193 mm	11,3 m3	16,3 m3	0,0 m3
720 min	115,276 mm	15,9 m3	32,7 m3	0,0 m3
1440 min	161,674 mm	22,3 m3	65,3 m3	0,0 m3
Volume de stockage	Volume de stockage (m3) 3 m3			

3	m³
22	m ³
8,2	h
	22 8,2

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 27

Terre végétale pleine terre = 33 m^2 Noues = 13 m^2 Voirie, allée et parking = 67 m^2

Surface totale du terrain 113 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 10 m^2 Noues = 1 13 m^2 Voirie, allée et parking = 1 67 m^2

Surface totale pondérée 90 27

 $\begin{array}{ll} \text{Coefficient d'apport (Ca)} & \textbf{0,80} \\ \text{Surface active en hectare } (\text{m}^{\text{2}}) & \textbf{90} \end{array}$

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,3 L/s
Surface effective d'infiltration (en m2)	13 m2	Débit de fuite TOTAL	0,3 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	1,0 m3	0,1 m3	0,9 m3
15 min	17,430 mm	1,6 m3	0,2 m3	1,3 m3
30 min	24,445 mm	2,2 m3	0,5 m3	1,7 m3
60 min	34,284 mm	3,1 m3	1,0 m3	2,1 m3
120 min	48,084 mm	4,3 m3	2,0 m3	2,4 m3
180 min	58,605 mm	5,3 m3	2,9 m3	2,3 m3
240 min	67,438 mm	6,1 m3	3,9 m3	2,1 m3
360 min	82,193 mm	7,4 m3	5,9 m3	1,5 m3
720 min	115,276 mm	10,4 m3	11,8 m3	0,0 m3
1440 min	161,674 mm	14,5 m3	23,6 m3	0,0 m3
Volume de stockage	Volume de stockage (m3) 3 m3			

3	m ³
15	m ³
14,8	h
	15 14,8

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 28

Terre végétale pleine terre = 42 m^2 Noues = 30 m^2 Voirie, allée et parking = 178 m^2

Surface totale du terrain 250 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 13
 m²

 Noues
 =
 1
 30
 m²

 Voirie, allée et parking
 =
 1
 178
 m²

Surface totale pondérée 221 m²

Coefficient d'apport (Ca) 0,88 Surface active en hectare (m²) 221

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05 Débit de fuite infiltration		0,6 L/s
Surface effective d'infiltration (en m2)	30 m2	Débit de fuite TOTAL	0,6 L/s

Evaluation du volume de stockage

Volume de stockage (m3) 7				7 m3
1440 min	161,674 mm	35,7 m3	54,4 m3	0,0 m3
720 min	115,276 mm	25,4 m3	27,2 m3	0,0 m3
360 min	82,193 mm	18,1 m3	13,6 m3	4,5 m3
240 min	67,438 mm	14,9 m3	9,1 m3	5,8 m3
180 min	58,605 mm	12,9 m3	6,8 m3	6,1 m3
120 min	48,084 mm	10,6 m3	4,5 m3	6,1 m3
60 min	34,284 mm	7,6 m3	2,3 m3	5,3 m3
30 min	24,445 mm	5,4 m3	1,1 m3	4,3 m3
15 min	17,430 mm	3,8 m3	0,6 m3	3,3 m3
6 min	11,145 mm	2,5 m3	0,2 m3	2,2 m3
Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké

1	m'
36	m ³
15,7	h
	36 15,7

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 29

Terre végétale pleine terre = 108 m² Noues = 55 m² Voirie, allée et parking = 173 m²

Surface totale du terrain 336 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 32
 m²

 Noues
 =
 1
 55
 m²

 Voirie, allée et parking
 =
 1
 173
 m²

Surface totale pondérée 260 m²

 $\begin{array}{ll} \text{Coefficient d'apport (Ca)} & \textbf{0,78} \\ \text{Surface active en hectare } (\text{m}^{\text{2}}) & \textbf{260} \end{array}$

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	1,2 L/s
Surface effective d'infiltration (en m2)	55 m2	Débit de fuite TOTAL	1,2 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	2,9 m3	0,4 m3	2,5 m3
15 min	17,430 mm	4,5 m3	1,0 m3	3,5 m3
30 min	24,445 mm	6,4 m3	2,1 m3	4,3 m3
60 min	34,284 mm	8,9 m3	4,2 m3	4,8 m3
120 min	48,084 mm	12,5 m3	8,3 m3	4,2 m3
180 min	58,605 mm	15,3 m3	12,5 m3	2,8 m3
240 min	67,438 mm	17,6 m3	16,6 m3	0,9 m3
360 min	82,193 mm	21,4 m3	24,9 m3	0,0 m3
720 min	115,276 mm	30,0 m3	49,9 m3	0,0 m3
1440 min	161,674 mm	42,1 m3	99,8 m3	0,0 m3
Volume de stockage	e (m3)			5 m3

5	m ³
42	m ³
10,1	h
	42 10,1

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 30

Terre végétale pleine terre = 64 $\,\mathrm{m}^2$ Noues = 37 $\,\mathrm{m}^2$ Voirie, allée et parking = 228 $\,\mathrm{m}^2$

Surface totale du terrain 329 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 19
 m²

 Noues
 =
 1
 37
 m²

 Voirie, allée et parking
 =
 1
 228
 m²

Surface totale pondérée 284 m²

Coefficient d'apport (Ca) 0,86 Surface active en hectare (m²) 284

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,8 L/s
Surface effective d'infiltration (en m2)	37 m2	Débit de fuite TOTAL	0,8 L/s

Evaluation du volume de stockage

Volume de stockage (m3)				
1440 min	161,674 mm	45,9 m3	67,1 m3	0,0 m3
720 min	115,276 mm	32,8 m3	33,6 m3	0,0 m3
360 min	82,193 mm	23,4 m3	16,8 m3	6,6 m3
240 min	67,438 mm	19,2 m3	11,2 m3	8,0 m3
180 min	58,605 mm	16,7 m3	8,4 m3	8,3 m3
120 min	48,084 mm	13,7 m3	5,6 m3	8,1 m3
60 min	34,284 mm	9,7 m3	2,8 m3	6,9 m3
30 min	24,445 mm	6,9 m3	1,4 m3	5,5 m3
15 min	17,430 mm	5,0 m3	0,7 m3	4,3 m3
6 min	11,145 mm	3,2 m3	0,3 m3	2,9 m3
Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké

Volume Max	9	m ³
[-		3
Apport en 24 h :	46	m°
Temps de vidange :	16,4	h

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques des sous bassins versants hydrauliques 17-18 & 31

Terre végétale pleine terre = 211 m^2 Noues = 43 m^2 Voirie, allée et parking = 600 m^2

Surface totale du terrain 854 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 63
 m²

 Noues
 =
 1
 43
 m²

 Voirie, allée et parking
 =
 1
 600
 m²

Surface totale pondérée 706 m²

 $\begin{array}{ll} \text{Coefficient d'apport (Ca)} & \textbf{0,83} \\ \text{Surface active en hectare } (\text{m}^{\text{2}}) & \textbf{706} \end{array}$

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,9 L/s
Surface effective d'infiltration (en m2)	43 m2	Débit de fuite TOTAL	0,9 L/s

Evaluation du volume de stockage

Volume de stockage	Volume de stockage (m3) 43 m3			
1440 min	161,674 mm	114,2 m3	78,0 m3	36,2 m3
720 min	115,276 mm	81,4 m3	39,0 m3	42,4 m3
360 min	82,193 mm	58,1 m3	19,5 m3	38,5 m3
240 min	67,438 mm	47,6 m3	13,0 m3	34,6 m3
180 min	58,605 mm	41,4 m3	9,8 m3	31,6 m3
120 min	48,084 mm	34,0 m3	6,5 m3	27,5 m3
60 min	34,284 mm	24,2 m3	3,3 m3	21,0 m3
30 min	24,445 mm	17,3 m3	1,6 m3	15,6 m3
15 min	17,430 mm	12,3 m3	0,8 m3	11,5 m3
6 min	11,145 mm	7,9 m3	0,3 m3	7,5 m3
Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké

43	m ³
114	m ³
35,1	h
	114 35,1

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques des sous bassins versants hydrauliques 19 & 32

Terre végétale pleine terre = 89 m² Noues = 28 m² Voirie, allée et parking = 360 m²

Surface totale du terrain 477 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 27 m^2 Noues = 1 28 m^2 Voirie, allée et parking = 1 360 m^2

Surface totale pondérée 415 m²

 $\begin{array}{ll} \text{Coefficient d'apport (Ca)} & \textbf{0,87} \\ \text{Surface active en hectare } (\text{m}^{\text{2}}) & \textbf{415} \end{array}$

Prise en compte infiltration

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,6 L/s
Surface effective d'infiltration (en m2)	28 m2	Débit de fuite TOTAL	0,6 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	4,6 m3	0,2 m3	4,4 m3
15 min	17,430 mm	7,2 m3	0,5 m3	6,7 m3
30 min	24,445 mm	10,1 m3	1,1 m3	9,1 m3
60 min	34,284 mm	14,2 m3	2,1 m3	12,1 m3
120 min	48,084 mm	19,9 m3	4,2 m3	15,7 m3
180 min	58,605 mm	24,3 m3	6,4 m3	18,0 m3
240 min	67,438 mm	28,0 m3	8,5 m3	19,5 m3
360 min	82,193 mm	34,1 m3	12,7 m3	21,4 m3
720 min	115,276 mm	47,8 m3	25,4 m3	22,4 m3
1440 min	161,674 mm	67,0 m3	50,8 m3	16,2 m3
Volume de stockage	e (m3)			23 m3

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 33

Terre végétale pleine terre = 0 m² Noues = 0 m² Voirie, allée et parking = 141 m²

Surface totale du terrain 141 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m^2 Noues = 1 0 m^2 Voirie, allée et parking = 1 141 m^2

Surface totale pondérée 141 m²

0

Coefficient d'apport (Ca) 1,00 Surface active en hectare (m²) 141

Débit de fuite réglementaire

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,0 L/s
Surface effective d'infiltration (en m2)	0 m2	Débit de fuite TOTAL	0,0 L/s

Evaluation du volume de stockage

Volume de stockage	e (m3)			20 m3
1440 min	161,674 mm	22,8 m3	3,7 m3	19,1 m3
720 min	115,276 mm	16,3 m3	1,8 m3	14,4 m3
360 min	82,193 mm	11,6 m3	0,9 m3	10,7 m3
240 min	67,438 mm	9,5 m3	0,6 m3	8,9 m3
180 min	58,605 mm	8,3 m3	0,5 m3	7,8 m3
120 min	48,084 mm	6,8 m3	0,3 m3	6,5 m3
60 min	34,284 mm	4,8 m3	0,2 m3	4,7 m3
30 min	24,445 mm	3,4 m3	0,1 m3	3,4 m3
15 min	17,430 mm	2,5 m3	0,0 m3	2,4 m3
6 min	11,145 mm	1,6 m3	0,0 m3	1,6 m3
Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké

20	m³
23	m ³
149,7	h
	23 149,7

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 33

Terre végétale pleine terre = 0 m² Noues = 0 m² Voirie, allée et parking = 350 m²

Surface totale du terrain 350 m²

Calcul du Coefficient d'apport

 Terre végétale pleine terre
 =
 0,3
 0
 m²

 Noues
 =
 1
 0
 m²

 Voirie, allée et parking
 =
 1
 350
 m²

Surface totale pondérée 350 m²

0

 $\begin{tabular}{ll} Coefficient d'apport (Ca) & {\bf 1,00} \\ Surface active en hectare (m^2) & {\bf 350} \\ \end{tabular}$

Débit de fuite réglementaire

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,0 L/s
Surface effective d'infiltration (en m2)	0 m2	Débit de fuite TOTAL	0,1 L/s

Evaluation du volume de stockage

Volume de stockage	e (m3)			48 m3
1440 min	161,674 mm	56,6 m3	9,1 m3	47,5 m3
720 min	115,276 mm	40,3 m3	4,5 m3	35,8 m3
360 min	82,193 mm	28,8 m3	2,3 m3	26,5 m3
240 min	67,438 mm	23,6 m3	1,5 m3	22,1 m3
180 min	58,605 mm	20,5 m3	1,1 m3	19,4 m3
120 min	48,084 mm	16,8 m3	0,8 m3	16,1 m3
60 min	34,284 mm	12,0 m3	0,4 m3	11,6 m3
30 min	24,445 mm	8,6 m3	0,2 m3	8,4 m3
15 min	17,430 mm	6,1 m3	0,1 m3	6,0 m3
6 min	11,145 mm	3,9 m3	0,0 m3	3,9 m3
Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké

m ³
h

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 33

Terre végétale pleine terre = 37 $\,\mathrm{m}^2$ Noues = 0 $\,\mathrm{m}^2$ Voirie, allée et parking = 260 $\,\mathrm{m}^2$

Surface totale du terrain 297 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 11 m^2 Noues = 1 0 m^2 Voirie, allée et parking = 1 260 m^2

Surface totale pondérée 271 m²

0

Coefficient d'apport (Ca) 0,91 Surface active en hectare (m²) 271

Débit de fuite réglementaire

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,0 L/s
Surface effective d'infiltration (en m2)	0 m2	Débit de fuite TOTAL	0,1 L/s

Evaluation du volume de stockage

Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké
6 min	11,145 mm	3,0 m3	0,0 m3	3,0 m3
15 min	17,430 mm	4,7 m3	0,1 m3	4,7 m3
30 min	24,445 mm	6,6 m3	0,1 m3	6,5 m3
60 min	34,284 mm	9,3 m3	0,3 m3	9,0 m3
120 min	48,084 mm	13,0 m3	0,6 m3	12,4 m3
180 min	58,605 mm	15,9 m3	0,9 m3	15,0 m3
240 min	67,438 mm	18,3 m3	1,2 m3	17,1 m3
360 min	82,193 mm	22,3 m3	1,8 m3	20,5 m3
720 min	115,276 mm	31,3 m3	3,5 m3	27,7 m3
1440 min	161,674 mm	43,8 m3	7,0 m3	36,8 m3
Volume de stockage	e (m3)			37 m3

Volume Max	37	m^3
Apport en 24 h :	44	m ³
Temps de vidange :	149,7	h
remps de vidange .	145,7	lii .

Dimensionnement de l'ouvrage de rétention des eaux pluviales "Méthodes des pluies" - Les allées du Cardo - BV n°3 Vercingétorix

Calcul avec les coefficients de Montana

Valeurs des paramètres a et b de la formule de Montana h=a x t^(1-b)

		h [mm]	t [min]
Ville	Période de retour	а	b
Clermont-Ferrand	T=10 ans	4,649	0,512

Caractéristiques géométriques du sous bassin versant hydraulique 33

Terre végétale pleine terre = 0 m^2 Noues = 0 m^2 Voirie, allée et parking = 0 m^2

Surface totale du terrain 811 m²

Calcul du Coefficient d'apport

Terre végétale pleine terre = 0,3 0 m^2 Noues = 1 0 m^2 Voirie, allée et parking = 1 811 m^2

Surface totale pondérée 811 m²

0

Coefficient d'apport (Ca) 1,00 Surface active en hectare (m²) 811

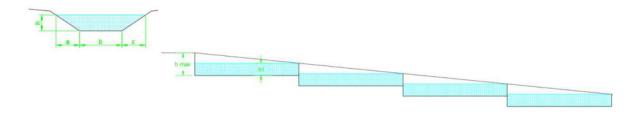
Débit de fuite réglementaire

Infiltration Coefficient K (en m/s)	2,10E-05	Débit de fuite infiltration	0,0 L/s
Surface effective d'infiltration (en m2)	0 m2	Débit de fuite TOTAL	0,2 L/s

Evaluation du volume de stockage

Volume de stockage (m3) 111 m3					
1440 min	161,674 mm	131,1 m3	21,0 m3	110,1 m3	
720 min	115,276 mm	93,5 m3	10,5 m3	83,0 m3	
360 min	82,193 mm	66,7 m3	5,3 m3	61,4 m3	
240 min	67,438 mm	54,7 m3	3,5 m3	51,2 m3	
180 min	58,605 mm	47,5 m3	2,6 m3	44,9 m3	
120 min	48,084 mm	39,0 m3	1,8 m3	37,2 m3	
60 min	34,284 mm	27,8 m3	0,9 m3	26,9 m3	
30 min	24,445 mm	19,8 m3	0,4 m3	19,4 m3	
15 min	17,430 mm	14,1 m3	0,2 m3	13,9 m3	
6 min	11,145 mm	9,0 m3	0,1 m3	9,0 m3	
Durée de la pluie	Hauteur des précipitations	Volume ruisselé	Volume de fuite	Volume stocké	

111	m ³
131	m ³
149,7	h
	111 131 149,7


Bilan de gestion des pluie courantes sur le secteur n°2 Renoux-Ballainvilliers

Sous-bassin versant	Rétention	Volume capacitaire en aérien	Volume capacitaire total	Emprise SBV repris	V apport pluie courante	V pris en charge
SBV 1	Α	10 m³	18 m³	157 m²	2 m³	2 m³
SBV 2	В	6 m³	11 m³	494 m²	7 m³	7 m³
36V Z	C	6 m³	11 m³			
SBV 3	D	5 m ³	9 m³	146 m²	2 m³	2 m³
SBV 4 & 5	St1	0 m ³	29 m³	986 m²	15 m³	15 m³
SBV 6	St2	0 m³	32 m³	641 m²	10 m³	10 m³
367.0	E	6 m³	9 m³			
SBV 7	St3	0 m ³	34 m³	361 m²	5 m ³	5 m ³
SBV 8	F	5 m³	13 m³	641 m²	10 m³	10 m³
364.0	G	7 m³	20 m³			
SBV 10	Н	4 m³	11 m³	222 m²	3 m³	3 m³
	ı	4 m³	9 m³	581 m²	9 m³	9 m³
SBV 11	J	5 m³	11 m³			
	K	4 m³	8 m³			
	L	7 m³	14 m³	791 m²	12 m³	12 m³
SBV 12	M	5 m³	10 m³			
	N	6 m³	13 m³			
SBV 13	0	5 m³	10 m³	182 m²	3 m³	3 m³
SBV 14	Р	9 m³	18 m³	277 m²	4 m³	4 m³
SBV 15	Q	8 m³	14 m³	256 m²	4 m³	4 m³
SBV 16	R	7 m³	13 m³	302 m²	5 m³	5 m³

Total :	107 m³	315 m³	6 037 m ²	91 m³	91 m³

Profil en travers

Profil en long

Projet: Clermont Date: 30/09/2022

Noue:

Géométrie de la noue :

Profil en travers:

 Emprise =
 3,3 m

 Risberme =
 0 m

 Garde d'eau =
 0,05 m

Profil en long:

Pente = 1,50% longueur totale = 11,5 ml

Nombre de compartiments :

N = 2

h1 (lame d'eau) 0,31 mSurface de la section = $0,88 \text{ m}^2$

Volume de la noue :

V noue = 10 m3

Indice des vides tranchée drainante

Dimension

Longueur

Largeur

Profondeur

Volume de rétention possible

0,15

11,5 m

11,5 m

1,4 m

8 m3

Projet: Clermont Date: 30/09/2022

Noue: B

Géométrie de la noue :

Profil en travers:

Emprise = 2,2 m Risberme = 0 m Garde d'eau = 0,05 m

Profil en long:

Pente = 2,30% longueur totale = 10,5 ml

Nombre de compartiments :

N = 3

h1 (lame d'eau) 0,32 mSurface de la section = $0,54 \text{ m}^2$

Volume de la noue :

V noue = 6 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 10,5 m

Largeur 2,2 m

Profondeur 1,4 m

Volume de rétention possible 5 m3

Projet: Clermont Date: 30/09/2022

Noue:

Géométrie de la noue :

Profil en travers:

Emprise = 4 m
Risberme = 0 m
Garde d'eau = 0,05 m

Profil en long:

Pente = 2,30% longueur totale = 6 ml

Nombre de compartiments :

N = 1

h1 (lame d'eau) 0,26 mSurface de la section = $0,92 \text{ m}^2$

Volume de la noue :

V noue = 6 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 6 m

Largeur 4 m

Profondeur 1,4 m

Volume de rétention possible 5 m3

Projet: Clermont Date: 30/09/2022

Noue: D

Géométrie de la noue :

Profil en travers:

Emprise = 2,2 m Risberme = 0 m Garde d'eau = 0,05 m

Profil en long:

Pente = 2,30% longueur totale = 9 ml

Nombre de compartiments :

N = 2

h1 (lame d'eau) 0,30 mSurface de la section = $0,50 \text{ m}^2$

Volume de la noue :

V noue = 5 m3

Indice des vides tranchée drainante

Dimension

Longueur

Largeur

Profondeur

Volume de rétention possible

0,15

9 m

2,2 m

1,4 m

4 m3

Projet: Clermont Date: 30/09/2022

Noue:

Géométrie de la noue :

Profil en travers:

 Emprise =
 2,5 m

 Risberme =
 0 m

 Garde d'eau =
 0,05 m

Profil en long:

Pente = 3,50% longueur totale = 11 ml

Nombre de compartiments :

N = 3

h1 (lame d'eau) 0,27 mSurface de la section = $0,54 \text{ m}^2$

Volume de la noue :

V noue = 6 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 11 m

Largeur 4 m

Profondeur 1,4 m

Volume de rétention possible 9 m3

Projet: Clermont Date: 30/09/2022

Noue: F

Géométrie de la noue :

Profil en travers:

Emprise = 2,5 m Risberme = 0 m Garde d'eau = 0,05 m

Profil en long:

Pente = 3,00% longueur totale = 7 ml

Nombre de compartiments :

N = 3

h1 (lame d'eau) 0,33 m Surface de la section = $0,66 \text{ m}^2$

Volume de la noue :

V noue = 5 m3

Indice des vides tranchée drainante

Dimension

Longueur

T m

Largeur

Profondeur

Volume de rétention possible

0,15

7 m

1,4 m

8 m3

Projet: Clermont Date: 30/09/2022

Noue: G

Géométrie de la noue :

Profil en travers:

 Emprise =
 2,5 m

 Risberme =
 0 m

 Garde d'eau =
 0,05 m

Profil en long:

Pente = 3,00% longueur totale = 11,5 ml

Nombre de compartiments :

N = 3

h1 (lame d'eau) 0,29 mSurface de la section = $0,57 \text{ m}^2$

Volume de la noue :

V noue = 7 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 11,5 m

Largeur 5,5 m

Profondeur 1,4 m

Volume de rétention possible 13 m3

Projet: Clermont Date: 30/09/2022

Noue:

Géométrie de la noue :

Profil en travers :
Emprise = 2,5 m

Risberme = 0 m
Garde d'eau = 0,05 m

b = 1,6 m

c = 0,4 m

Profil en long:

Pente = 3,00% longueur totale = 6,5 ml

Nombre de compartiments :

N = 2

h1 (lame d'eau) 0,30 mSurface de la section = $0,61 \text{ m}^2$

Volume de la noue :

V noue = 4 m3

Indice des vides tranchée drainante 0,15
Dimension
Longueur 6,5 m

Largeur 5,5 m Profondeur 1,4 m

Volume de rétention possible 8 m3

Projet: Clermont Date: 30/09/2022

Noue:

Géométrie de la noue :

Profil en travers:

Emprise = 2,5 m Risberme = 0 m Garde d'eau = 0,05 m

Profil en long:

Pente = 3,00% longueur totale = 8 ml

Nombre de compartiments :

N = 2

h1 (lame d'eau) 0,28 m Surface de la section = $0,56 \text{ m}^2$

Volume de la noue :

V noue = 4 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 8 m

Largeur 2,5 m

Profondeur 1,4 m

Volume de rétention possible 4 m3

Projet: Clermont Date: 30/09/2022

Noue:

Géométrie de la noue :

Profil en travers:

 Emprise =
 2,5 m

 Risberme =
 0 m

 Garde d'eau =
 0,05 m

Profil en long:

Pente = 3,50% longueur totale = 11,5 ml

Nombre de compartiments :

N = 2

h1 (lame d'eau) 0,20 mSurface de la section = $0,40 \text{ m}^2$

Volume de la noue :

V noue = 5 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 11,5 m

Largeur 2,5 m

Profondeur 1,4 m

Volume de rétention possible 6 m3

Projet: Clermont Date: 30/09/2022

Noue: K

Géométrie de la noue :

Profil en travers:

 Emprise =
 2,5 m

 Risberme =
 0 m

 Garde d'eau =
 0,05 m

Profil en long:

Pente = 3,50% longueur totale = 7,5 ml

Nombre de compartiments :

N = 2

h1 (lame d'eau) 0,27 mSurface de la section = $0,54 \text{ m}^2$

Volume de la noue :

V noue = 4 m3

Indice des vides tranchée drainante

Dimension

Longueur

Largeur

Profondeur

Volume de rétention possible

0,15

7,5 m

2,5 m

1,4 m

4 m3

Projet: Clermont Date: 30/09/2022

Noue:

Géométrie de la noue :

Profil en travers:

Emprise = 3 m Risberme = 0 m Garde d'eau = 0,05 m

Profil en long:

Pente = 3,00% longueur totale = 11,5 ml

Nombre de compartiments :

N = 2

h1 (lame d'eau) 0,23 mSurface de la section = $0,57 \text{ m}^2$

Volume de la noue :

V noue = 7 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 11,5 m

Largeur 3 m

Profondeur 1,4 m Volume de rétention possible 7 m3

Projet: Clermont Date: 30/09/2022

Noue: M

Géométrie de la noue :

Profil en travers:

Emprise = 3 m Risberme = 0 m Garde d'eau = 0,05 m

Profil en long:

Pente = 3,00% longueur totale = 7,5 ml

Nombre de compartiments :

N = 2

h1 (lame d'eau) 0,29 mSurface de la section = $0,72 \text{ m}^2$

Volume de la noue :

V noue = 5 m3

Indice des vides tranchée drainante

Dimension

Longueur

T,5 m

Largeur

Profondeur

Volume de rétention possible

0,15

7,5 m

1,4 m

5 m3

Projet: Clermont Date: 30/09/2022

Noue: N

Géométrie de la noue :

Profil en travers:

Emprise = 3 m Risberme = 0 m Garde d'eau = 0,05 m

Profil en long:

Pente = 3,50% longueur totale = 11,5 ml

Nombre de compartiments :

N = 2

h1 (lame d'eau) 0,20 mSurface de la section = $0,50 \text{ m}^2$

Volume de la noue :

V noue = 6 m3

Indice des vides tranchée drainante 0,15 Dimension

Longueur 11,5 m
Largeur 3 m
Profondeur 1,4 m

Volume de rétention possible 7 m3

Projet: Clermont Date: 30/09/2022

Noue: O

Géométrie de la noue :

Profil en travers:

Emprise = 2,5 m Risberme = 0 m Garde d'eau = 0,05 m

Profil en long:

Pente = 3,50% longueur totale = 9 ml

Nombre de compartiments :

N = 3

h1 (lame d'eau) 0,30 mSurface de la section = $0,59 \text{ m}^2$

Volume de la noue :

V noue = 5 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 9 m

Largeur 2,5 m

Profondeur 1,4 m

Volume de rétention possible 5 m3

Projet: Clermont Date: 30/09/2022

Noue: P

Géométrie de la noue :

Profil en travers:

Emprise = 3 m Risberme = 0 m Garde d'eau = 0,05 m

Profil en long:

Pente = 3,00% longueur totale = 14,5 ml

Nombre de compartiments :

N = 3

h1 (lame d'eau) 0,26 mSurface de la section = $0,64 \text{ m}^2$

Volume de la noue :

V noue = 9 m3

Indice des vides tranchée drainante 0,15
Dimension

Largeur 14,5 m
Largeur 3 m
Profondeur 1,4 m

Volume de rétention possible 9 m3

Projet: Clermont Date: 30/09/2022

Noue: Q

Géométrie de la noue :

Profil en travers:

Emprise = 3 m Risberme = 0 m Garde d'eau = 0,05 m

Profil en long:

Pente = 3,50% longueur totale = 9,5 ml

Nombre de compartiments :

N = 4

h1 (lame d'eau) 0,32 mSurface de la section = $0,79 \text{ m}^2$

Volume de la noue :

V noue = 8 m3

Indice des vides tranchée drainante

Dimension

Longueur

Largeur

Profondeur

Volume de rétention possible

0,15

9,5 m

3 m

1,4 m

6 m3

Projet: Clermont Date: 30/09/2022

Noue:

Géométrie de la noue :

Profil en travers:

Emprise = 3 m Risberme = 0 m Garde d'eau = 0,05 m

Profil en long:

Pente = 4,00% longueur totale = 9,5 ml

Nombre de compartiments :

N = 4

h1 (lame d'eau) 0,31 m Surface de la section = $0,76 \text{ m}^2$

Volume de la noue :

V noue = **7** m3

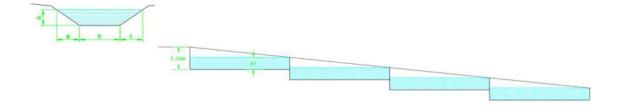
Indice des vides tranchée drainante 0,15

Dimension

Longueur 9,5 m

Largeur 3 m

Profondeur 1,4 m


Volume de rétention possible 6 m3

Bilan de gestion des pluie courantes sur le secteur n°3 Vercingétorix

Sous-bassin versant	Noue	Volume capacitaire en aérien	Volume capacitaire total	Emprise SBV repris	V apport pluie courrante	V pris en charge
				-		
SBV 1	A1	6 m³	14 m³	278 m²	4 m³	4 m³
SBV 2	B1	4 m³	11 m³	249 m²	4 m³	4 m³
SBV 3	C1	9 m³	23 m³	342 m²	5 m³	5 m³
SBV 4	D1	3 m³	10 m³	127 m²	2 m³	2 m³
SBV 5	E1	3 m³	10 m³	190 m²	3 m ³	3 m³
SBV 6	F1	11 m³	28 m³	478 m²	7 m ³	7 m³
SBV 8	G1	6 m³	15 m³	337 m²	5 m³	5 m³
SBV 9	A2	6 m³	14 m³	166 m²	2 m³	2 m³
SBV 10	B2	11 m³	25 m³	253 m²	4 m³	4 m³
SBV 11	C2	17 m³	37 m³	410 m²	6 m³	6 m³
SBV 12	D2	3 m³	6 m³	222 m²	3 m³	3 m³
SBV 13	E2	3 m³	6 m³	156 m²	2 m³	2 m³
SBV 14	F2	17 m³	40 m³	607 m²	9 m³	9 m³
SBV 15	G2	4 m³	10 m³	184 m²	3 m³	3 m³
SBV 16	H2	17 m³	41 m³	482 m²	7 m ³	7 m³
SBV 17	12	2 m³	8 m³	226 m²	3 m³	3 m³
SBV 21	J3	4 m³	9 m³	193 m²	3 m³	3 m³
SBV 22	К3	6 m³	14 m³	193 m²	3 m³	3 m³
SBV 23	L3	6 m³	13 m³	255 m²	4 m³	4 m³
SBV 24	М3	3 m³	5 m³	76 m²	1 m³	1 m³
SBV 25	St1	0 m ³	23 m³	362 m²	5 m³	5 m³
SBV 26	St2	0 m ³	16 m³	342 m²	5 m³	5 m³
SBV 27	N3	4 m³	11 m³	138 m²	2 m³	2 m³
SBV 28	03	2 m³	5 m³	90 m²	1 m³	1 m³
SBV 29	Р3	4 m³	10 m³	221 m²	3 m³	3 m³
SBV 30	Q3	7 m³	18 m³	260 m²	4 m³	4 m³
SBV 31	R3	4 m³	11 m³	284 m²	4 m³	4 m³
SBV 18, 19	St3	0 m³	23 m³	706 m²	11 m³	11 m³
& 32	S3	6 m³	26 m³	1		
CDV 20 8 22	St4	0 m³	15 m³	415 m²	6 m³	6 m³
SBV 20 & 33	Т3	3 m³	16 m³			

Profil en travers

Profil en long

Projet : Clermont Date : 30/09/2022

Noue: A1

Géométrie de la noue :

Profil en travers :		
Emprise =	2,2	m
Risberme =	0	m

Garde d'eau = 0,05 m

h = 0,35 m

a = 0,35 m b = 1,4 m

c = 0,35 m

Profil en long:

Pente = 5,50% longueur totale = 18 ml

Nombre de compartiments :

N = 6

h1 (lame d'eau) 0,19 m Surface de la section = 0,32 m²

Volume de la noue :

V noue = 6 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 18 m Largeur 2,2 m

Profondeur 1,4 m

Volume de rétention possible 8 m3

Projet: Clermont Date: 30/09/2022

Noue: B1

Géométrie de la noue :

Profil en travers :		
Emprise =	2,2	m
Risberme =	0	m

Garde d'eau = 0,05 m

h = 0,35 m

a = 0,35 m

b = 1,4 m c = 0,35 m

Profil en long :

Pente = 6,00% longueur totale = 14,5 ml

Nombre de compartiments :

N = 5

h1 (lame d'eau) 0,18 m Surface de la section = 0,31 m²

Volume de la noue :

V noue = 4 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 14,5 m

Largeur 2,2 m

Profondeur 1,4 m

Volume de rétention possible 7 m3

Projet: Clermont Date: 30/09/2022

Noue: C1

Géométrie de la noue :

Profil en travers :		
Emprise =	2,2	m
Risberme =	0	m

Garde d'eau = 0,05 m

h = 0,35 m a = 0,35 m b = 1,4 m

c = 0,35 m

Profil en long:

Pente = 6,00%

longueur totale = 31 ml

Nombre de compartiments :

N = 10

h1 (lame d'eau) 0,16 m Surface de la section = 0,29 m²

Volume de la noue :

V noue =	9 m3	3
----------	------	---

Indice des vides tranchée drainante 0,15

Dimension

Longueur 31 m

Largeur 2,2 m

Profondeur 1,4 m

Volume de rétention possible 14 m3

Projet: Clermont Date: 30/09/2022

Noue: D1

Géométrie de la noue :

Profil en travers :	
Emprise =	

Risberme = 0 m
Garde d'eau = 0,05 m

2,2 m

h = 0,35 m

a = 0,35 m

b = 1,4 m

c = 0,35 m Profil en long :

Pente = 6,00% longueur totale = 15 ml

Nombre de compartiments :

N = 4

h1 (lame d'eau) 0,13 m Surface de la section = 0,22 m²

Volume de la noue :

V noue = 3 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 15 m

Largeur 2,2 m

Profondeur 1,4 m

Volume de rétention possible 7 m3

Projet: Clermont Date: 30/09/2022

Noue: E1

Géométrie de la noue :

Profil en travers :
Emprise =

Risberme = 0 m Garde d'eau = 0,05 m

2,2 m

h = 0,35 m

a = 0,35 m

b = 1,4 m c = 0,35 m

Profil en long:

Pente = 6,00%

longueur totale = 14 ml

Nombre de compartiments :

N = 4

h1 (lame d'eau) 0,14 m Surface de la section = 0,25 m²

Volume de la noue :

V noue = 3 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 14 m

Largeur 2,2 m

Profondeur 1,4 m

Volume de rétention possible 6 m3

Projet: Clermont Date: 30/09/2022

Noue: F1

Géométrie de la noue :

1 TOTAL CIT CI CI CI CI CI CI CI CI CI CI CI CI CI		
Emprise =	2,2	m
Risberme =	0	m

Garde d'eau = 0,05 m

h = 0,35 m a = 0,35 m

b = 1,4 m c = 0,35 m

Profil en long:

Profil en travers :

Pente = 6,00% longueur totale = 38 ml

Nombre de compartiments :

N = 12

h1 (lame d'eau) 0,16 m Surface de la section = 0,28 m²

Volume de la noue :

V noue = 11 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 38 m Largeur 2,2 m

Profondeur 1,4 m Volume de rétention possible 18 m3

Projet: Clermont Date: 30/09/2022

Noue: G1

Géométrie de la noue :

Profil en travers :		
Emprise =	2,2	m
Risberme =	0	m
Garde d'eau =	0,05	m

h =	0,35 m
a =	0,35 m
b =	1,4 m
c =	0,35 m

Profil en long:

Pente = 5,10% longueur totale = 18,5 ml

Nombre de compartiments :

N = 6

h1 (lame d'eau) 0,19 mSurface de la section = $0,34 \text{ m}^2$

Volume de la noue :

Volume de rétention possible

V noue =

Indice des vides tranchée drainante	0,15	_
Dimension		
Longueur	18,5 m	
Largeur	2,2 m	
Profondeur	1,4 m	

6 m3

9 m3

Projet: Clermont Date: 30/09/2022

Noue: A2

Géométrie de la noue :

Profil en travers :

Emprise = 3 m

Risberme = 0 m

Garde d'eau = 0,05 m

h = 0,35 m

a = 0,35 m

b = 2,2 m

0,35 m

Profil en long :
Pente = 5,00%

longueur totale = 13 ml

Nombre de compartiments :

N = 4

h1 (lame d'eau) 0,19 m Surface de la section = 0,48 m²

Volume de la noue :

V noue = 6 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 13 m

Largeur 3 m

Profondeur 1,4 m

Volume de rétention possible 8 m3

Projet: Clermont Date: 30/09/2022

Noue: B2

Géométrie de la noue :

Profil en travers :	
Emprise =	
Risberme =	

Risberme = 0 m Garde d'eau = 0,05 m

3 m

h = 0,35 m

a = 0,35 m

b = 2,2 m c = 0,35 m

Profil en long:

Pente = 5,00%

longueur totale = 22 ml

Nombre de compartiments :

N = 7

h1 (lame d'eau) 0,19 m Surface de la section = 0,49 m²

Volume de la noue :

V noue = 11 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 22 m

Largeur 3 m

Profondeur 1,4 m

Volume de rétention possible 14 m3

Projet: Clermont Date: 30/09/2022

Noue: C2

Géométrie de la noue :

Profil en travers :	
Emprise =	3
Risberme =	0

Risberme = 0 m Garde d'eau = 0,05 m

m

h = 0,35 m

a = 0,35 m

b = 2,2 m c = 0,35 m

Profil en long:

Pente = 5,00%

longueur totale = 32 ml

Nombre de compartiments :

N = 11

h1 (lame d'eau) 0,20 m Surface de la section = 0,52 m²

Volume de la noue :

V noue = 17 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 32 m

Largeur 3 m Profondeur 1,4 m

Volume de rétention possible 20 m3

Projet: Clermont Date: 30/09/2022

Noue: D2

Géométrie de la noue :

Profil en travers :	
Emprise =	

Risberme = 0 m Garde d'eau = 0,05 m

3 m

h = 0,35 m

a = 0,35 m

b = 2,2 m c = 0,35 m

Profil en long:

Pente = 6,00%

longueur totale = 5,5 ml

Nombre de compartiments :

N = 2

h1 (lame d'eau) 0,19 m Surface de la section = 0,47 m²

Volume de la noue :

V noue = 3 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 5,5 m

Largeur 3 m

Profondeur 1,4 m

Volume de rétention possible 3 m3

Projet: Clermont Date: 30/09/2022

Noue: E2

Géométrie de la noue :

Profil en travers :	
Emprise =	

Risberme = 0 m
Garde d'eau = 0,05 m

3 m

h = 0,35 m

a = 0,35 m

b = 2,2 m c = 0,35 m

Profil en long:

Pente = 6,00%

longueur totale = 5,5 ml

Nombre de compartiments :

N = 2

h1 (lame d'eau) 0,19 m Surface de la section = 0,47 m²

Volume de la noue :

V noue = 3 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 5,5 m

Largeur 3 m

Profondeur 1,4 m

Volume de rétention possible 3 m3

Projet: Clermont Date: 30/09/2022

Noue: F2

Géométrie de la noue :

Emprise =	3	m
Risberme =	0	m

Garde d'eau = 0,05 m

h = 0,35 m

a = 0,35 m b = 2,2 m

b = 2,2 m c = 0,35 m

Profil en long:

Profil en travers:

Pente = 6,00% longueur totale = 36 ml

Nombre de compartiments :

N = 13

h1 (lame d'eau) 0,18 m Surface de la section = 0,47 m²

Volume de la noue :

V noue = 17 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 36 m Largeur 3 m

Profondeur 1,4 m

Volume de rétention possible 23 m3

Projet: Clermont Date: 30/09/2022

Noue: G2

Géométrie de la noue :

Profil en travers :	
Emprise =	3
Risberme =	0

m

Risberme = 0 m Garde d'eau = 0,05 m

h = 0,35 m

a = 0,35 m

b = 2,2 m

0,35 m

Profil en long :
Pente = 6,00%

longueur totale = 10 ml

Nombre de compartiments :

N = 3

h1 (lame d'eau) 0,15 m Surface de la section = 0,38 m²

Volume de la noue :

V noue = 4 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 10 m

Largeur 3 m Profondeur 1,4 m

Volume de rétention possible 6 m3

Projet: Clermont Date: 30/09/2022

Noue: H2

Géométrie de la noue :

Profil en travers :		
Emprise =	3	m
Risberme =	0	m

Garde d'eau = 0,05 m

h = 0,35 m

a = 0,35 m

b = 2,2 m c = 0,35 m

Profil en long :

Pente = 6,00%

longueur totale = 38 ml

Nombre de compartiments :

N = 13

h1 (lame d'eau) 0,17 m Surface de la section = 0,45 m²

Volume de la noue :

V noue = 17 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 38 m

Largeur 3 m Profondeur 1,4 m

Volume de rétention possible 24 m3

Projet: Clermont Date: 30/09/2022

Noue: 12

Géométrie de la noue :

Profil en travers:

longueur totale =

Emprise =	1,5	m
Risberme =	0	m

Garde d'eau = 0,05 m

h = 0,35 m a = 0,35 m b = 0,7 m

= 0,35 m

Profil en long :
Pente = 6,00%

19 ml

Nombre de compartiments :

N = 5

h1 (lame d'eau) 0,12 m Surface de la section = 0,13 m²

Volume de la noue :

V noue = 2 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 19 m

Largeur 1,5 m

Profondeur 1,4 m
Volume de rétention possible 6 m3

Projet: Clermont Date: 30/09/2022

Noue: J3

Géométrie de la noue :

Profil en travers :
Emprise =

Risberme = 0 m Garde d'eau = 0,05 m

2,5 m

h = 0,35 m

a = 0,35 m

b = 1,7 m

= 0,35 m

Profil en long :

Pente = 5,00% longueur totale = 10,5 ml

Nombre de compartiments :

N = 3

h1 (lame d'eau) 0,18 m Surface de la section = 0,36 m²

Volume de la noue :

V noue = 4 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 10,5 m

Largeur 2,5 m Profondeur 1,4 m

Volume de rétention possible 6 m3

Projet: Clermont Date: 30/09/2022

Noue: K3

Géométrie de la noue :

Profil en travers :
Emprise = 2,5 m

Risberme = 0 m Garde d'eau = 0,05 m

h = 0,35 m

a = 0,35 m

b = 1,7 m

0,35 m

Profil en long :

Pente = 5,00% longueur totale = 15,5 ml

Nombre de compartiments :

N = 5

h1 (lame d'eau) 0,20 m Surface de la section = 0,40 m²

Volume de la noue :

V noue = 6 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 15,5 m

Largeur 2,5 m

Profondeur 1,4 m
Volume de rétention possible 8 m3

Projet: Clermont Date: 30/09/2022

Noue: L3

Géométrie de la noue :

Profil en travers :

Emprise =	2,5	m
Risberme =	0	m

Garde d'eau = 0,05 m

h = 0,35 m a = 0,35 m

a = 0,35 m b = 1,7 m c = 0,35 m

Profil en long :

Pente = 5,00% longueur totale = 13,5 ml

Nombre de compartiments :

N = 5

h1 (lame d'eau) 0,22 m Surface de la section = 0,44 m²

Volume de la noue :

V noue = 6 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 13,5 m Largeur 2,5 m

Profondeur 1,4 m

Volume de rétention possible 7 m3

Projet: Clermont Date: 30/09/2022

Noue: M3

Géométrie de la noue :

Profil en travers :
Emprise =

Risberme = 0 m Garde d'eau = 0,05 m

2,5 m

h = 0,35 m

a = 0,35 m

b = 1,7 m

0,35 m

Profil en long :

Pente = 4,50%
longueur totale = 5,5 ml

Nombre de compartiments :

N = 2

h1 (lame d'eau) 0,23 m Surface de la section = 0,46 m²

Volume de la noue :

V noue = 3 m3

Indice des vides tranchée drainante 0,15

Dimension

Longueur 5,5 m

Largeur 2,5 m

Profondeur 1,4 m

Volume de rétention possible 3 m3

Projet: Clermont Date: 30/09/2022

Noue: N3

Géométrie de la noue :

riom en travers :	
Emprise =	2,5 m
Risberme =	0 m

Garde d'eau = 0,05 m

h = 0,35 m

a = 0,35 m

b = 1,7 m c = 0,35 m

Profil en long:

Profil en travers :

Pente = 6,00% longueur totale = 14 ml

Nombre de compartiments :

N = 4

h1 (lame d'eau) 0,14 m Surface de la section = 0,29 m²

Volume de la noue :

V noue = 4 m3

ou Système de Stockholm vide à 0,15

Dimension

Longueur 14 m

Largeur 2,5 m

Profondeur 1,4 m

Volume de rétention possible 7 m3

Projet: Clermont Date: 30/09/2022

Noue: O3

Géométrie de la noue :

Profil en travers :

Emprise = 2,5 m Risberme = 0 m Garde d'eau = 0,05 m

h = 0,35 m a = 0,35 m b = 1,7 m c = 0,35 m

Profil en long:

Pente = 6,00% longueur totale = 5 ml

Nombre de compartiments :

N = 2

h1 (lame d'eau) 0,20 mSurface de la section = $0,41 \text{ m}^2$

Volume de la noue :

V noue = 2 m3

ou Système de Stockholm vide à 0,15
Dimension
Longueur 5 m

Largeur 2,5 m Profondeur 1,4 m

Volume de rétention possible 3 m3

Projet: Clermont Date: 30/09/2022

Noue: P3

Géométrie de la noue :

Profil en travers :
Emprise =

Risberme = 0 m Garde d'eau = 0,05 m

2,5 m

h = 0,35 m

a = 0,35 m

b = 1,7 m c = 0,35 m

Profil en long :

Pente = 6,00%

longueur totale = 12 ml

Nombre de compartiments :

N = 4

h1 (lame d'eau) 0,17 m Surface de la section = 0,35 m²

Volume de la noue :

V noue = 4 m3

ou Système de Stockholm vide à 0,15

Dimension

Longueur 12 m

Largeur 2,5 m

Profondeur 1,4 m

Volume de rétention possible 6 m3

Projet: Clermont Date: 30/09/2022

Noue: Q3

Géométrie de la noue :

Profil en travers :		
Emprise =	2,5	m
Risberme =	0	m

Garde d'eau = 0,05 m

h = 0,35 m a = 0,35 m

b = 1,7 m c = 0,35 m

Profil en long :

Pente = 6,00% longueur totale = 21 ml

Nombre de compartiments :

N = 7

h1 (lame d'eau) 0,17 mSurface de la section = $0,35 \text{ m}^2$

Volume de la noue :

V noue = 7 m3

ou Système de Stockholm vide à 0,15

Dimension

Longueur 21 m Largeur 2,5 m

Profondeur 1,4 m

Volume de rétention possible 11 m3

Projet: Clermont Date: 30/09/2022

Noue: R3

Géométrie de la noue :

Profil en travers :
Emprise =

Risberme = 0 m Garde d'eau = 0,05 m

2,5 m

h = 0,35 m

a = 0,35 m

b = 1,7 m

= 0,35 m

Profil en long :
Pente = 6,00%

longueur totale = 14 ml

Nombre de compartiments :

N = 4

h1 (lame d'eau) 0,14 m Surface de la section = 0,29 m²

Volume de la noue :

V noue = 4 m3

ou Système de Stockholm vide à 0,15

Dimension

Longueur 14 m

Largeur 2,5 m

Profondeur 1,4 m

Volume de rétention possible 7 m3

Projet: Clermont Date: 30/09/2022

Noue: S3

Géométrie de la noue :

Profil en travers :		
Emprise =	2,5	m
Risberme =	0	m

Garde d'eau = 0,05 m

h = 0,35 m a = 0,35 m

b = 1,7 m c = 0,35 m

Profil en long:

Pente = 6,00% longueur totale = 17 ml

Nombre de compartiments :

N = 6

h1 (lame d'eau) 0,18 m Surface de la section = 0,37 m²

Volume de la noue :

V noue = 6 m3

ou Système de Stockholm vide à 0,15

Dimension

Longueur 17 m Largeur 5,5 m

Profondeur 1,4 m

Volume de rétention possible 20 m3

Projet: Clermont Date: 30/09/2022

Noue: T3

Géométrie de la noue :

Profil en travers :		
Emprise =	2,5	m
Risberme =	0	m

Garde d'eau = 0,05 m

h = 0,35 m

a = 0,35 m b = 1,7 m

= 0,35 m

Profil en long :
Pente = 6,00%

longueur totale = 11 ml

Nombre de compartiments :

N = 3

h1 (lame d'eau) 0,13 m Surface de la section = 0,27 m²

Volume de la noue :

V noue = 3 m3

ou Système de Stockholm vide à 0,15

Dimension

Longueur 11 m Largeur 5,5 m

Profondeur 1,4 m

Volume de rétention possible 13 m3

BASSIN VERSANT 1

Code codiedi	Code	cou	leur
--------------	------	-----	------

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 157

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	117	1,00	117
Noues humides	40	1,00	40
Espaces verts	0	0,30	0
TOTAL	157		157

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) $(=Si totale \times R/1 000)$:

BASSIN VERSANT 2

Code	COLI	leur	•
Jour	COU	i C u i	٠

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 494

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	422	1,00	422
Noues humides	46	1,00	46
		0,30	0
TOTAL	468		468

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 3

Code	COLI	eur	•
Loue	COU	Cui	٠

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 146

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	125	1,00	125
Noues humides	21	1,00	21
Espaces verts	0	0,30	0
TOTAL	146		146

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale \times R/1 000) :

BASSIN VERSANT 4

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 414

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	383	1,00	383
Noues humides	0	1,00	0
Espaces verts	0	0,30	0
TOTAL	383		383

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale \times R/1 000) :

BASSIN VERSANT 5

Code codiedi	Code	cou	leur
--------------	------	-----	------

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 594

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	594	1,00	594
Noues humides	0	1,00	0
Espaces verts	0	0,30	0
TOTAL	594		594

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 6

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) :

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	600	1,00	600
Noues humides	38	1,00	38
Espaces verts	0	0,30	0
TOTAL	638		638

Superficie d'espaces laissés en pleine terre Spt (en m²) 10 (=St-Sa totale):

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE:

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000):

BASSIN VERSANT 7

Code	cou	leur	

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 361

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	361	1,00	361
Noues humides	0	1,00	0
Espaces verts	0	0,30	0
TOTAL	361		361

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) $(=Si totale \times R/1 000)$:

BASSIN VERSANT 8

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 686

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	572	1,00	572
Noues humides	49	1,00	49
Espaces verts	0	0,30	0
TOTAL	621		621

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale \times R/1 000) :

BASSIN VERSANT 9

Code	cou	leur	

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 318

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	318	1,00	318
Noues humides	0	1,00	0
Espaces verts	0	0,30	0
TOTAL	318		318

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 10

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 222

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	205	1,00	205
Noues humides	17	1,00	17
Espaces verts	0	0,30	0
TOTAL	222		222

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale \times R/1 000) :

BASSIN VERSANT 11

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 581

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	512	1,00	512
Noues humides	69	1,00	69
Espaces verts	0	0,30	0
TOTAL	581		581

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 12

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 822

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	682	1,00	682
Noues humides	95	1,00	95
Espaces verts	0	0,30	0
TOTAL	777		777

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 13

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 182

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	159	1,00	159
Noues humides	23	1,00	23
Espaces verts	0	0,30	0
TOTAL	182		182

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale \times R/1 000) :

BASSIN VERSANT 14

Code	COLI	eur	•
Loue	COU	Cui	٠

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 277

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	227	1,00	227
Noues humides	50	1,00	50
Espaces verts	0	0,30	0
TOTAL	277		277

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 15

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 256

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	221	1,00	221
Noues humides	35	1,00	35
Espaces verts	0	0,30	0
TOTAL	256		256

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) $(=Si totale \times R/1 000)$:

BASSIN VERSANT 16

Code	COLI	eur	•
Loue	COU	Cui	٠

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 302

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	268	1,00	268
Noues humides	34	1,00	34
Espaces verts	0	0,30	0
TOTAL	302		302

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) $(=Si totale \times R/1 000)$:

BASSIN VERSANT 1

Code couleur:

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 278

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	237	1,00	237
Noues humides	41	1,00	41
		0,30	0
TOTAL	278		278

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale):

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000):

BASSIN VERSANT 2

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 290

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	198	1,00	198
Noues humides	34	1,00	34
TOTAL	232		232

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 3

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 443

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	224	1,00	224
Noues humides	74	1,00	74
TOTAL	298		298

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

BASSIN VERSANT 4

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 196

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	64	1,00	64
Noues humides	34	1,00	34
TOTAL	98		98

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

BASSIN VERSANT 5

Code couleur:

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 210

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	148	1,00	148
Noues humides	33	1,00	33
TOTAL	181		181

Superficie d'espaces laissés en pleine terre Spt (en m²) 29 (=St-Sa totale):

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000):

BASSIN VERSANT 6

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 568

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	354	1,00	354
Noues humides	85	1,00	85
TOTAL	439		439

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

<u>CALCUL DU VOLUME DE RETENTION</u> <u>A METTRE EN OEUVRE :</u>

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 8

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 448

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	248	1,00	248
Noues humides	158	1,00	158
TOTAL	406		406

Superficie d'espaces laissés en pleine terre Spt (en m²)
(=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

BASSIN VERSANT 9

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 166

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	126	1,00	126
Noues humides	40	1,00	40
TOTAL	166		166

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 10

Code couleur:

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 253

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	185	1,00	185
Noues humides	68	1,00	68
TOTAL	253		253

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale):

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3)

(=Si totale x R/1 000):

BASSIN VERSANT 11

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 410

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	310	1,00	310
Noues humides	100	1,00	100
TOTAL	410		410

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3)

(=Si totale x R/1 000) :

BASSIN VERSANT 12

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 222

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	206	1,00	206
Noues humides	16	1,00	16
TOTAL	222		222

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 13

Code couleur:

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 156

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	140	1,00	140
Noues humides	16	1,00	16
TOTAL	156		156

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 14

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 611

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	496	1,00	496
Noues humides	109	1,00	109
TOTAL	605		605

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

BASSIN VERSANT 15

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 184

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	151	1,00	151
Noues humides	33	1,00	33
TOTAL	184		184

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

BASSIN VERSANT 16

Code couleur:

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 482

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	366	1,00	366
Noues humides	116	1,00	116
TOTAL	482		482

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

BASSIN VERSANT 17

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 226

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	197	1,00	197
Noues humides	29	1,00	29
TOTAL	226		226

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

BASSIN VERSANT 18

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 133

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	133	1,00	133
Noues humides	0	1,00	0
TOTAL	133		133

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 19

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 212

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	212	1,00	212
Noues humides	0	1,00	0
TOTAL	212		212

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 20

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 191

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	191	1,00	191
Noues humides	0	1,00	0
TOTAL	191		191

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 21

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 197

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	164	1,00	164
Noues humides	27	1,00	27
TOTAL	191		191

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 22

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 215

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	145	1,00	145
Noues humides	39	1,00	39
TOTAL	184		184

Superficie d'espaces laissés en pleine terre Spt (en m²)
(=St-Sa totale):

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

BASSIN VERSANT 23

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 331

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	187	1,00	187
Noues humides	36	1,00	36
TOTAL	223		223

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 24

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 87

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	57	1,00	57
Noues humides	14	1,00	14
		0,30	0
TOTAL	71		71

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 25

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 382

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	353	1,00	353
Noues humides	0	1,00	0
TOTAL	353		353

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

BASSIN VERSANT 26

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 349

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	306	1,00	306
Noues humides	33	1,00	33
TOTAL	339		339

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 27

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 189

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	80	1,00	80
Noues humides	36	1,00	36
		0,30	0
TOTAL	116		116

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

BASSIN VERSANT 28

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 113

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	67	1,00	67
Noues humides	13	1,00	13
		0,30	0
TOTAL	80		80

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 29

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 250

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	178	1,00	178
Noues humides	30	1,00	30
		0,30	0
TOTAL	208		208

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

BASSIN VERSANT 30

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 336

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	173	1,00	173
Noues humides	55	1,00	55
		0,30	0
TOTAL	228		228

Superficie d'espaces laissés en pleine terre Spt (en m²)
(=St-Sa totale):

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

BASSIN VERSANT 31

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 329

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	228	1,00	228
Noues humides	37	1,00	37
		0,30	0
TOTAL	265		265

Superficie d'espaces laissés en pleine terre Spt (en m²) (=St-Sa totale) :

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

Volume de rétention à mettre en œuvre au droit du projet Vr (en m3) (=Si totale x R/1 000) :

BASSIN VERSANT 32

Code couleur :

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 506

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	252	1,00	252
Noues humides	43	1,00	43
		0,30	0
TOTAL	295		295

Superficie d'espaces laissés en pleine terre Spt (en m²)
(=St-Sa totale):

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15

BASSIN VERSANT 33

Code couleur :

Informations à saisir	Valeurs calculées automatiquement
--------------------------	---

CARACTERISTIQUES DU PROJET:

Superficie totale du projet St (en m²) : 230

Surfaces aménagées :	Superficie Sa (en m²)	Coefficient d'imperméabilisat° Ci	Superficie imperméable Si (en m²) (=Sa*Ci)
Surfaces nouvellement imperméabilisées à compenser	113	1,00	113
Noues humides	28	1,00	28
		0,30	0
TOTAL	141		141

Superficie d'espaces laissés en pleine terre Spt (en m²)
(=St-Sa totale):

CALCUL DU VOLUME DE RETENTION A METTRE EN OEUVRE :

Ratio imposé volume de rétention/surface imperméable R (en l/m²) : 15